
CHAPTER SEVENTY NINE 

NEAR BOTTOM VELOCITIES IN WAVES WITH A CURRENT; 
ANALYTICAL AND NUMERICAL COMPUTATIONS 

W.G.M. van Kesteren 
ABSTRACT 

}">   and W.T. Bakker2) 

In this paper, starting from the Prandtl hypothesis a three-dimen- 
sional numerical bottom boundary layer model has been developed, 
which allows to calculate bottom friction by a combination of waves 
and currents. The model has been compared with two-dimensional ana- 
lytical computations which gave similar results. 
The bottom friction values found are comparable to the ones, found by 
Lundgren (1972), however in the most relevant cases somewhat less. 
Furthermore in the two-dimensional case the model has been compared 
with measurements of Bakker and Van Doom (1978). 
With respect to the oscillatory motion, still some minor deviations 
occur between theory and measurements, due to deficiencies of the 
Prandtl theory. 

1  Introduction 
Investigation of the bottom boundary layer is primary of importance 
because it reveals the stirring mechanism of the sand in the surf 
zone. This is one of the most important factors, determining the sand 
transport in the surf zone and therefore coastal erosion and sedi- 
mentation. 
Furthermore, the boundary layer determines the bottom friction and 
therefore the velocity of, for instance, the longshore current and 
the wave energy loss. 

From the present paper may be expected: 
. insight in the internal flow field, when waves and currents make an 
angle with each other; 

. insight in the turbulent viscosity; 

. a formula for bottom friction for waves and currents, making an 
angle with each other. 

For this, the old, well-known Prandtl mixing-length theory is used. 
From the data, presented by Bakker and Van Doom (1978) it appears, 
that this theory overestimates the turbulent viscosity in the higher 
layers somewhat. Figure 1 shows a characteristic set of velocity 
profiles as measured by Van Doom and as presented according to the 
Prandtl hypothesis. The general picture tallies, but the overshoot in 
reality is somewhat larger than theory predicts. 
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2  Instantaneous velocity field 
Assuming uniform flow in horizontal direction and the Prandtl/Von 
Karman hypothesis for the shear stress in Appendix A an equation is 
developed for the intrusion of the shear stress into the fluid: 

3T 

3t 
S v. 

3 T_ 

77 (1) wherein: /|T|/p (2) 

Here T stands for the shear stress with components (T ,T ), x and z 
are the horizontal and vertical coordinate respectively, t = the 
time, p = the specific density, v the turbulent viscosity, K = the 
Von Karman constant, and S a second-order tensor, specified in Eq. 

(A9). 
Eq. (1) is analogous to the famous diffusitivity equation, where the 
viscosity v replaces the turbulent viscosity, and in which S can be 

omitted. Tensor S accounts for the difference in direction between 
3T/3t and 3

Z
T/3Z

7
. 

Furthermore, in appendix A an equation (All), similar to (1) for the 
defect velocity ^ij has been derived; the defect velocity is the dif- 
ference u-_U between the velocity JJ far from the bottom and the local 
velocity u_ in the boundary layer (Fig. Al). This equation (All) is 
solved numerically. Figure 1 gives a solution for the two-dimensional 
case, compared with data of Bakker and Van Doom (1978). It shows, 
that the Prandtl hypothesis overestimates the turbulent viscosity in 
the higher layers somewhat. The general picture tallies, but the 
overshoot in reality is somewhat more than the theory predicts. Fig- 
ure 2 shows the standard deviation (theory compared with measure- 
ments) as function of the height above the bottom. The figure demon- 
strates, that the present model is more accurate than the one, pre- 
sented in 1978 (Bakker and Van Doom), mainly because the upper 
boundary can be fulfilled without approximation. 
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Figure 2    Standard deviation between numerical   theory and 
experiment   of Bakker and Van Doom  (1978) 
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Figure 3 shows the solution in a three-dimensional case. 
In Figure 3a the direction of the current far from the bottom is 
equal to the direction of the pressure gradient. The direction of the 
orbital motion is given by the points 1, 2 etc., representing the 
point of the current vector far from the bottom at successive times, 
1/4 wave period apart. Figure 3c to 3f show these velocity profiles 
for 4 successive times. All the vectors are in a horizontal plane; 
the direction changes when going from upward to downward. In Figure 
3b the resulting profile for the mean velocity and the amplitude of 
the first harmonic are shown. From this figure it appears that the 
direction of the mean velocity near the bottom differs considerable 
from the direction of the mean velocity outside the boundary layer, 
which asymptotically approaches the direction of the mean pressure 
gradient, or, which is the same, the mean shear stress. This effect 
should be taken into account in cases with for instance sandtransport 
near the bottom. The kink in the mean velocity profile will be 
treated in the next chapter. 
Similar to the viscous boundary layer a unique relation can be ex- 
pected in the turbulent case between horizontal velocity just outside 
the boundary layer and the shear stress acting on the bottom. However 
when the Prandtl hypothesis is used for determining the turbulent 
shear stresses in terms of the local velocity field it appears from 
analytical considerations (Appendix B) and numerical computations 
that only a unique relation can be obtained when the shear stress 
velocity p, is used instead of the shear stress near the bottom x . 
The shear stress velocity j>_ in the three dimensional case is defined 
as: 

