CHAPTER SEVENTY NINE

NEAR BOTTOM VELOCITIES IN WAVES WITH A CURRENT;
ANALYTICAL AND NUMERICAL COMPUTATIONS
b
W.G.M. van Kesteren ) and W.T. Bakker?)

ABSTRACT
In this paper, starting from the Prandtl hypothesis a three-dimen-
sional numerical bottom boundary layer model has been developed,
which allows to calculate bottom friction by a combination of waves
and currents. The model has been compared with two-dimensional ana-
lytical computations which gave similar results.
The bottom friction values found are comparable to the ones, found by
Lundgren (1972), however in the most relevant cases somewhat less.
Furthermore 1n the two~dimensional case the model has been compared
with measurements of Bakker and Van Doorn (1978).
With respect to the oscillatory motion, still some minor deviations
occur between theory and measurements, due to deficiencies of the
Prandtl theory.

1 Introduction

Investigation of the bottom boundary layer is primary of importance
because it reveals the stirring mechanism of the sand in the surf
zone. This is one of the most important factors, determining the sand
transport in the surf zone and therefore coastal erosion and sedi-
mentation.

Furthermore, the boundary layer determines the bottom friction and
therefore the velocity of, for instance, the longshore current and
the wave energy loss.

From the present paper may be expected:

« insight in the internal flow field, when waves and currents make an
angle with each other;

. insight in the turbulent viscosity;

. a formula for bottom friction for waves and currents, making an
angle with each other.

For this, the old, well-known Prandtl mixing-length theory is used.
From the data, presented by Bakker and Van Doorn (1978) it appears,
that this theory overestimates the turbulent viscosity in the higher
layers somewhat. Figure 1 shows a characteristic set of velocity
profiles as measured by Van Doorn and as presented according to the
Prandtl hypothesis. The general picture tallies, but the overshoot in
reality is somewhat larger than theory predicts. :
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2 Instantaneous velocity field

Assuming uniform flow in horizontal direction and the Prandtl/Von
Karman hypothesis for the shear stress in Appendix A an equation is
developed for the }ntrusion of the shear stress into the fluid:

3T 3T
5t = S — (1) wherein: v_ = kz JITl/p (2)
t =7t azz t =
Here T stands for the shear stress with components (t_,t ), X and 2z
are the horizontal and vertical coordinate respectively, t = the

time, p = the specific ‘demsity, v_ the turbulent viscosity, x = the
Von Karman constant, and S a secotnd-order tensor, specified in Eq.
(A9).

Eq. (1) is analogous to the famous diffusitivity equation, where the
viscosity v replaces the turbulent viscosity, and in which S can be
omitted. Tensor S accounts for the difference in direction between
at/3t and 3%1/3z%.

Furthermore, in appendix A an equation (All), similar to (1) for the
defect velocity uy has been derived; the defect velocity is the dif-
ference u-U between the velocity U far from the bottom and the local
velocity-g in the boundary layer (Fig. Al). This equation (All) is
.solved numerically. Figure 1 gives a solution for the two~dimensional
case, compared with data of Bakker and Van Doorn (1978). It shows,
that the Prandtl hypothesis overestimates the turbulent viscosity in
the higher layers somewhat. The general picture tallies, but the
overshoot in reality is somewhat more than the theory predicts. Fig-
ure 2 shows the standard deviation (theory compared with measure-
ments) as function of the height above the bottom. The figure demon-
strates, that the present model is more accurate than the one, pre-
sented in 1978 (Bakker and Van Doorn), mainly because the upper
boundary can be fulfilled without approximation.
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Figure 3 shows the solution in a three-dimensional case.
In Figure 3a the direction of the current far from the bottom is
equal to the direction of the pressure gradient. The direction of the
orbital motion is given by the points 1, 2 etc., representing the
point of the current vector far from the bottom at successive times,
1/4 wave period apart. Figure 3c to 3f show these velocity profiles
for 4 successive times. All the vectors are in a horizontal plane;
the direction changes when going from upward to downward. In Figure
3b the resulting profile for the mean velocity and the amplitude of
the first harmonic are shown. From this figure it appears that the
direction of the mean velocity near the bottom differs considerable
from the direction of the mean velocity outside the boundary layer,
which asymptotically approaches the direction of the mean pressure
gradient, or, which is the same, the mean shear stress. This effect
should be taken into account in cases with for instance sandtransport
near the bottom. The kink in the mean velocity profile will be
treated in the next chapter.
Similar to the viscous boundary layer a unique relation can be ex—
pected in the turbulent case between horizontal velocity just outside
the boundary layer and the shear stress acting on the bottom. However
when the Prandtl hypothesis is used for determining the turbulent
shear stresses in terms of the local velocity field it appears from
analytical considerations (Appendix B) and numerical computations
that only a unique relation can be obtained when the shear stress
velocity Py is used instead of the shear stress near the bottom T
The shear stress velocity p in the three dimensional case is degﬁned
as:

