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ABSTRACT 

A new wave equation has been derived for the full nonlinear dispersive 
waves propagating over an arbitrarily shaped sea bed.   The method of the 
derivation of the equation uses a conformal mapping technique by which the 
original domain can be transformed onto a domain with a uniform depth to 
make the basic equation easily integrable vertically.  By taking an inverse 
Fourier  transform, the velocity potential obtained by the integration  can 
be  expressed in the form which can construct the exact wave equation  from 
the water surface boundary conditions.   An algorithm for the numerical in- 
tegration of the equation is presented with some examples of the solution. 

1. INTRODUCTION 

Nearshore wave deformation is characterized mainly by the effects of 
nonlinearity and dispersivity of waves, and non-uniformity of bottom topo- 
graphy. So far there have been many studies on the wave deformation by 
using the well known KdV equation or Boussinesq equation ( e.g., Peregrine, 
(1967), Madsen and Mei(1969) ). Although these equations have been modi- 
fied to include the bottom effect by KakutanK1972), Shuto(1971), Peregrine 
(1967) and others, their applicability is limitted to slowly varying bottom 
topography. Furthermore, these wave equations can describe only weak non- 
linearity and dispersivity of waves. 

The present study derives a new wave equation which may be applied to 
full nonlinear-dispersive waves propagating over a sea bottom with an arbi- 
trary topography. The method of the derivation of the equation uses a 
conformal mapping technique by which the original domain can be transformed 
onto a uniform depth region. The mapping does not change the form of the 
basic equation, i.e., Laplace's equation on a velocity potential, and sym- 
plifies bottom boundary condition so that the basic equation becomes easily 
integrable. The velocity potential function obtained by the integration 
includes all components of a time-varying wave number spectrum. Further, 
the velocity potential function so obtained may be expressed as a function 
with a convolutional integral by an inverse Fourier transform technique. 
Hence, the water surface boundary conditions can yield the exact wave 
equation by using the representation of the velocity potential at the water 
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surface. An algorithm of the numerical integration of the equation is 
presented with some examples of the soluion. In the appendixes, some 
descriptions on an analytical method to obtain an approximate solution by 
using a WKB perturbation technique are presented with a method to estimate 
wave reflection coefficients. 

2. FORMULATION OP EQUATIONS 

2.1 Basic Equation and Boundary Conditions in a Mapped Space 

Physical plane denoted by z = x+iy may be transformed conformally onto 
a £-plane by an analytical complex function, 

f(z). (1) 

The function f can be chosen as that which transforms the domain D with an 
arbitrarily shaped bottom topography in the z-plane onto the domain D1 with 
a uniform depth g0 in the £-plane as shown in Fig.l. 
as 5 = a+ig, Eq.(l) can be 
written as 

a = <)>i (x,y), 

= <t>2 (x,y), 

or inversely, 

\pi (a , 

\p2 (a > 

1), 

(2) 

(3) 
conformed 
mapping 

If we denote £-plane 

y 
z = x*iy 

 2 _x 

£ 
<=rf.i£ 

iifimmi. iiwiwiiiiiiimiiiiiwiiiiiiiliiitifiniiiiiiiiiiiiwiiiiii 

Fig.l Conformal mapping of wave field 

The function f defines the 
curvilinear coordinates system 
(a,3) i-n the original domain. 
Prom another point of view, it 
can be said that the function 
f is just a complex velocity 
potential function so that the 
constant a and g lines correspond to equi-potential lines and stream lines, 
respectively. Therefore, we can utilize the usual potential flow theory 
to construct the function f in which one of the stream lines forms the 
bottom boundary and another stream line coincides with the still water 
surface. For example, the region over a uniformly sloping beach can be 
transformed into a constant depth region by the complex function 

Z,   = In z. CO 

This is a velocity potential function for the flow due to a point source 
with a unit strength located at the intersection of bottom line and the 
still water surface (Fig.2).     For the more general case of  the  bottom 
topography,  we can use a numerical method poroposed by, e.g.,  Chenin  and 
Schwartz (1982). 
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^ I—I—t—|—t  

Pig. 2  Orthogonal curvilinear grid system for uniformly sloping beach 

The basic equation and the boundary conditions in the z-plane may be 
written as follows. 