jr = p p_|p_| (5) 
The shear stress velocity can be expressed in terms of the local 
velocity field according to the Prandtl hypothesis (see Appendix B): 

9u 
(6) 

The relation (5) has been treated more elaborate in Appendix B in 
order to make analytical computations of the instantaneous velocity 
field by linearizing Eq. (1) (see Appendix B) and of the time-aver- 
aged velocity field (see next chapter). 
The amplitude of the first harmonic of the shear stress velocity p^ 
at the bottom is related to the amplitude of the first harmonic of 
the oscillation 0 far from the bottom. For moderate currents ' (time- 
averaged shear stress 7 smaller than 0.01 p U ) there exists a unique 
relation between p, /U and the ratio strokelength a (= UT/2ir where T 
is the wave period) over bottom roughness r, which is shown in Figure 
4 and can be approximated by: 

exp [Jn k, {ln(a/r)fl (7) 

4 D       n=0 

wherein: k = -1.092; k = -.3364; k = +.01876; k = -4.621.10 
Using p^ as basis for mathematical modeling, Tigure 5 represents a 
dimensionless plot of the amplitude and phase of the first harmonic 
of the defect velocity 0| (» Qd/Pb) as function of the dimensionless 

1) For larger currents is referred to Appendix B. 
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Figure 4 Relation between p /u and a/r 
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Figure 5 Dimensionless amplitude and phase 
of the defect velocity 

height z above the bottom; 
here the height z above the 
bottom has been made dimen- 
sionless with a characteristic 
height Z, which refers to the 
intrusion depth of the in- 
stantaneous shear stresses 
i.e. the boundary layer thick- 
ness coherent with the oscil- 
latory motion. Based on ana- 
lytical considerations (see 
Appendix B) Z is expressed as: 

Z = < Pb T (8) 
In Figure 5 curves are given 
for waves and current codirec- 
tional and perpendicular to 
each other and for several 
values of mean shear stress 
over amplitude of the first 
harmonic of the bottom shear 
stress (T/T,). The increasing 
numbers at the lines refer to 
these rates and give an in- 
creasing effect of current 
with respect to the oscilla- 
tion. Here T denotes the time- 
averaged shear stress and t 
the amplitude of the first 
harmonic of the shear stress 
at the bottom. Increasing the 
mean shear stress results 
(after an initial small de- 
crease) in an increase of the 
amplitude of the defect-veloc- 
ity; for moderate currents 

(T < 0.01 pU ) the effect of magnitude and direction of the mean 
shear stress is small. The phase is more sensible for mean current 
changes. The dash-dot-lines in Figure 5 are the results of analytical 
computations, which are treated in Appendix B. For clearness' sake 
only the case without current is shown. 

The dots in Figure 5 representing measurements of Bakker and Van 
Doom show, that although the amplitude is rather well produced, the 
phase of the calculated oscillatory motion still has discrepancies 
with respect to measurements, due to deficiencies of the Prandtl 
model. 

3 Time-averaged velocity field 
Consider the time-averaged velocity field. The equation of motion 
reads (see also Appendix A and B): 

3T 

(9) - grad P + ~ —- 
P 6       p 3z 

wherein: grad P = horizontal pressure gradient 
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Averaging over the wave period, the acceleration term cancels out. 
For a flow with confined depth h, the shear stress increases linearly 
with the depth. Furthermore, the mixing length 1 should be: 

1 = icz/(l-z/h)' (10) 
From Eq. (9) and (10), for stationary flow a logarithmic velocity 
distribution would result. However, this distribution would be found 
also from the assumptions made in this paper: a mixing length KZ and 
a uniform shear stress over the depth. 