x=pplp| (5
The shear stress velocity can be expressed in terms of the local
velocity field according to the Prandtl hypothesis (see Appendix B):

du

B =Kz 5> (6)
The relation (5) has been treated more elaborate in Appendix B in
order to make analytical computations of the instantaneous velocity
field by linearizing Eq. (1) (see Appendix B) and of the time-aver-
aged velocity field (see next chapter).
The amplitude of the first harmonic of the shear stress velocity Py
at the bottom is related to the amplitude of the first haﬁsonic of
the oscillation § far from the bottom. For moderate currents (time-
averaged shear stress T smaller than 0.0l p lif ) there exists a unique
relation between f,/0 and the ratio strokelength a (= O0T/21 where T
is the wave period? over bottom roughness r, which is shown in Figure
4 and can be approximated by:

5
=2 = exp L g ok, (In@/nif "

wherein: k = -1.092; k.= —-.3364; k= +.01876; k,= —-4.621.10 -4

Using ﬁb 8s basis for mathematicil modeling, %&gure 5 represents a
dimensionless plot of the amplitude and phase of the first harmonic
of the defect velocity 05 (= ﬁd/ﬁb) as function of the dimensionless

[}

1) For larger currents is referred to Appendix B.
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“ height z* above the bottom;

here the height z above the
bottom has been made dimen-
sionless with a characteristic
height Z, which refers to the
intrusion depth of the in-
1073 stantaneous shear stresses

3
10° 0 102
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- i.e. the boundary layer thick-—
Figure 4 Relation between ﬁb/ﬁ and a/r  ness coherent with the oscil-
—u (deg) latory motion. Based on ana-

e 0 2% #1ytical considerations (see
Appendix B) Z is expressed as:

Z=x ﬁb T (8

In Figure 5 curves are given
for waves and current codirec~-
tional and perpendicular to
each other and for several
values of mean shear stress

S e e cemicy | OVEr amplitude of the first
mersged over tha helsht | harmonic of the bottom shear
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numerical computations: stress (7/%7,). The increasing

vaves and curreat in sama
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direction . numbers at the lines refer to
- = aumericsl compucscions:
vaves and current these rates and give an in-
perpendicular to esch othar
-~ analytical computation creasing effect of current

(waves only)

with respect to the oscilla-
tion, Here T denctes the time-
averaged shear stress and %
the amplitude of the first
harmonic of the shear stress
at the bottom. Increasing the
mean shear stress results
P - 1 (after an initial small de-
crease) in an increase of the
Figure 5 Dimensionless amplitude and phase amplitude of the defect-veloc-
of the defect velocity ity; for moderate currents
(1 < 0,01 pﬁz ) the effect of magnitude and direction of the mean
shear stress is small. The phase is more sensible for mean current
changes. The dash-dot-lines in Figure 5 are the results of analytical
computations, which are treated in Appendix B. For clearness' sake
only the case without current is shown.
The dots in Figure 5 representing measurements of Bakker and Van
Doorn show, that although the amplitude is rather well produced, the
phase of the calculated oscillatory motion still has discrepancies
with respect to measurements, due to deficiencies of the Prandtl
model,