Sx^  By2 
= 0, 

1* = _ M.1S 
3y       ax'ax' 

in + l£.in   M = o 
8t   8x*3x " 3y 

at + 2 Ll8xJ  + *3y' J + 8rl  U' 

y = -h(x) 

y = n^.t) 

y = n(x,t) 

(5) 

(6) 

(7) 

(8) 

where $ is a velocity potential, h is a water depth, n is a water surface 
elevation, and g is the gravitational acceleration. 

In the £-plane, the boundary conditions become 

= 0, 

M + B2.r3£.3fi -Ml = o 
at +   L3a 3a  3BJ   ' 

= -Bo       (9) 

= n(a,t)    (10) 

|f +|-[(|f)2 + (||)2] + g-*2(a,n) = 0,    B-n(a.t)    (ID 
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where  s  is  a scale  factor related with the mapping  defined  as 

s   =   1^1. (12) 1 dz I 

In the water surface boundary conditions (10) and (11), the scale factor s 
is coupled with the nonlinear terms. Hence it can be said that the scale 
factor s directly affects the nonlinearity of waves. Further, the scale 
factor s represents nonuniformity of the gravity as will be shown later. 

In contrast with the boundary conditions, the basic equation remains 
its form unchanged through the mapping by the nature of the conformal 
transform, i.e., 

0 + 0- 
Therefore, the basic equation can be easily integrable vertically on the 
£-plane with the simplified bottom boundary condition (9). 

2.2 General Solution of the Basic Equation 

The Fourier transform of Eq.(13) with regard to a becomes 

|gl + k2$ = 0, (14) 

where $ is the Fourier transform of $ with respect to a defined as 

*(k,B,t) = ^Jtj&<a>e,t).e~lka'da. (15) 

Eq.(l4) can be integrated with the bottom boundary condition 

1* - 0 
36   ' 

to yield 

$(k,B,t) - A(k,t).COShk'g!e°). (16) 
coshkgo 

Therefore, $ is represented by the inverse Fourier transform of $ 

^>B,t,=0(^t).^|ig^.e^.dk) (17) 

where A(k,t) is a time varing wave number spectrum to be determined by the 
water surface boundary conditions, Eqs.(10) and (11). 
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Prom  Eq.(17),  $   ,  «     and 0.    can  be  represented  as 
a       p t 

I " iO-(,,t).^ff^-e^.dk) 

||=  f  at(t,t).^y.'.e^.ffi, (20) 3t   J-°°3t        coshk30 

To execute the inverse Fourier transform of the right hand side of the 
above equations, we may introduce a new variable )((a,t) defined as 

X(a.t) = r  A(k,t)-elka.dk, (21) 

and use the following inverse Fourier transform formula ( e.g., Erdelyi, 
195t ), 

-lpCOShkCB+Bjl-,    _ 2lTr    Sln(2gn,,C°      ^So    1    =   K   („   R) (22) 

coshkgo      B„ c0Sh(TO) _ C0S(M) 
Bo      Bo     ( -6o<0<o ) 

F-1E'1^£g')] - ifi C° g'"1  ^ 1 - i-K.(a,B).  (23) 
coshkB0      Bo cosh(•) _ Cos(|£) 

e°     Bo     ( -6o<B<o ) 

where F [•] is the operator to take inverse Fourier transform. From the 
above equations and the convolution formula (24) on the inverse Fourier 
transform, 

p"1[f1(k).f2(k)] =^Oi(a'
f2(ti-5)-aC- (21) 

we can express the velocity potential $(a,g,t) and its partial derivatives 
with respects to a, g and t as follows. 

$(a,e,t) =ii/^oK1(5,B)-X(a-5,t)-d£) (25) 

I = 2i-OM5>e)-afx(«-5,t)-d5) (26) 

H-2s02<5.e>-g>-e,t>.dE;, (27) 

3$ 
3t 

= 2i/lKi(5>B)-g|x(c«-C,t)-dC. (28) 



WAVE FIELD SOLUTION 1197 

Hence the water particle velocity in the £-plane can be calculated through 
these equations by prescribing the value of /• However it should be noted 
that the region in which the above equations are valid is -Bo <  B < 0. 

