
CHAPTER ONE HUNDRED FOURTEEN 

The Computation of Bed Shear in a Numerical Model 

W. Leeuwenstein and H.G. Wind 

1.  Introduction 

Obstructions located in coastal and offshore waters usually dis- 
turb the natural flow pattern. This disturbed flow will, in general, 
cause local morphological changes in the position of the erodable 
boundary. 

Often these changes should not be allowed to exceed certain 
limits, for example, when local scour around an offshore construction 
may endanger foundations. 

Local morphological changes result from changes in the local 
sediment balance, brought about by the flow disturbance. 

In the present paper a mathematical model is described which 
gives the bottom shear stresses and the configuration of the seabed 
around an obstruction using a computation of the two dimensional tur- 
bulent flow field. The obstruction considered is a submarine pipeline 
laid uncovered on a seabed consisting of non-cohesive sediment. A 
research project on the local scour near submarine pipelines is being 
carried out at the Delft University of Technology. Part of the project 
is the application and extension of an advanced numerical flow model 
for scour development near pipelines on the seabed exposed to current 
action. This work is being carried out in cooperation with the Delft 
Hydraulics Laboratory. The code of the flow model has been developed 
in a joint venture between the Delft Hydraulics Laboratory and the 
Laboratoire National d"Hydraulique in France. 

The turbulent flow field is computed taking into account the 
influence of turbulence generated at the bed and by the pipe. The bed 
shear stresses are assumed to play the key role in the interaction 
between the flow and the seabed. In the computer model the bed shear 
is related to the flow through the "law of the wall". The model opera- 
tion is schematized in the diagram below in which the first loop re- 
presents the evolution of the velocity field through a series of 
hydraulic time steps. After the velocity field is stabilized, in the 
second loop one morphological time step can be used for the computa- 
tion of the local seabed changes. In this second loop the computed bed 
shear is applied together with a sediment transport formula. 

After the morphological time step a new bed topography is ob- 
tained and a new grid is generated for the next flow computation. 
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Fig. 1 Flow diagram of model operation 

2.  Theory 

2.1  Flow Field 

A detailed computation of the flow pattern is a prerequisite for 
the calculation of small scale changes of the seabed. In the present 
example the changes in the seabed are of the same magnitude as the 
pipe diameter which is, in general, small relative to the flow depth. 

The basic equations describing the flow are the equations of 
motion and continuity for the fluid. The two dimensional unsteady 
Navler-Stokes equations for the mean flow are written as: 
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where u and v are the horizontal (x) and vertical (y) velocity compo- 
nents respectively, p is the pressure and <JXX, <?„„, xXy are the shear 
stresses in the fluid, p is the density of the fluid. 
The equation of continuity is: 
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In the equations of motion the viscous and turbulent shear 
stresses appear together as 
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where v is the kinematic viscosity of"the fluid, u' and v' are the 
turbulent fluctuations associated with the time-averaged velocities u 
and v respectively. 

Using Boussinesq's hypothesis the turbulent stresses in Eq. (3) 
can be written as: 



BED SHEAR COMPUTATION 1687 

J^rm (l^ + l^) (4) 
t ^5y  5xJ 

where vt is the turbulent equivalent of v and is commonly known as the 
turbulent eddy viscosity. 

In the present model the eddy viscosity, V(-, is written in terms 
of the turbulent kinetic energy k and its dissipation rate E: 

k2 
v = c — (5) 
t   |i e 

where c„ is a universal constant with a value of c„ = 0.09. 
The kinetic energy, k, and its dissipation rate, E, are solved 

from two partial differential equations in k and e, both containing 
vt, and referred to as energy transport equations. For a detailed de- 
scription of these equations for the standard k-e model, see Rodi 
(1980). 

2.2  Boundary Conditions 

In the present model the the law of the wall is used at the bed: 

lll^ (6) 
u*  K y0 

where: 
ut  =  the tangential velocity at a distance y , which is the 

distance of the first grid line, from the bed, 
u*  =  the shear velocity 
K   =  the von Karman constant 
y   = rjj/33 with r being the equivalent Nikuradse roughness 

length 

The following boundary conditions are used with respect to the 
bed in the equations of the k-e model: 

k-— (8) 

K  y 
(9) 

At the upstream boundary the standard distribution functions for 
uniform open channel flow are applied with regard to u, v, k and E. 