The period mean velocity field can be derived from the internal shear 
stress velocity p, and a given mean shear stress by using Eq. (5) and 
(6) time averaged. _ 
If, for simplicity in the two-dimensional case, only the mean p and 
first harmonic p of the shear stress velocity are considered, the 
shear stress according to Eq. (5) equals (u being the angular veloc- 
ity): 

x = p(p + p sin tot) |p + p sin u)t[ (11) 
Hence x is larger than p p . 

z 2 

:W 

=/~T7P 
A^\/f/P 

Figure 6 Computation mean velocity schematically 

The nearer to the bottom, the larger the fluctuations of the shear 
stress and therefore, the larger the contribution of these fluctua- 
tions to the total shear stress. Thus the hatched part in Figure 6a 
shows the contribution of the mean shear stress velocity to the shear 
stress and the blank part the contribution of the variable part. One 
may schematize this picture to Figure 6b. The same figure is depicted 
in Figure 6c, however now the time-averaged shear stress veloci- 
ty p is plotted on the horizontal axis instead of the mean shear 
stress x. 
The time averaged velocity can be found from integration the time- 
averaged Eq. (6) over the depth: 

/ £_ dz wherein: z r/33 (12) 

Thus integrating Figure 6c over the depth, on logarithmic paper a 
broken line will come to being. This is shown schematically in Figure 
6d. The gradient on the upper part is the same as one would have had 
without the effect of waves, but with the same pressure gradient 
(i.e. T). 

In fact, the lower part of the line in Figure 6d is not too impor- 
tant. One might extend the upper part in downward direction, thus 
finding an increase of the apparent roughness with a factor a. Lund- 
gren (1972) presents this feature in the following way: 

u(z) = / T/P (—In — 
K   z 

o 
A)   (13) wherein: A = — In a (14) 
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In Eq. (13), T can be found from the waterlevel gradient 1) 

This parameter A implies a reduction of the velocity u with A times 
the shear stress velocity (see Fig. 6d). The same is found for the 
depth-averaged velocity, as A does not depend on the level z. 
For example: if the mean velocity is 1 m/s, corresponding with a 
shear stress velocity of 4 cm/s, a value A of 1 corresponds with a 
velocity reduction of 4 cm/s. 

7b Waves and current perpendicular to eachother 

Figure 7 Comparison A-values according to Lundgren (1972) and analytical theory 

In Figure 7 the values of A are plotted as function of f/(p U2) and 
a/r. Figure 7a shows the case, that waves and currents are codirec- 
tlonal, Figure 7b that waves and currents are perpendicular to each 
other. The thin lines refer to Lundgren (1972), the thick lines to 
the present theory. Differences in A between both theories are not 
more than 2 in the relevant area. 
When waves and current are perpendicular to each other, the varia- 
tions of p during the wave period are less than when waves and cur- 
rent are in the same direction. Thus pp?will differ less from f (Fig. 
6a) and therefore in the first case the factor A will be smaller 
(Fig. 7). 
If one wants to implement the friction factors in a mathematical 
model, the use of graphs is inconvenient. For this goal the following 
formula for A may be useful: 

A " 7 (Ki - K2 ln :0 + K3Z0> (15) 

where K,, IL, and K, are given functions (see (C7)) of the ratio 
T/(P p ) ; the ratio p /U is found from Eq. (7). The constants K,, K„ 
and Kj also depend on the angle a between waves and currents (ap- 
pendix C). Furthermore , A is a function of the dimensionless zn* 
given in Eq. (C8) where zn ( equal to r / 33 ) has been made dimen- 
sionless with the reference height Z (see Eq. (8)). Analytical cal- 
culations concerning A and the constants K,, K, and K, are given in 
Appendix C. 