3 Time-averaged velocity field

Consider the time—averaged velocity field. The equation of motion
reads (see also Appendix A and B):

ou 1

.-é-'t-=-—p-gradP+-5—é-E 9

wherein: grad P = horizontal pressure gradient
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Averaging over the wave period, the acceleration term cancels out.
For a flow with confined depth h, the shear stress increases linearly
with the depth. Furthermore, the mixing length 1 should be:
1. = xz Y/(1-z/h) (10)

From Eq. (9) and (10), for stationary flow a logarithmic velocity
distribution would result. However, this distribution would be found
also from the assumptions made in this paper: a mixing length kz and
a uniform shear stress over the depth.

The period mean velocity field can be derived from the internal shear
stress velocity p, and a given mean shear stress by using Eq. (5) and
(6) time averaged. _
If, for simplicity in the two-dimensional case, only the mean p and
first harmonic f of the shear stress velocity are considered, the
shear stress according to Eq. (5) equals (w being the angular veloc—
ity):

T =p(p + P sin wt) l'f) + P sin wt[ (1)
Hence T is larger than p p>
4 P4 r4 P2= /",f/p
Zrmo! Py

|06 P

sl
°

T
6a b 6c 6d

Figure 6 Computation mean velocity schematically

The nearer to the bottom, the larger the fluctuations of the shear
stress and therefore, the larger the contribution of these fluctua-
tions to the total shear stress. Thus the hatched part in Figure 6a
shows the contribution of the mean shear stress velocity to the shear
stress and the blank part the contribution of the variable part. One
may schematize this picture to Figure 6b. The same figure is depicted
in Figure 6c, however now the time-averaged shear stress veloci-
ty p is plotted on the horizontal axis instead of the mean shear
stress T.

The time averaged velocity can be found from integration the time-
averaged Eq. (6) over the depth:

z

i= f

z

Thus integratoing Figure 6c over the depth, on logarithmic paper a

broken line will come to being. This is shown schematically in Figure

6d. The gradient on the upper part is the same as one would have had

without the effect of waves, but with the same pressure gradient
(i.e. 7).

In fact, the lower part of the line in Figure 6d is not too impor-

tant. One might extend the upper part in downward direction, thus

finding an increase of the apparent roughness with a factor o. Lund-
gren (1972) presents this feature in the following way:

|'UI

dz wherein: z = r/33 (12)
K o

N

u(z) =7 T/p (i— 1n z—- - A)  (13) wherein: A = —i- 1n o (14)
o
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D

In Eq. (13), T can be found from the waterlevel gradient .

This parameter A implies a reduction of the velocity u with A times
the shear stress velocity (see Fig. 6d). The same is found for the
depth-averaged velocity, as A does not depend on the level z.

For example: if the mean velocity is 1 m/s, corresponding with a
shear stress velocity of 4 cm/s, a value A of 1 corresponds with a
velocity reduction of 4 cm/s.

o, stoke P
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7a Waves and current in the same direction 7b Waves and current perpendicular to eachother

Figure 7 Comparison A-values according to Lundgren (1972) and analytical theory

In Figure 7 the values of A are plotted as function of T/(p ﬁz) and
a/r. Figure 7a shows the case, that waves and currents are codirec-
tional, Figure 7b that waves and currents are perpendicular to each
other, The thin lines refer to Lundgren (1972), the thick lines to
the present theory. Differences in A between both theories are not
more than 2 in the relevant area.

When waves and current are perpendicular to each other, the varia-
tions of p during the wave period are less than when waves and cur-
rent are in the same direction. Thus pﬁzwill differ less from 7 (Fig.
6a) and therefore in the first case the factor A will be smaller
(Fig. 7).