A rigid lid is applied along the free surface. The pressure dis- 
tribution against the lid, which in fact is a fixed boundary without 
shear, acts on the fluid similarly to the pressure resulting from the 
free surface elevations, see Alfrink (1982). 

2.3  Sediment Concentration Field 

A spatial distribution of sediment exists as a result of the ex- 
change of sediment between the flow field and the bed and due to 
further vertical exchanges caused by flow turbulence. Due to gravity 
forces acting on the grains the sediment concentration, in general, 
tends to increase towards the bed. In the present model the variation 
in bottom topography is found using the computed flow field. 
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The following unsteady equation describing the conservation of 
sediment is used in the model to derive the bottom boundary condition: 

8c    8c   ,     , 8c  8  ,„ 8c,   8 ,_, 8c.   _       ,,_. 
TT+ ur-+ (v-v)-r »— (D T—) - -r— (D -r—) - 0       (10) ot    ox        s 8y  8x  x 8x   8y  y 5y 

where: 
c   =  the sediment concentration 
vs  =  the fall velocity of the sediment in still water 
Dx and Dv =  the coefficients of sediment diffusion in the x and 
y direction respectively 

Combining Eq. (10) with the equation for continuity, Eq. (2), it 
follows that: 

l£+!-(uc - D |£) +|-{(v- v ) c- D |£) = 0 (11) 8t   8x v     x 8y;   8y L      s      y 8yJ 

and that the horizontal and vertical transport through a unit area can 
be defined respectively as: 

s = u c - D p- (12) 
x x ay 
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Boundary conditions with respect to the concentration field at 
the free surface (y = ys) for the sediment and for the fluid are, 
respectively: 

8ys    &ys 
s = s -x— + c -r— and (14) 
y   x ox     ot 

°y„ °y„ 
v = u  s +_£ (15) 

ox   8t 

leading, with Eqs. (12). and (13) to 
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Similar boundary conditions apply for the bed (y = yj,) and assum- 
ing a constant porosity, p', for the bed thus leads to: 

(W)Tnr (17) 

(18) 
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From Eq. (19) it is obvious that the term for vertical diffusion, 
which is in general negative near the bed, will hinder sedimentation. 

Assuming that the coefficients of diffusion for water, vt, (eddy 
viscosity) and for sediment, DV) are equal, sedimentation will be 
hindered where the eddy viscosity field shows high values for vt. 

Combining Eq. (11) for the concentration field with definitions 
of the horizontal and vertical transport, sx and sy,  given in Eqs. 
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(12), (13), respectively, gives, after integration over the flow 
depth, the equation of continuity of sediment 

y=y      5c      5s 5s 

/    s fer + -^ + ir1) dy = o <2°) ' l5t       ox        oy '     ' 
y=y. b 

Using Eqs.   (13),   (16)   and  (17)   leads  to 

f^ (  f8 c  dy)  + iL (  J78 sx dy)  +  (i-p.)^-O (21) 

The total sediment transport capacity can now written as: 

S = / S s dy (22) 

Using S according to Eq. (22) in Eq. (21) gives an alternative 
formulation with regard to the bottom boundary condition for cases 
where total sediment load is considered: 

|_(/\dy)+f§+(1-p.)^=0 (23) 
y% 

at 

For the computation of the bottom changes use has been made of 
Eq. (23) assuming a stationary concentration field (5/St = 0). The 
objective of the study is to analyze the evolution of scour beneath a 
pipeline. The bottom changes will be restricted to the characteristics 
of bottom changes due to bed load. 