1) In the case of breaking waves from the onshore gradient of the 
"shear stress" component of the radiation stress. 
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Figure 8 shows the velocity profile 
as result of measurements (Bakker 
and Van Doom, 1978) and computa- 
tions in a two-dimensional case. 
The inset shows the same velocity 
profile again, in combination with 
the case that waves and current are 
perpendicular to each other. One 
observes, that the apparent rough- 
ness in the case with waves and 
current perpendicular to each other 
is smaller than for parallel wave- 
and current direction; for this 
extend the upper part of the lines 
in the inset in downward direction. 
N.B. When using Eq. (13) for cases 

with combined waves and cur- 
rents, it should be kept in 
mind, that the non-linear 

' \\Ts^lll,l\iZ^ transport of water in the area 
averaged  over  the height was above       the       Wave       trough      falls 
20 cm-s-'janpiitude first hai- outside    the    scope    of    this   pa- 
monic just  outside boundary m,   , , 
layer was 24.3 cms"') Per-_    This      transport     can     be 

 numerical computation Considerable. 
 analytical computation 
inset:numerical computation: 

waves // current C ) 
waves X current ( ) 

Figure 8 Mean velocity; 
theory compared with 
experiment of Bakker 
and Van Doom (1978) 

4 Coastal engineering history 
Very schematically, the history of science about the combination of 
waves and currents is the following (see Fig. 9). 
In the past one did not realize oneself, that waves additional to 
current effect this current (Fig. 9a). 
In 1967 for a given discharge Bijker pointed out the increase of 
shear stress by waves (Fig. 9b). 
This inversely includes the reduction of current by waves, given a 
mean water level gradient. 
In present time we realize ourselves, that waves change the vertical 
velocity distribution and therefore, that the reduction in discharge 
is not as drastically as Bijker predicts (Fig. 9c). 

past Bijker (1967) 

9a 9b 

Figure 9 History of computation of mean velocity 

present(Lundgren;1972) 

9c 
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•averaged velocity-profile 
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5    Notation 
a        strokelength (»UT/2ir) 
A        factor determining the influence of waves on the t 

according to Lundgren (Eq.{13)) 
.complex constants in hypergeometric functions (Eq.(B16)) 
constants in approximation K{z) (Eq.(BI2) and (B13)) 
complex integration constants in Eq. (B16) to (B18) 
complete elliptic integral of the second kind 
coefficient of power-series-expansions 

Kelvin functions of order i 

complete elliptic integral of the first kind 
coefficients in Eq. (15) for A - value of Lundgren 
coefficient in differential equation analytical theory (Eq. (B4) and (B5)) 
turbulent mixing length (Eq.(lO)) 
constants in approximation influence o  on A-value Lundgren (Eq.(C2)) 
modulus and phase of zero order Kelvin functions 

p        internal shear stress velocity 
P        internal fluid pressure 
r       Nikuradse roughness 
5 second order tensor (Eq.(A9)) 
T       wave period 
t time 
u horizontal velocity 
U horizontal velocity far from the bottom and boundary condition for the velocity field 
u> defect-velocity («u-U; see also Fig. Al) 
x,y horizontal coordinates 
z vertical coordinate 
ZQ height above the bottom where the horizontal velocity is zero (*r/33) 
Z reference height for the boundary layer thickness coherent with the oscillatory 

motion (Eq. (8)) 
a factor determining the increase of apparent bottom roughness (Eq.(l4)) 
a angle between wave-propagation and current far from bottom 
6 tangent modulus in approximation of p 
y Euler'3 constant 
6 direction of first derivative of horizontal velocity 
C argument in analytical solution (Eq.(BI6) 
9 phase of u<j (Eq. (B19)) 
K Von Karman's constant 
A sum of digamma functions (Eq.(B16)) 
v kinematic viscosity 
v turbulent viscosity 
5 factor for influence a„c in analytical theory (Eq.(Bll)) 
p specific density 
T internal shear stress 
$ phase of p (Eq.(B2)) 
Xi,2 hypergeometric functions (Eq. (B!6) 
^ digamma function 
ID angular velocity (2ir/T) 

Other symbols added to a variable x: 

x vector 
x* dimensionless value 
x" time-averaged value 
x" amplitude first harmonic 
x first harmonic 
x, value at the bottom 
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Appendix A:  Numerical computations 

Assumptions: 
a. Only horizontal velocities, uniform in horizontal direction, are 

considered i.e. pressure gradient grad P uniform in vertical di- 
rection 

b. The shear stress jr can be found from the Prandtl hypothesis: 
3u 

(Al) wherein: 
3u 

2     2 
3u 

(A2) 
3u /"Til 

1^=1 . y /_£) 
1 3zI ydz  ' 

3u 
+ <ir> (A3) 

c. The time averaged shear stress JJ_ is uniform in vertical direction 
(cf ch.3). 