2.3 Derivation of Linear Full Dispersive Wave Equation 

For linear waves, the water surface boundary condition on $ becomes 

82$ 3$ 
fp- + g-so(oO-|j| =0,       B = 0. (29) 

where So(a) is the scale factor at B = 0.  In the above equation, the grav- 
itational acceleration g is coupled with the scale factor so(a).    Hence, 
it can be said that, for the linear waves, the mapping replaces the effect 
of the water depth variation in the z-plane with that of non-uniformity of 
the gravity in the £-plane. 

The limit values of $  and $  represented as Eqs.(26) and (27) when 
B + -0 are P 

"m
nf =2^0(S>gtx<a-C,t)d?, 

llm at = 3tx(0l,t)' 

where K(£) is a kernal function defined as 

K(5) = cosech(-|-£). (30) 
2po 

Substituting these equations into Eq.(29) and using the relation x<-  ~  g,Tl> 
we can obtain the following linear wave equation to describe evolution of 
water surface elevation r\. 

gfznta.t) + ^•s0(a)-r„K(5)-g!n(a-C,t)dg = °. (3D 

In the second term of the above equation, the non-uniformity of the gravity 
expressed as g'so(a) represents the effect of bottom topography in the 
original z-plane and the convolutional integral includes the effect of wave 
dispersivity.  For long waves, Eq.(3D becomes 

32 a2 
gpri(a,t) - g*s0(a)'Bo"g^m(a!,t) = 0. (32) 
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2.4 Derivation of Full Nonlinear-Dispersive Wave Equation 

Nonlinear wave equation may be derived by the almost same manner as the 
case of linear waves. In this case, however, Eqs.(26) to (28) on <J>a, $g 
and $ are not applicable in the region of 0 > 0 as already mentioned. This 
limitation is originated from the formula (22) and (23) on the kernal func- 
tions Ki and K2• Therefore, alternative methods must be developed to 
evaluate the value of those kernel functions at the water surface boundary. 

The one method is to reevaluate Ki and K2 by replacing the  denominator 
of Eq.(l6) with coshk(a0+$0) where a0 is a parameter chosen as a0 > fjmax. 
The other method is to take Taylor expansion of the functions to be  trans- 
formed in  Eqs.(22) and (23) around g = 0.  The results by the latter 
method become as follows. 

°°       2n 

Ki(a,B) = 2TT I (-Dn7|-T7'6
(2n)(a) 

n=0     ( 

+ f0CK(5,Io(-1)^,^-'(a-,)d5,
(33) 

oo       2n   ,„ . 

K*<«.8> • fflO(5);X_o(-i)
n

T|rTT-«(2n,«»-5)<ic 

_2n+l (34) 

n=0 

where 8       (a) is the n-th'derivative of Dirac's delta function.  Prom Eqs 
(33) and (34), $ , $„ and <t> can be expressed as 

a  6     t 

I = X(1)^.t)+^-0(C).x
(2)(a-?,t)dC  ,     (35) 

H " a^'O^'X^fa-e.tJde - 6-x(2)(«.t) + "•• .     (36) 

H • i^^ + ik-te^'ik1"^-^+ •     (37) 

where the superscripts (n) for v indicate the n-th order partial derivative 
with respect to a. 

Substitution of Eqs.(35) to (37) into the surface boudary conditions 
(10) and (11) leads to the following integro-differential equations on fj 

and x * 
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|n  + _i.8,(a>fi).[r^K1(5,fi>3|x(a^,t)<ie.|a 

J^K2(5,?j)g!x(a-5,t)da  = o, (38) 

+   ^(^(•[{O^'nJgfx^.tJdcP 

+    {/"l^^'fl^Xta-C.tJdS}2]  + 2iTg->Ma>fi)  = 0- (39) 

Since the equations are derived without any assumptions and constraints, 
they constitute a set of exact wave equations on rj and x-   Therefore they 
can essentially express arbitrary degree of nonlinearity, dispersivity and 
the effect of non-uniformity of the water depth. 