2.4  Bed Load Transport 

For cases with bed load transport a suitable bed load transport 
formula is used to compute S. The transport capacity S is calculated 
using the computed bed shear u* and the threshold value u*c. The value 

of u*c, indicating the initiation of bed load transport, has been 
determined experimentally by many investigators, for instance Shields 
(1936). In the course of this study three bed load formulae will be 
considered. The first formula is similar to the Meyer-Peter Muller 
formula: 

$ = a (9 - Y e )b (24) s 

where 

4 
T and 9 - ^ (25) 

(gAD3)* 
The values of the parameters a and b have been chosen 13.3 and 

1.5 respectively. The parameter ys represents the influence of the 
local bed slope dyD/dx on the threshold value u*c and is defined, 

using i\>  the angle of internal friction of the sediment, as: 
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sin{(|j arctg(dy,/dx)}   (sin<|>)   l 
(27) 

An example of an empirical formula describing in particular con- 
ditions with minor sediment transport is the formula of Paintal (1971): 

* = 6.56 * 1018 e16 (28) 

De Ruyter (1982) has elaborated upon the stochastic description 
of sediment transport. He has expressed the sediment transport rate as 
a function of the pick up. rate N„ and the saltation length X. In 
dimensionless terms this formula can be expressed as: 

* = n A (29) 

where 

n = %B* 
and A (30) 

The formula of N„ is given in the Appendix by (A3). An important 
parameter is the dimensionless saltation length X/D = a' 9. For 8 < Sc 
it has been assumed that a' approaches 550 0C/G . For 9 > 6cr the 
value of a' has been assumed to be equal to 550. The ratio of oT/T and 
0C have been estimated at a value of 0.4 and 0.1 respectively. It 
should be emphasized that the transport rate described by (Al) has 
been reduced with a factor of 3 for calibration purposes. 
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FIG. 2 COMPARISON OF BED LOAD TRANSPORT FORMULAE 

The tendency of all the transport rates in Fig. 2 is similar, 
i.e. a rapid decrease in transport rate near the ciritcal Shields 
value. This implies that for a given shear stress distribution, the 
transport distributions for the presented transport formulae will also 
be similar of shape even as the resulting bottom changes. This conclu- 
sion will be used in the analysis of the scour underneath the pipe. 
Finally it may be remarked that although the shape of the bottom 
changes is similar, the magnitude depends among others on the choice 
of the transport formula. 
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3.  Examples 

As an example has been chosen the scour beneath a submarine pipe- 
line. Characteristic features of the scour hole obtained from labora- 
tory experiments can be found in Figs. 3 and 4. First the equilibrium 
scour hole will be treated followed by the evolution of a scour hole 
with time. 
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3.1  Equilibrium Scour Hole 

The bed shear has been computed along the bottom of a scour hole 
for a situation with clear water scour, when the sediment supply 
towards the area of scour is zero. Although minor movement of indi- 
vidual grains was observed occasionally in the small scale scour test 
in the laboratory the scour hole can be assumed to show its equilib- 
rium shape. The minor grain movement occurred on the rising slope and 
was due to fluctuations in the bed shear. The flow field is shown in 
Fig. 3a. Fig._3b shows the computed bed shear for a constant viscosity 
of 10   [m2s 1] and also for an eddy viscosity computed by the k-e 
model. The computed time mean bed shear downstream of the pipe is a 
little below Shields' mean threshold value which is approximately 
u*/(AgD) = 0.03 for the grain diameter used in the test. This is in 
agreement with the observation that the scour hole is in an equilib- 
rium state. The test data of the example are: 

pipe diameter 
- mean current velocity 
- grain  size 

50 mm, 
0.25  ms"1 

D50 =  700 n-m 

0.05 

-1 -0.5 0 0.5 1 

FIG. i.b   COMPUTED   BED  SHEAR 
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3.2  Scour Development with Time 

In this example the evolution of the scour hole has been computed 
starting with the geometry of a partially developed scour hole. 

Five morphological time steps have been made each preceeded by a 
series of hydraulic time steps, covering a total time interval of 5 
minutes of the scour process. The computed bed shear is shown in Figs. 
4a and 4b together with scour hole configurations as observed during 
the small-scale test after 240 and 420 minutes scouring respectively. 
Fig. 4a shows the further evolution of the scour hole, during the 5 
minutes after t = 420 minutes, as computed using the bed load concept 
of the model. 