Derivation of Eq. (1) and numerical solution: 
According to assumption a_ the equation of motion reads: 

3u 

It 
1 1 *± - grad P + _ _ 

Define U and u^ in the following way: 
Tu  ~~° 
— = - - grad P    (A5) 
31    p 

real velocity defect velocity 

Figure A.1 Definition defect-velocity . 

-d 
U 

(A4) 

(A6) 

The velocity U_ (only a 
function of t, cf. 
assumption ja) denotes 
the velocity at a 
depth, to be chosen 
arbitrary, however far 
enough above the bottom 
to attenuate the peri- 
odical changes of jr. 
This can be seen from 
Eq. (A4) by taking the 
2nd term on the right 
handside equal to zero 
(assumption _c_). The 
velocity u, denotes the 
defect-velocity 

Fig. Al). 
(see 

Substitution of Eq. (A5) and (A6) into (A4) yields: 

3t   p 3z 
(A7) 

Write jr_ as (x ,T ) , and u_ as (u , u ), then differentiation of T to 
t gives, using Eq\ (Al) to (A3):X  y X 

32u 3T       3V„ 3U      „ _ 
 X _    r  t  X        Xi 

3t   p ' Jt 3z   vt 3t3z' 

32u 
p v  {(1 + cos 6)     + sin &  cos S 

32u 

3z3tJ 
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3u  3u 3u  3u 

wherein: cos 6 = -57V |^|  and sin 6 - ^/l^l 

Computation of 3T /3t in a similar way yields: 

3jr        3 u 

3t " P vt S aiat (A8) 

wherein: 
S = 

2 
1 + cos 6    cos 6 sin 6 

2 
cos 5 sin S  1 + sin 5 

(A9) 

Differentiation of Eq. (A7) to z, multiplication with v S and substi- 

tution of Eq. (A8) results in Eq. (1), because 3_u/3z equals 3u,/3z . 

With a similar derivation as the one for 3_r/3t one finds: 

3T a     3u 

U^tifz-t-l^ <A10> 
Substitution of Eq. (A2) into (A10) and Eq.(AlO) into (A7) 
yields an equation for the defect-velocity: 

^ = KZ ^ • S |- {KZ -^-) (All) 
3t       3z   - 3z l  3z J 

Eq. (All) has been solved numerically using a finite difference 
method based on the Crank-Nicholson implicite integration scheme with 
the boundary conditions: 

u, = 0. at the upper end 
u, = -U near the bottom at a height z which is proportional to the 

dimension of the bottom roughness r (z = r/33) 
U_ =    imposed velocity at the upper boundary 

Appendix B: Analytical computations 
In this appendix only relations will be derived, on one hand for 
parallel direction of oscillation and current (i.e. a    -  0°) and on 
the other hand for oscillation and current perpendicular to each 
other (i.e. a  = 90°). 

wc 
Differentiation of the equation of motion (A4) to z using assumption 
a, multiplication with KZ and substitution of (6) gives: 

= JL KZ   (B1) 

3t  p    3z2 

When only the first harmonics are taken into account for the lin- 
earized approximation the shear stress _r and shear stress velocity _£ 
can be written as: 

2. = £. + £. > 2. ~ 2. s^-n  (ut + •) 
-  »     ~  - <B2> 

JT=_T + T^;    _r = _r sin (rat + ij>) 

wherein: <j> = phase of £ and equals in an approximation upto the 
first harmonic the phase of T 
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Because p_ ant' _L are 1° phase, derivation to t yields in the case 
of a  =0° and 90°: 

wc 3p  p  3x 

IF = T • 3t <B3> 

wherein: p,x the modulus of £ and x_ 

Evidently Eq. (B3) is only relevant in the plane of oscillation. Only 
considering this plane in the following, the vector-sign (underlin- 
ing) may be skipped. 

After substitution of (B3) into (Bl) and using assumption c an equa- 
tion, similar to (1) is found ': 

(B5) 
3z' e 

For a 
wc 

If -  K-^-4      (B4)  wherein: K = KZ — 
3z 

P. 