Fenton & Rienecker (1980) proposed a numerical method for the accurate 
solution of nonlinear equations for water waves over a horizontal bed. 
The method uses the finite Fourier series approximation on the velocity 
potential $ and predicts the evolution of water surface elevation n with 
that of the Fourier coefficients.    On the contrary, the wave equations 
(38) and (39) include all components of the continuous wave number spectrum 
A(k,t),  and  they can describe directly the evolution of fj and x  in  tne 

physical space. 

3. NUMERICAL SOLUTION OF WAVE EQUATIONS 

3.1 Algorithm of the Numerical Integration of the Equations 

The kernel function K(^) included in the linear wave equation (31) and 
the nonlinear wave equations (38) and (39) has a singularity at £ = 0 such 
as 

lim K(£) = ± o>. 

To avoid this singularity the following procedure has been developed. 
If the interval of integaration of a convolutional integral I(a,t) for 

K(a) and a continuous function f(a,t) is divided into the three parts as 

I(a't) = .C»K(S),f(c,~S't)d? 
-A£   A£ 

= ( J   + I +  /  )'K(£)-f(oK,t)dS 
-«°    -A?   A? 

(to) 
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then the singularity is included in the second integral I2. Substitution 
of the Taylor expansion of f(a-£,t) around £ = 0 into the second integral 
I2 leads to 

00  Ag    rn n 
I2(a,t) = I    j  (-i)n.iTcosech(-2-5)dC——f(a,t). 

n=0 -A? Bo    3a" 

When n is an even number, the value of the integral becomes zero in the 
sense of Cauchy principal value because the kernel function K(£) is an odd 
function. Thus, if A£ is taken to be enough small to neglect the higher 
order terms, l2(a,t) can be evaluated by 

A5 „ 
I2(a,t) s - / C-cosech(-L-£)dS-^.f(a(t) 

= _2.(i&s.)2.shi""(-f-A5)- ^f(a,t), (4i) 

2k 
Wh6re *, ,   rx  £  „  ? (2~2  )B2k   l + 2k 

Shi hi (x) = fx  .? dg = Y —- 
*  sinh£ ^   /• (1 k=0,.+2k)(2k)! 

• x - -iL +  
7x5  -  31x? + 127x' -      (42) 

3*3!   15-5!   21*7!   15-9!        ' 

( |x| < TT ) 
and B is Bernoulli numbers, 

n 

Using the above procedure, we can obtain an alternative representaion 
of the linear wave equation. 

gp-n(a,t) = - JL-s^a)./ K(g)^in(a-5,t)d£ 

+ 4)26og'So(a)-shi*(-2-AC)-A-n(a.t) 

00 

- gjjr-Ma)'/ K(5)-g|n<a-C.t)d?. C3) 

Since  the above equation has no singularity, it may be easily solved by  a 
usual finite difference scheme. 

For the nonlinear wave equation, the almost same procedure as the linear 
case can be used except that the nonlinear wave equation includes higher 
order derivatives of the unknown variable ^. 
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3.2 Examples of Numerical Solutions 

(1) Linear waves 

As an example of the numerical solution for the linear wave equation 
(43), a calculation has been made for waves propagating over a stepped sea 
bed with a slope of arbitrary inclination as shown in Pig.3• The scale 
factor s0(a) for this case becomes 

8„(a) =10,61/(230)^ cosh(wl} _ tanh(|a).slnh(|i) r
S/\  (44) 

where 
1 =f°.ln(£). (45) 

6    b 

The above equation may be obtained by using the Poisson-Schwartz's integral 
formula.   The solid lines in Fig.3 represent the constant a and 3 lines. 
The initial conditions for the integration adopted here are 

n(a,0) = a-exp{-(a-a0)
2/(2B0)

2}, (16) 

with a = 1.5m,  Bo ( = n ) = l°m> 

and 
3fn(a,0) = 0. 