A propagating bed wave or ripple appears as a direct consequence 
of the use of a transport formulation relating the bed load transport 
to the bed shear. Its propagation velocity, cj,, is approximately 

0.36 [m/hour] and the height of the crest, ADt> 
anc' tne depth of the 

trough, Abd> converge to values of 0.014 and 0.007 m respectively, see 
Fig. 5b. Because of the persistence of the ripple the computations 
have been terminated after 5 minutes. In order to analyse these bed 

time step: 

Atm^1' 

t = 420" + 1Atr 

t -420' + 5 At m 

FIG. 5a COMPUTED EVOLUTION OF SCOUR HOLE DUE 

yb [10    m] 
TO   BED LOAD   TRANSPORT 

FIG.   5b   RIPPLE  DEVELOPMENT RELATIVE TO LOCAL INITIAL BED 
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features the computed sediment transport, S^,. is given in Fig. 6a 
together with the mean sediment transport, Sm, during the 3 hour time 
interval between the two scour hole configurations shown in Fig. 4a. 
It will be clear from Fig. 6a that the computed bed load transport 
capacity at t = 420 deviates considerably from the mean value computed 
over the three hourst time preceding t = 420. In Section 4 this dis- 
crepancy will be further analyzed. 

The test data are: 
- pipe diameter 
- mean current velocity 
- grain size 

140  mm, 
0.40 ms"1, 
D50  =   100   turn] 

sediment transport 
capacity C 10~6 m3   s-1 m-1J 
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4.  Analysis at the Results and Discussion 

In view of the results in the examples treated in Sections 3.1 
and 3.2 a first assessment can be made of the role that can be 
ascribed to bed shear with regard to local seabed morphology. 

For the development and the equilibrium state of scour underneath 
submarine pipelines it can be assumed that the leading parameter is 
the bed shear. An increasing scour depth can be assumed to be closely 
related to an increasing bed shear in the direction of flow at least 
for cases with dominating bed load transport. In line with this as- 
sumption an equilibrium scour hole occurs when the bed shear remains 
constant along the bed provided that the threshold value is exceeded. 

The example in Section 3.1 clearly confirms the assumption for an 
equilibrium scour hole in coarse sediment where the sediment supply 
upstream of the pipe equals zero. On the rising slope downstream it 
was observed that minor movement of individual grains still occurred 
even though the scour depth was practically in equilibrium. This ob- 
servation is in agreement with the computed bed shear on the slope 
which in the scour hole is nearly constant and just below the mean 
threshold value of 9C = u*c/(AgD) = 0.03 according to Shields (1936). 

The example given in Section 3.2, in which the evolution of the 
scour hole with time was treated, demonstrated the unsatisfactory de- 
scription of the sediment transport given by formulae like Eq. (24), 
even though bed load transport has been observed to contribute predo- 
minantly to the scour development. The appearance of a wave in the bed 
is inherent to the transport formulae like Eq. (24), where the sedi- 
ment transport is so directly related to the bed shear. Fig. 6 clearly 
demonstrates the reason for the bed wave or ripple developing in the 
model. This reason is not numerical, but is a direct consequence of 
the sediment transport concept chosen and the sign of 8S/5x. 

During 5 minutes computing time the wave or ripple propagates in 
the direction of the flow while a mean degradation of the bed is being 
computed. All the sediment being transported by means of ripple propa- 
gation, the net loss of sediment from the scour hole, is determined by 
the propagation velocity and the height of the ripple. 

Fig. 4b indicates that the ripple converges to a certain height, 
Ai,, which may enable a computation of the time averaged loss of sedi- 
ment using: 

dA = 5 Ab cb (31) 

where 
dA  = the increase in scour volume per unit width and per unit 

time and 
|      a coefficient depending on the ripple configuration, 

representing the effective ripple height. 

Using Eq. (31) with the computed values for c^, and the effective 
ripple height 5^b the scour volume corresponding with the ripple pro- 
pagation is of the same order as the observed mean scour from t = 240' 
to t = 420' (Fig. 4a). 