- 0° from Eq. (5) and (B2) can be derived: 
—      —         —2  /   —2' 

-^ = ^£ arcsin £ + f (2 + *=•) V 1 - *r ~2  IT p       p  3i     -2       „2 
PP                       P        P 

for p<p 

^2  = 2 P/P for p>p 
PP 

-^fci+^arcsini + li/l-^ 
pp         p        p    p      p 

for p<p 

-2  2 + -2 
PP       P 

for p>p 

(B6) 

(B7) 

These keep their validity in dlmensionless shape, wherein 
p, p, x and T are made dimensionless with the value of (S at the bot- 
tom (i.e. p for p and p, and pp^ for x and x). In the following these 
dimensionless values are denoted with an asterisk. 

1) Eq. (B4) is quite similar to (1). Generally it should be kept in 
mind, that Eq. (B4) is a linearized equation, where (1) has gener- 
al validity, and therefore the coefficient K is not equal to v 2-*. 
However for parallel oscillation and current 6 equals 0, and 
therefore in the plane of oscillation Eq. (1) and (A9) yields: 

3x  „   32x .            2 2 | 3u , 
•rr = 2 v„ —x wherein: v = < z  T- 

dt     t . z t      ' 3z ' 
3z 

For large z the value of |3u/3z|   approaches P/KZ, and there- 
fore 2v + 2 <z p. As x/p will be 2 pp for large value of z (see 
Eq. (Bff}), the value of K according to Eq. (B5) equals  2 v . 
This demonstrates the similarity between Eq. (1) and (B4) in this 
case. 

2) Even, generally, the time-independent K is not equal to the time- 
averaged S v . 
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2 7 
In Figure Bl is displayed a dimensicmless K = K/(< p T) versus a 
dimensionless height z* = Z/(K p T). 
Furthermore the value of K* depends on f/f,. For the relation 
p*= p7p\ an exponential decay is assumed (Bakker, 1973): 

p. . e~(3» /16) ** (B8) 

The rate of decay according to Eq. (B8) is coherent with the choice 
of the reference height Z, defined as Z = K Pi^* 
A relation between T*/T* and p* follows from division of (B7) by 
(B6). Given the value or f */x*uslng Eq. (B8) the value of p* can be 
found. From (B7) results T« . For a certain level z*, the value of 
P*    follows from Eq. (B8). As f*  remains constant in the vertical 
sense, the value of  T*/P*2  is known. Substitution of this value 
in Eq. (B7) yields a value of p*/p*, which further can be substituted 
in Eq. (B6) yielding  T*/p*2 and therefore K* (= z* f*/p* ) 
For a  = 90° a similar approach can be chosen. Instead of Eq. (B6) 
and (B7) is found: 

P p p      p    i+p /p    p    i+p /p 

for p/p > 0 (BIO) 
P P     P      P     1+P IV 

wherein: K {} = complete elliptic integral of the first kind 
E {} = complete elliptic integral of the second kind 

For the analytical computations of the time-dependent velocity field 
the coefficient K*is approximated in 3 sections (see Fig. Bl): 
Above the intersection of the straight line and the curve valid for 
waves only, the straight line is assumed i.e.: 

upper part: K* = ?.z* / x* (Bll) 

wherein: 5=2 for a  = 0° ; 
5 = 1 for awc = 90" wc 

Eq. (Bll) follows from substitution of Eq. (B6) (a = 0°) or Eq. (B9) 
(a = 90°) into Eq. (B5) for the limiting case of p^p+0 and p+Zt/p.' 
Below the intersection of the straight line and the curve for waves 
only, the curve is assumed, which is approximated by: 

middle part: K* = ae"bz     ; a - 0.111  b = 3.267   (B12) 

lower part:  K* = cz-dz*2   ; c = 0.849  d = 2.817   (B13) 

The intersection of lower and middle part is situated at z* = 0.186. 
The influence of the current on the time-dependent solution is re- 
stricted to the upper part where Eq. (Bll) is valid. As long as the 
straight line in Figure Bl intersects the curve I + II for waves 
only, the influence of the current on the time-dependent velocity 
field is negligible near the bottom. This can also be seen from nu- 
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tao 

Nl'"V«'/                 / 

/             /V"***/ 

1       .7 

t"   \ '//^^•'is' (:      [ /., •'^y^;-"^<^-^' 

J?}, ;>^<^^nrTk--'
! •««• 

K" D inalycical 

Lovac part 
 II aiddl* pan 

uppar pace 

wry (or T* = 0; 

merical computations in Figure 5. 
The intersection disappears for 
large currents, when the slope of 
the straight line exceeds the tan- 
gent of the basic curve at the 
origin (Fig. Bl) i.e.: 

0.2S fcK* 

.1 and 0^ = 0°; 