If one wants to implement the friction factors in a mathematical
model, the use of graphs is inconvenient. For this goal the following
formula for A may be useful:

A =% (K = X, In zJ + Kyzg (15)
where § » Ky and K, are given functions (see (C7)) of the ratio

T/(p Eb} ; the ratio p,/U is found from Eq. (7). The constants K, K
and K, also depend on the angle o between waves and currents (ap=
pendix C). Furthermore , A is a function of the dimensionless zp*
given in Eq.(C8) where zy ( equal to r /33 ) has been made dimen-
sionless with the reference height Z (see Eq. (8)). Analytical cal-
culations concerning A and the constants Kl’ K2 and K3 are given in
Appendix C.

1) In the case of breaking waves from the onshore gradient of the
‘'shear stress" component of the radiation stress.
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mean velocity 0 cm-s

5 | 15 20 25 Figure 8 shows the velocity profile
6| as result of measurements (Bakker
P and Van Doorn, 1978) and computa-
4 4 tions in a two-dimensional case.
6 £ The inset shows the same velocity
, . /‘ profile again, 1in combination with
i the case that waves and current are
" perpendicular to each other. One
10! - observes, that the apparent rough—
b ness in the case with waves and
A current perpendicular to each other
is smaller than for parallel wave-
and current direction; for this
2 extend the upper part of the lines
2 y 7 in the inset in downward direction.
N.B. When using Eq. (13) for cases
with combined waves and cur-
rents, it should be kept in
mind, that the non-linear
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Figure 8 Mean velocity;
theory compared with
experiment of Bakker
and Van Doorn (1978)

4 Coastal engineering history

Very schematically, the history of science about the combination of
waves and currents is the following (see Fig. 9).

In the past one did not realize oneself, that waves additional to
current effect this current (Fig. 9a).

In 1967 for a given discharge Bijker pointed out the increase of
shear stress by waves (Fig. 9b).

This inversely includes the reduction of current by waves, given a
mean water level gradient.

In present time we realize ourselves, that waves change the vertical
velocity distribution and therefore, that the reduction in discharge
is not as drastically as Bijker predicts (Fig. 9c).

in z laz in z

)

u u
past Bijker (1967) present (Lundgren; 1972)

9a 9b 9¢
Figure 9 History of computation of mean velocity
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5 Notation
a strokelength (=l1/2m) i . (m)
A factor determining the influence of waves on the time-averaged velocity-profile (=)

according to Lundgren (Eq.(13))

A, B _complex constants in hypergeometric functions (Eq.(B16)) (=)

a,b,c,d constants in approximation K(z) (Eq.(B12) and (B13)) (=)

Cy,5,3,4 complex integration constants in Eq. (BI6) to (B18) (=)

BV complete elliptic integral of the second kind )

ki=0,1..,. coefficient of power-series-expansions -)

t::l}’:zt%) Kelvin functions of order i =)

K Y71 complete elliptic integral of the first kind =)

Ky 2,3 coefficients in Eq. (15) for A - value of Lundgren (S -

K{z) coefficient in differential equation analytical theory (Eq. (B4) and (BS)) (m2s™1)

1 turbulent mixing length (Eq.(10)) (m)

mn constants in approximation influence o . on A-value Lundgren (Eq.(C2)) =)

Ng, % modulus and phase of zero order Kelvin functions (-)_l

p internal shear stress velocity (ms *)

P internal fluid pressure (Pa)

r Nikuradse roughness (m)

s second order temsor (Eq.(A9)) (=)

T wave period (s)

t time (s)_

u horizontal velocity (“’5-1)

u horizontal velocity far from the bottom and boundary condition for the velocity field (ms_l‘)

uy defect-velocity (=u-U; see also Fig. Al) (ms )

7 horizontal coordinates (m)

z vertical coordinate (m)

2 height above the bottom where the horizontal velocity is zero (=r/33) (m)

Z reference height for the boundary layer thickness coherent with the oscillatory Am)
wotion (Eq.(8))

@ factor determining the increase of apparent bottom roughness (Eq.(14))

e angle between wave-propagation and current far from bottom (deg)

8 tangent modulus in approximation of p =)

Y Euler’s constant (]

& direction of first derivative of horizontal velocity (deg)

z argument in analytical solution (Eq.(BI6) =)

] phase of ug (Eq.(B19)) (rad)