In the small-scale laboratory scour tests a gradual degradation 
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of the bed has been observed at the time interval of 180 minutes. In 
the bed load concept a constant dy^/dt means, that during that time, 
ds/ox is approximately constant and s increases gradually along the 
bed in the direction of the flow (the theoretical curve sm for the 
transport capacity). Using the bed load concept the computed transport 
confirms with the curve Sf, which in turn conforms to the bed shear in 
Fig. 3b. Both curves for the transport deviate considerably, indica- 
ting that the concept of bed load as a direct function of the time 
averaged bed shear is not unconditionally sufficient to describe local 
scour. Four reasons for this insufficiency are discussed below. These 
reasons are a) suspended transport, b) stochastic bed shear, c) bed- 
form roughness and d) transport formulation. 

a) Suspended transport 
It is obvious that with increasing bed shear sediment will be 

brought into suspension and a concentration field will develop result- 
ing in additional convective and diffusive sediment transport in addi- 
tion to the bed load transport. Ripples, appearing as a result of 
strong bed shear gradients as shown in the example, will, in the very 
initial phase, be in suspension. Suspended sediment transport will be 
included in a more extended version of the present program and will be 
based upon the equations given in Par. 2.3. 

b) Introduction of stochastic bed shear 
In turbulent flow the bed shear has a stochastic character and 

consists of a constant time averaged value T, which follows directly 
from the present model, and a fluctuating component t'. Using only 
T for the computation of the bed load transport capacity according to 
Eq. (24) the contributions of instantaneous bed shear values %  (or us) 
with a probability p(t), or p(u*), can be neglected. 

Instantaneous values of %  > t, even though their probability may be 
low, can contribute considerably to the sediment transport capacity. 

Laboratory measurements have demonstrated that the significant 
turbulence downstream of pipelines which can be practically expressed 
in standard deviations, ou, of the flow velocity. 

Once the turbulent kinetic energy, k, is known and assuming v' « 
u' the standard deviation ou follows from: 

a    = /IF (32) 
u 

In the appendix a method is given which, starting with ou, 
through a%  results in an amplification factor, A, for the sediment 
transport capacity. A is a function of the mean bed shear level, p, 
and the relative level of turbulence, a/a0. By multiplying the sedi- 
ment transport capacity, St,0 and using only the mean bed shear 
T (or u*), by A the sediment transport capacity, S^, is obtained which 
also includes the effect of variation of turbulence. In case of T < Xc 

the Meyer-Peter Miller formula (24) yields a zero transport rate inde- 
pendent of the variation of turbulence. Fig. 7 shows A as a function 
of a/a0  and p and is further explained in the Appendix. Fig. 8 shows 
the effect of the measured relative turbulence, <x/a0, for the pipeline 
example discussed in Section 3.2. Above x/0 = 1.0 the computed ampli- 
fication factor increases rapidly due to the low bed shear level, 
fj = T/T   (see Fig. 7), and, finally, a  arrives at values where the 
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approach leading to a value of the amplification factor is no longer 
applicable. 
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FIG. 7 AMPLIFICATION OF SEDIMENT TRANSPORT AS A FUNCTION 
OF SHEAR STRESS LEVEL (3. AND RELATIVE 
TURBULENCE INTENSITY a/a0 

According to Fig. 8 the amplification factor beneath the pipe is 
one. This means that introduction of stochastic bed shear does not 
influence the ripple height. On the lee side locally the amplification 
factor increases rapidly (Fig. 8). This increase is caused partly by 
the decrease in Sto in Eq. (A6). Due to the local effect in the 
present example it is not expected that introduction of stochastic bed 
shear will in this case lead to a more uniform erosion on the lee side 
of the pipe. 

c)  Varying bed roughness 
In the small-scale scour tests with movable bed it has been ob- 

served that, in general, the bed becomes smooth underneath the pipe 
and that the ripple pattern is restarted on the downstream slope. 
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Although  this phenomenon will  be  less pronounced  for  larger  scale 
scour its  influence on  the bed  shear,  Eq.   (6),   and  the related  trans- 
port   (mechanism)   should  be  taken  into  account. 