> 
3lT 

(B14) 

With above given approximations for 
K , Eq. (B4) can be solved analyt- 
ically with the boundary condi- 
tions: 

z =• 0: T = T + T, sin out 
—  —  —b 

z +  °°: T •>• T 

(B15) 

When the time dependent shear 
stress x is found, with Eq. (A7) 
the time-dependent defect veloci- 
ty u can be computed. The analyti- 
cal solutions for the amplitude and 
phase of the first harmonic of u. 
(in complex form; suffix c denotes 
'complex') are determined apart 
from complex integration constants 

Figure B.I  Coefficient K as function of z C. , C„ C3 en C4: 
(analytically and approximation) 

lower part: the solution consists of hypergeometric functions, which 
in the following already are expressed in power-series- 
expansions 

Gdc= i tci{ x + xx«:)} + -J-U + ln? + *2(^1 (B16) 

wherein: c,d are given in Eq. (B13) 
(A+l) (B+l) 

=    f, ~ ° xxU) 

x2(?) 

(A+1) 

n=l     (n+1)!   n! 

n=l 

(A+l)   (B+l) 
n n 

n-1 

n-1 
(n+1)!   n!   •   "  •   <> 

-  (A+l)   (A+2)       (A+n) 

A(n) 

A(n)       =  i|) (A+l+n)   - ty (A+l)  + ty (B+l+n)  -  jjj (B+l) 
-^ (n+2)  + i)i (2)   -  i> (n+1)  + ij, (1) 

i(j(m)       = digamma  function 
m-1  1 

T + nil 

1) Mind that (exact) the same solution is found for waves and current 
codirectional and perpendicular to each other, if in the last case 
the time-averaged shear stress is four times as large as in the 
first case (because then part III is the same; see Eq. (Bll)). 
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y =   .57722  (Euler's  constant) 
A,B        = complex constants restricted by 

A + B = -1;   A.B =  2Tri/d 
(as d = 2.817:  A =    0.617 - 0.999 1 

B = -1.617 + 0.999 i) 
? = - .   z* 
* c 

middle part: the solution consists of Kelvin functions: 

udc = V" 'C2f kerl(?) + i-kel^?)} + O^ber^?) + i.bei^?) }] (B17) 

wherein:  c = 2ir V — e ira 

ker^?), kei.(?), ber (?) and bei (?) are Kelvin functions 
upper part: 

ud*c = C4[ kerQ(c) + keiQ(?) + i{ keiQ(?) - kerQ(?)}]   (B18) 

wherein: ? = 2 V —  

For large currents, when only the upper part can be applied, Eq. 
(B18) becomes: 

2" * 

u* =—=  -7V?)  ; 9 = *o(?> (B19) 

1 2 2 ' 
wherein: N (?) =V  ker (?) + kei  (?) 

$°(?) = arctan {kei (?)/fcer (?)] 
phase of u, defined"by u,  =  u, sin (iot+e) 

For clearness' sake only the analytical solution for the case of 
waves only is presented in Figure 5. The analytical solution then 
consists only of the combination of Eq. (B16) and (B17). 

From Eq. (B19) a simple relation can be derived between the ratio 
T./(pC ) and the ratio strokelength over bottomroughness a/r. Re- 

place in Eq. (B19) the dimension operator {V (denoted by a^asterisk) 
by U, and consider Eq. (B19) at a level z=z , where u, = U. The re- 
sult is: 

^ = ¥^2- No_1^) <B20> 
pU pU 

wherein: ? - 

V 33 K? a/r / T/PU
2 

This equation is only valid when Eq. (B14) can be applied. Practi- 
cally Eq. (B19) and (B20) differ only slightly from the numerical 
solution in the range of a/r > 1 and x/(p U2 )> 0.1. 
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Appendix C: Analytical calculation of Lundgren's A-value 
In this appendix the analytical solution for the time-averaged veloc- 
ity field will be treated. With Eq. (12) this field can be found from 
the time-averaged shear stress velocity. The last can be found from 
the definition of the shear stress velocity by Eq. (5) in the fol- 
lowing way ' 
As described in Appendix B, the ratio p /p can be found as func- 
tion of the dimensionless height z* above the bottom using Eq. (B7) 
when a =0° and Eq. (BIO) when a =90°. From Eq. (B8) the dimen- 
sionless p can be derived. For various values of T/T. those curves 
are plotted in Figure Cl, in the case of a  =0°. 