3 Von Karman's constant =)

A sum of digamma functions (Eq.(B16)) =) .

v kinematic viscosity (m2s_})

ve turbulent viscosity (n2s™1)

3 factor for influence o, in analytical theory (Eq.(B11)) (=) _

[ specific density (kgm™ 3)

T internal shear stress (Pa)

3 phase of § (Eq.(B2)) (rad)

X1,2 hypergeometric functions (Eq. (B16) (=)

v digamma function (-1

w angular velocity (2n/T) shH

Other symbols added to a variable x:

x vector

x* dimengionless value

® time-averaged value

R amplitude first harmonic

X first harmonic

X value at the bottom
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Appendix A: Numerical computations

Assumptions:
a. Only horizontal velocities, uniform in horizontal direction, are

considered i.e. pressure gradient grad P uniform in vertical di-

rection
b. The shear stress 1 can be found from the Prandtl hypothesis:
du
Y \ (Al) w:itein' .
2,221 = = =V _*X
ve =27 || (42) I3z = ( ) + G0 (A3)

c. The time averaged shear stress E is uniform in vertical direction
(cf ch.3).

Derivation of Eq. (1) and numerical solution:
According to assumption a the equation of motion reads:

du 1 1 T

'a—t—=—;gradP+;—3; (A4)
Define U and u, in the following way:

3 ‘?

rrialie ; grad P (A5) &y =u- U (A6)

The velocity U (only a
O ooy z function of ¢, cf.
R assumption a) denotes
the velocity at a
depth, to be chosen
arbitrary, however far
enough above the bottom
to attenuate the peri-
odical changes of T.
This can be seen from
Eq. (A4) by taking the
2nd term on the right
handside equal to zero
(assumption <) The

Teal velocity defect velocity ‘“ yelocity u, denotes the
i A1 Defimition deFect-velocit defect-velocity (see
lgure . inition derect—-velocClity Fig. Al).
Substitution of Eq. (A5) and (A6) into (A4) yields:
.__agd -1 _35 A7
at  p 9z (A7)

Write t as (T sT.) , and u as (u_, u_), then differentiation of T, to
t gives, ubing EZ (AD) to (A3):

2

atx avt aux ] ux
5t~ Lot 32 * Ve vmag)
2 2

au 3 u

_ 2 y
=0 v {Q1 + cos”8) —+ 5 at + sin § cos § azat}
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Bux au du_ du
wherein: cos § = 57/ Is‘z‘l and sin § = _laz /|5;|

Computation of ary/at in a similar way yields:

T 322
3t 7 ° Ve & Tt (48)
wherein: 1+ coszé cos 8§ sin §
s = ) (49)

cos 8 sin § 1 + sin"§

Differentiation of Eq. (A7) to 2z, multiplication with v 8 and substi-
tution of Eq. (A8) results in Eq. (1), because 3u/dz equals agd/az R

With a similar derivation as the one for 37/3t one finds:
o, R 3y
32 " kz v 83z 125 (410)

Substitution of Eq. (A2) into (A10) and Eq.(A10) into (A7)

yields an equation for the defect-velocity:

u ou du
= —~d 5 =
T G far 2] (a11)

Eq. (All) has been solved numerically wusing a finite difference
method based on the Crank~Nicholson implicite integration scheme with
the boundary conditions:

0 at the upper end
-U near the bottom at a height z, which is proportional to the
dimension of the bottom roughness r (zo = r/33)

= imposed velocity at the upper boundary

|= A_:A‘c

Appendix B: Analytical computations
In this appendix only relations will be derived, on one hand for
parallel direction of oscillation and current (i.e. = 0°) and on
the other hand for oscillation and current perpendicilar to each
other (i.e. o = 90°).
Differentiatigﬁ of the equation of motion (A4) to z using assumption
a, multiplication with xz and substitution of (6) gives:

ap 3" T

==1, ;

at p 32
When only the first harmonics are taken into account for the lin-
earized approximation the shear stress 1 and shear stress velocity p
can be written as:

(B1)

~

9_=£+E; £=Esin(wt+¢)
- . o (B2)
T=1+T T =1 sin (wt + ¢)
wherein: ¢ = phase of 5_ and equals in an approximation upto the

first harmonic the phase of ¥
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Because é_and i_are in phase, derivation to t yields in the case
of ¢ = 0° and 90°:

"op B o
3% °F 3 (83)

wherein: p,7T the modulus of P and T
Evidently Eq. (B3) is only relevant in the plane of oscillation. Only

considering this plane in the following, the vector-sign (underlin-
ing) may be skipped.