The inclination of the slope 6 and the water depth ratio b/h are chosen as 
the value of 45° and 1/4, respectively. The upper figure in Pig.3 shows 
the scale factor s0 as a function of x. Prom the meaning of the scale 
factor as previously mentioned, we can say that, in the £-plane, the 
gravitational accerelation for the shallower region is four times as great 
as that for the large depth region. 

The result of the computation is shown in Pig.4 where the full lines 
represent the solution for the linear full-dispersive wave equation (31), 
while the broken lines show the solution for the linear long wave equation 
(32). The full-dispersive wave solution shows that, in contrast with the 
non-dispersive wave solution, the longer waves propagate faster than the 
shoter waves. This is a direct manifestation of the wave dispersivity. 
The figure also shows that the right going waves divide into reflected 
waves and transmitted waves on the slope. 

(2) Nonlinear waves 

Nonlinear wave solution has been obtained for the same stepped bottom 
topography as the above. For the reason of simplicity, only the first 
terms in the power series of Eqs.(35) to (37) are taken for the calculation 
here. The initial condition for fi is chosen as the same as Eq.(46) but 
with a = 2.0 m. The initial condition for y_ is taken as x(c*,0) = 0 which 
means that there is no fluid motion at the initial stage. 
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Pig.3 Orthogonal curvilinear grid system and scale factor 
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Pig.t Linear wave evolution over a stepped sea bed. 
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Fig.5 Nonlinear wave evolution over a stepped sea bed. 
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Pig.6  Nonlinear wave evolution over a uniformly sloping beach. 
( tan$o = 1/30 ) 
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Figure 5 shows the result of the computaion and indicates that the 
dispersion and reflection of waves take place as in the case of linear 
waves. The figure also reveals that the right going waves steepen their 
front face as they propagate over the slope and give rise to fission into 
the several solitons on the step. This phenomena of solitons has been 
already reported by Madsen and Mei (1969) and is considered to be due to 
the combined effects of nonlinearlity and dispersivity of waves and bottom 
topography. Figure 6 shows another example for waves on a uniformly 
sloping beach for which the mapping function f is difined as Eq.(4). 

From these examples, it may be concluded that the wave equation derived 
in the present study is effective to describe the wave evolution under the 
combined effects of nonlinearity and dispersivity of waves and nonuniform- 
ity of the water depth. 
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APPENDIX A.  WKB Solution for Progressive Waves over a Gradually Varlng 
Bottom 

If the bottom variation is gradual, the use of the conformal mapping 
technique becomes not so essential and an approximate solution can be 
obtained by a usual WKB method ( e.g., Chu and Mei, 1970 ). However, for 
the problems such as sediment transport, conformal mapping solutions gives 
more usefull estimation of bottom velocity field compared with other 
methods because the conformal mapping solution satisfies exactly the bottom 
boundary condition. 

This appendix describes an approximate method to obtain an analytical 
conformal mapping solution. The method uses a WKB perturbation technique 
developed by Hamanaka and Kato (1982). 

Introducing a small parameter 6" which characterizes the horizontal scale 
of the bottom variation, we can normalize the variables as 

,2 

( a',6') = ( 6a,6 )'|-,    f = tut, 

( n\6o) = ( n,g0)-^,     *' = $A 
(A-l) 

For convenience the primes will be dropped from here on. Prom  this 
normalization the linearized governing equations become 

6P + !fF = 0' (A
"
2) 

|n_BS(a,.||.o,           B = O (A-3) 

n + Ma)*H = °-        6=o (A-4) 

IF = o,               B = -So- (A-5) 

In the next step, let us introduce a local wave number k and  transform 
the independent variables as 

(a.g.t) + (a,6,?),     5 = 6_1/k(ia - t. (A-6) 

Then Eqs.(A-2) to (A-5) become 

3£   36      3a 3a 35    3a*3? 

s?(a)-|| + || = 0, 6=0                    (A-8) 

fj - so(a)-|| = 0, 6 = 0                    (A-9) 

3$ 
(A-10) 
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The unknown variables $, fj, and k may be expanded by 6 as 

$ = $o + 6*i + 62*2 +  , 

n = no + (Sfii + 62fj2 +  , (A-ll) 

k « k0 + 6k[ + S2k2 +  . 