A     JL     s [1(T5m3 s~1 rrf1] 

-1 -0.5 0 0.5 1 1.5 2        x/0 

FIG. 8   OBSERVED   TURBULENCE  INTENSITY AND   AMPLIFICATION   FACTOR 

d)  Flexible transport formulation 
Relaxation of the rigidly formulated (bed load) formulae, Eq. 

(24) and Eq. (28), by introducing variable coefficients a and b indeed 
makes sense physically. It is known that the value of b, in particu- 
lar, decreases when 0 and, therefore, the transport, S, increases. 

The various influences on the redistribution of sediment trans- 
port mechanisms underneath the pipe and downstream will without doubt 
change the type of transport and its formulation. 

The use of a flexible formulation for the sediment transport, 
though physically justified and even required, is not warrented at 
present, because of lack of knowledge about the variation of the para- 
meters. 

5.  Summary and Conclusions 

The local morphological changes beneath pipelines originating 
from hydraulic conditions show variations which are on a relatively 
small scale compared to the water depth. A numerical model to compute 
these very local hydraulic conditions is essential for the study of 
scour problems as for example can occur with a submarine pipeline. A 
detailed computation of bed shear and turbulence characteristics, as 
provided by the present model, has been used to obtain the sediment 
transport capacity along the bed near a pipeline. Although the bed 
shear is the leading parameter for the sediment transport a combina- 
tion of the latter with an empirial bed load formula seems to result 
in a rather rigid schematization of the complex sediment transport for 
the presented examples of local scour. The computed bed changes in- 
clude ripple development, at least when a bed load concept is used, 
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which excludes sediment suspending under the influence of high values 
of local bed shear. The example with a computation on a flow field 
around a pipe with an equilibrium scour hole has proved the value of 
the present model for appreciating the morphological stability of 
local seabed configurations. 

Implementation of the suspended load concept is the next step 
which will be taken in the further development of the present model. 
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8. List of Symbols 

cb 
CV- 
D 
DX,D 
dA 
F 
g 
k 
N„ 

amplification factor 
coefficient transport formula 
coefficient saltation 
coefficient transport formula 
index: bed 
sediment concentration 
index: critical 
propagation celerity of bed forms 
constant in k-£ model 
grain diameter 
coefficients of diffusion 
scour area 
function symbol 
acceleration of gravity 
kinetic energy 
pick-up rate 
pressure 
probability 
porosity of sediment 
excess bed shear 
Nikuradse roughness 

-1 

[n^s-1 

[m2 

l- 
[ms-2 

[m2s-2 

Is"! 
[Nnf2 

[- 
[- 
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S sediment transport capacity [m2s~ 
s sediment transport capacity [ms~ 
t time [s] 
u velocity in x-direction [ms_1] 
u* shear velocity [ms_1] 
v velocity in y-direction [ms~ 
vs fall velocity of grains [ms~ 
x horizontal coordinate 
y vertical coordinate 
yj, bed level 
ys water surface level 

a turbulence level, a%/x 
p bed shear level, T/TC 

Ys slope factor 
A relative density of grains 
A^ ripple height 
At time step 
£ energy dissipation rate [m2s~ 
T) coefficient 
8 Shields bed shear parameter 
K von Karman constant 
X saltation length 
vt turbulent eddy viscosity [m2s-1 

5 coefficient [- 
p density of water [kgm-3] 
cru standard deviation of u [ms_1] 
ox standard deviation of t [Nm-2] 
T (bed)   shear [Nm-2] 
0 pipe diameter [m] 
$ transport parameter [~ 
<|< friction angle [" 
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APPENDIX: Increase of Bed Load Transport Capacity due to Turbulence 