For integrating over the depth 
according to Eq. (12) the curves 
for p are approximated by a 
vertical and an oblique line (see 
Fig. Cl). The vertical line cor- 
responds with the value of 
p* = / T*1 , the oblique line 
connects the bottom point p* = p 

with the point, where p = p*: 

p* = ?* + B z* (Cl) 

Pb/pb-.oi 

-,/% - .015 

1.4 

* 
,.„ 
0.8 1 
0.0 \ 
0.4 A      / 

,        * I 
0.-2- f-^- —*»—. * 

^sS~J                     ^^J 

This approximation can only be 
_*-' '•?* applied, when p* < 1.  As will be 
p and B- -, Di, .. 

shown later this restriction 
covers the cases where the 

Fig. c.i profile tor p" and p~ (anal, and approx.) influence of waves on a current 
becomes significant. As the dash-dot line in Figure Cl de- 
notes p*(given by Eq. (B8)), the intersection point of the drawn line 
and the dash-dot line is also a point of the oblique line. 

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 analytical profile for p 
 — linear approximation 
. — — assumption p according to Eq.(B8) 

From Eq. (B7) and (B10) it shows, that in the intersection points, 
(z*=z*j, where p*= p*  the value of x*/ p*2 equals 1.5, when a = 0° 
and 2/2'/it E{|} = 1.216 when a^ = 90°C. Generally  it  can be  derived 
that: 

../- P - (C2) 2    2 
1 + (m + n cos ct ) 

wc 

wherein:  m2  = -2-J-^ E   HI  -1  =  0.216 
IT L     ' 

n =  i   fl  - m 
E {} = complete elliptic integral of the second kind. 

Using Eq. (B8) for p* from Eq. (Cl) the height of the intersection 
level z* = z* is found: 

In 
3ir 

2    2 
1 + (m + n cos  a  ) 

wc 

(C3) 

1) In an approximation, up to the first harmonic. 
2) The asterisks have the same meaning as in Appendix B. 
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Then from Eq. (Cl) g can be derived: 

= (P "b )/zs 
(C4) 

The level zv   ,   where the vertical line and the oblique line intersect 
equals: 

\    =  (V T   - pb )/(S (C5) 

From integration , according to Eq. (12), the velocity u* at the 
level z* can be found. For z* > z* a logarithmic velocity profile is 
found (Fig. 6d) i.e. a straight line on logarithmic paper through the 
point (z* ,u* ) under the inclination arctan (K/V T /p'). Extension 
of this linff, in downward direction yields the level a z where a is 
the magnification of the apparent bottom roughness (Fig. (K1): 

In a = (1 -) In (.< ) (C6) 

Using Eq. (14) this gives the A-value of Lundgren according to Eq. 
(15) wherein: 

K K In zk* - K, z* ; K, - 1 
3 k K„ 

(g and z* according to Eq. (C4) and (C5))' _ 
The coefficient Kj, K„ and K, can be written as function of t/(p p,Z) 
and a  . These functions are approximated with power-series-expan- 
sions Tor the cases a      =0° and a  = 90°: 

wc wc 

K = I      k {ln(-rg,)}n(i = 1,2,3) (C7) 
1 n=0        PPb 

The coefficients k.  are listed in the table below. 

wc - 0° a  = 90° 
wc 

ko k! k2 k3 k4 
ko k,    k2 k3 k4 

Kl -.914 .623 . 159 .0110 - -.3921 .2264 -.1325 -.0*410 -.002850 

K2 .284 -.285 -.0416 -.00214 - .1120 -.0858  .0737 .0175 .001092 

K3 
2.654 -.511 -.408 -.0761 -.00464 1.3845 .139b  .3302 .0683 .006240 

The values of the coefficients for 0°< awc  <  90° can be approximated 
by linear interpolation. 

Eq.(C7) and (15) relate A to T/(pp|) and z* ; this relationship can 
be easily converted to the presentation according to Lundgren (Fig.7). 
Here x/(pU2) replaces f/(pPb) • Evidently these dimensionless va- 
riables can be converted to each other with the aid of the ratio 
Pb/U » given in Eq. (7) as function of the ratio a/r . Furthermore in 
Lundgren's presentation the variable a/r replaces z*;these variables 
are related in the following way (using Eq.(8)): 

PbT 66K7T a/r (C8) 