After substitution of (B3) 1930 (Bl) and using assumption ¢ an equa-
tion, similar to (1) is found

2~ a
QI (B4) wherein: K = xz L2 (B5)
t 322 p
For o = 0° from Eq. (5) and (B2) can be derived:
L—igarc31ng+—(2+L) 1—‘2"' for;(ﬁ
~2 T p P A2
op P P
2 - _ (B6)
~li = 2 p/p for p>p
op i
T _2 2> 2,32/, .2 =
= £ (1 = -
i + + AZ) arcsin =+ =~ 1 > for p<p
op P P P (B7)
- =2 B
LR T for o>5
3 : + ) or p>p
PP P

These keep thelr validity in dimensionless shape, wherein

R p, T and T are made dlmenslonless with the value of f at the bot-
tom (i.e. Bb for p and D, and pp 2 for T and 1). In the following these
dimensionless values are denoted with an asterisk.

1) Eq. (B4) is quite similar to (l). Generally it should be kept in
mind, that Eq. (B4) is a linearized equation, where (1) has gener-
al validity, and therefore the coefficient K is not equal to v_2/,
However for parallel oscillation and current § equals O,  and
therefore in the plane of oscillation Eq. (1) and (A9) yields:

2
T _ 3t . - 2,2 |2
e - 2 Ve 322 wherein: V. =Kz Iaz
For large z the value of Iau/azl approaches p/kz, and there—

fore 2v_ + 2 gz p. As T/p will be 2 §p for large value of z (see
Eq. (BGt)), the value of K according to Eq. (B5) equals 2 v .
This demonstrates the similarity between Eq. (1) and (B4) in tﬁis
case.,

2) Even, generally, the time-independent K is not equal to the time-
averaged S Ve
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In Figure Bl is displayed a dimensionless k= K/(K2 ﬁi T) versus a
dimensionless height z*= z/(k.p T).

Furthermore the value of K* dépends on T/7, . For the relation

pr= ﬁ/ﬁb an exponential decay is assumed (Bakker, 1973):

3
.o (31 /16) 2 (B8)

P
The rate of decay according to Eq. (B8) is coherent with the choice
of the reference height Z, defined as Z = « p, T.
A relation between T*/ T* and P* follows from division of (B7) by
(B6). Given the value of T‘/?Eusing Eq. (B8) the value of ﬁg can be
found. From (B7) results T* . For a certain level z*, the value of
p* follows from Eg. (B8). As T* remains constant in the vertical
sense, the value of #*/p*2 is known. Substitution of this value
in Eq. (B7) yields a value of p*/p*, which further can be substituted
in Eq. (B6) yielding T*/§*? and therefore K* (= z* T*P*)
For & = 90° a similar approach can be chosen. Instead of Eq. (B6)
and (ﬂ?) is found:

R —2 —2 —2 A
T4 Poypr— Ly P e L =
5 = 37 Vi [eEE— = B k{51 for p/p > 0 (B9)
PP P p +p~ /B P +p~/p
T 23/ 7 1 =
=22y, B g [———1 for p/p > 0 (B10)
~2 T A ~2 2,42
PP 3 P I+p~/p

#

complete elliptic integral of the first kind

E complete elliptic integral of the second kind

wherein: K []

For the analytical computations of the time-dependent velocity field
the coefficient K*is approximated in 3 sections (see Fig. Bl):