A method is described below to account for the effect of turbu- 
lent fluctuations in the bed shear on the bed load transport capacity. 
In general the instantaneous bed shear will contribute to the bed load 
transport as soon as the threshold value, u*c, (or correspondingly t 
or 9C) is exceeded. The approach starts with a sediment transport for- 
mulation based upon the displacement of an individual grain with dia- 
meter D. Let Np be the number of grains picked up by the flow per unit 
of time and of the bed surface. Furthermore let \  be the saltation 
length of a grains picked up by the flow. When the bed consists of 
spheres with a volume of l/6itD3 , the bed load transport capacity can 
be written as 

S, - r it D3 N X (A.l) b  6      p 

The saltation length is assumed to be proportional to both the 
grain size, D, and the dimensionless bed shear, 9, for 9 > 9C, so that 

X  = a" D 9 (A.2) 

where a' is a dimensionless constant which, according to de Ruyter 
(1982), has a value of a' = 300 to 800. In the computation the values 
shown in Section 2 have been used. 

as 
According to Ruyter (1982) the pick-up rate, Np, can be expressed 

. _4r, / pgA^j, ^ 

P WD2    
PsDTc   T  ? 

where 
t)      = coefficient 
tg<P    = the friction coefficient for the grains 
Cj     = the standard deviation of bed shear 
r      = (t—tc)/o"T a measure of the excess bed shear (A.4) 

Fp(r)  = — / /Texp{- ~  (x - r)2} dx (A.5) 
/ 2TI 

The definition of the function, Fp(r), originates from the as- 
sumption that %  is Gaussian distributed with a mean T and a variance 
«?• 

An amplification factor, A, can be defined as the ratio of the 
bed load transport capacities, S^, and S^,0, both at the same mean bed 
shear, t, but with different fluctuations, a%.  Here S^0 is used as a 
reference transport capacity at a "reference turbulence" oT0. 

Combining Eqs. (A.3), (A.4) and (A.5) results in 

S,    /S-1 F (r) 

bo     to p o 

It is obvious that the relative change in bed load transport 
capacity due to turbulence is a direct function of ox  and even though 
the mean bed shear %  remains constant, its absolute value has an 
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indirect effect through the function Fp. The actual value of the con- 
stant, a', in the formulation of the saltation length, X,   Eq. (A.2), 
appears to vanish in Eq. (A.6). 

For any location along the bed the amplification factor, A, for 
the bed load transport can be found with Eq. (A.6) given a value for 
ox.  Assuming the instantaneous bed shear t to be proportional to the 
square of the instantaneous velocity u near the bed one can express 
OT/T as:       , 

a        a      /4+2(o /u)2 
_i = _H  u_ (A.7) 
t u  l+(o /Ti)2 

u 

The variations, ou, of the total velocity u around its mean value 
u have been measured in a physical model but can also be derived from 
the turbulent kinetic energy, k, computed by the present model. 

The influence of O-j on the bed load transport capacity can be 
shown conveniently by defining two parameters, a and B, which repre- 
sent the levels of turbulence and mean bed shear respectively. 

T  = B % (A.8) 
c 

a    = a x (A.9) 

Combining Eqs. (A.8), (A.9) with Eq. (A.4) r is written as 

B - 1  1 
(A.10) 

Given a value for r the value of Fp(r) can be found numerically. 
The values of the amplification factor, A, according to Eq. (A.6), 
have been computed and plotted in Fig. 7 for various values for the 
relative turbulence a/a0 and at a number of values for the bed shear 
level, B. 

Values of 0.2 and 0.4 have been chosen as examples for the refer- 
ence turbulence level, a0. Measurements of the velocity upstream of 
the pipe at a distance of 0.01 m from the bed indicate ou/u = 0.10, 
leading, with Eq. (A.7), to a^/t = 0.2. Most of the classical 
empirical (bed load) transport formulae originate from test conditions 
with uniform flow conditions with a turbulence a%/X -  0.4. 

The bed load transport capacity computed with empirical formulae 
should, therefore, be amplified with a factor A using <x0 = 0.4 as a 
reference and the actual mean bed shear as the bed shear level 8. 

The approach given here is limited practically by the extend of 
the function Fp(r). For r < -5, Fp(r) tends to approach zero. With Eq. 
(A. 10) the limits can be indicated in terms of <x0 and 
fi through B = l/(l+5a0). 