Substituting (A-ll) into Eqs. (A-7) to (A-10) and separating the orders we 
obtain a set of systematically solvable equations. The solutions can be 
summarized as follows. 

At 0((5°): 
$0   = a-coshk0(g+g0)«sin£, 

fjo   = a'SjfaJ'coshkoBo'cosg , (A-12) 

s0(a)"ko'tanhko0o   = 0. 

At  OtS1): , , 
*i   =  "  {"2a(6+6o)2|^0coshko(B+So)   + ||(6+8o)sinhko(6+eo)}'cos5, 

fli   = s0(a)'{|aei|i°coshkoBo   + l^goSinhkoBoJ'sing, (A-13) 

k,   = 0. 

For nonlinear waves, the solution can be obtained by the almost same 
manner as the above by introducing another small parameter e which charact- 
erizes nonlinearity of waves and by representing the unknown variables in 
the form of double perturbation with respect to 6 and e. 

APPENDIX B.  Reflection Coefficients for Linear Steady Waves 

For the case of the steady waves with angular frequency a), the linear 
wave equation (3D becomes 

where fj(a) is an amplitude of the water surface fluctuation and defined as 

n(a,t) =fHa>-e1(a)W2). (B-2) 

Although Eq.(B-l) can be used to calculate reflection coefficients for 
linear steady waves, a simpler and more direct method can be developed with 
an approximation on $. At first, the assumption is made on the velocity 
function $ such as 
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which satisfies the bottom boundary condition (9). This equation is valid 
for the case of $aa << $gg. In particular Eq.(B-3) becomes exact for long 
waves. k(a) in the above equation must hold the following relation from 
the surface boundary condition (29) on $. 

to2 = g's0(a)*k(a)*tanh{k(a)B0}. (B-4) 

Prom the linearized boundary condition and Laplace's equation on $, Eq. 
(B-3) yields the following differential equation on fj(a). 

d2 
-prn(a) + k2(a)'fKa) = o. (B-5) 

The reflection coefficient jr(a)| for the wave field expressed by the above 
equation can be calculated from the following Riccati's equation derived by 
the invariant imbedding method ( Bellman and Kalaba,1959 )• 

-4(a) = - 2ik(a)T(a) -IrrT'U - r2(a)}. (B-6) 
da 2k(a) l 

The reflection coefficient to be obtained is the value of |r(a)| at a = -°°. 
Therefore, it is more convenient to change the independent variable from a 
to £ by the function £ = tanh a. Prom this transform, the domain of the 
independent variable becomes [-1< E,  <1 ]. 

The reflection coefficient can be obtained by a numerical integration 
using a usual integration scheme such as Runge-Kutta-Gill method. The 
integration is to be performed backward from £ = 1 to £ = -1 under the ini- 
tial condition, r = 0 at E,   = 1. 

As an example, the calculation was carried out for the stepped bottom 
shown in Fig.3. Figure Bl shows the results for the case of 6 = TJ/2. In 
this special case, the reflection coefficient can be also estimated 
accurately by, e.g., Ijima's method (1971) in which the velocity potential 
is found by matching conditions at the junction of sea bed. The full 
lines in the figure indicate the result by the present method, while the 
broken lines show the result by the Ijima's method. It is shown that, for 
the case of a)2h/g = 0.5 corresponding to shallow water waves, the result by 
the present method shows fairly good agreement with the Ijima's result, and 
even for the case of o)2h/g = 2.0 corresponding to almost deep water waves, 
the present method gives still good results. 

The effect of the inclination of the slope has been investigated by the 
present method. The results are shown in Figs. B2 (a) and (b). From these 
figures, it is found that the effect of the inclination on the reflection 
coefficients is more significant for the case of the large value of (o2h/g. 
This is considered to be due to the difference of the ratio of the horizon- 
tal scale of the slope to the wave length. 