Above the intersection of the straight line and the curve valid for
waves only, the straight line is assumed i.e.:

upper part: K* = £.z* / < (B11)
wherein: £ = 2 for e = 0°
£=1 for o = 90°
we

Eq. (Bl1) follows from substitution of Eq. (B6) (a_= 0°) or Eq. (B9)
(.= 90°) into Eq. (B5) for the limiting case of 8?5*0 and p>YT/p.
BeYSw the intersection of the straight line and the curve for waves
only, the curve is assumed, which is approximated by:

- »*
middle part: K* = ae bz ; a

0.111 b

3.267 (B12)

lower part: X* = cz"’—dz"'2 I

I

0.849 d = 2.817 (B13)

The intersection of lower and middle part is situated at z* = 0.186.
The influence of the current on the time~dependent solution is re-
stricted to the upper part where Eq. (B1l) is valid. As long as the
straight line in Figure Bl intersects the curve I + II for waves
only, the influence of the current on the time-dependent velocity
field is negligible near the bottom. This can also be seen from nu-
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lower part: the solution consists

COASTAL ENGINEERING — 1984

merical computations in Figure 5.1)
The intersection disappears for
large currents, when the slope of
the straight line exceeds the tan-

gent of the basic curve at the
origin (Fig. Bl) i.e.:
e/ > g—n (B14)

With above given approximations for
K', Eq. (B4) can be solved analyt-

ically with the boundary condi-
tions:
z =0 1=71+71 sin wt

- - 7 (B15)
z+w:l+l
When the time dependent shear
stress T is found, with Eq. (A7)
the time-dependent defect veloci-

ty U, can be computed. The analyti-
cal solutions for the amplitude and
phase of the first harmonic of u4
(in complex form; suffix ¢ denotes
'complex') are determined apart
from complex integration constants
Cl’ C2, C3 en C4:

of hypergeometric functions, which

in the following already are expressed in power-series—

expansions e
wh= e (6 {1+ (O + == {1+ In g+ %, ()] (B16)
wherein: ¢,d are given in Eq. (B13)
(A+1) (B+1)
(z) = f —_— L g, cn_l
X te nEl" (1)1 nl
(A+1) (B+1)
-1
Xp(® = o TeDrar e AW
(A+1)n = (A+1) (A+2) seeesss (Atn)
An) = ¢ (Atl+n) - ¢ (A+D) + ¢ (B+l+n) - ¢ (B+l)
=y (n+2) + Y (2) - ¢ (n+l) + ¢y (1)
y(m) = digamma function = -y + :zi 1

1) Mind that (exact) the same solution is found for waves and current

codirectional and perpendicular to each other,

the time-~averaged shear stress

if in the last case
is four times as large as in the

first case (because then part III is the same; see Eq. (Bll)).
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Y = ,57722 (Euler's constant)
A,B = complex constants restricted by
A+ B =-1; A.,B = 2mi/d
(as d = 2,817: A = 0.617 - 0.999 1
d B = -1.617 + 0.999 1)
4 == z*

middle part: the solution consists of Kelvin functions:

~
l

ul. = [C{ker (0) +i.kei ()} + Cy{ber, (z) + i.bei (2)}] (BI7)
wherein: g =27V ;Z e%bz

kerl(;), keil(;), berl(;) and beil(;) are Kelvin functions
upper part:

@5 = C,[ ker (g) + kei () + i kei () - ker (z)}]  (B18)

2%z*
e/

For large currents, when only the upper part can be applied, Eq.
(B18) becomes:

i
[

wherein: g

¥ = 2 .—}(—No(c) ; e=¢o(c) (B19)

Y

V/keroz(;) + kel 2(§)
arctan {kei (z)/Rer (;)l
phase of iy ®defined® by uy = i

wherein: No(c)
e ()
3

nou

4 sin (wt+e)
For clearness' sake only the analytical solution for the case of
waves only 1is presented in Figure 5. The analytical solution then
consists only of the combination of Eq. (Bl6) and (Bl7).

From Eq. (B19) a simple relation can be derived between the ratio
%, /(p0*) and the ratio strokelength over bottomroughness a/r. Re~
place in Eq. (B19) the dimension operator pb (denoted by a asterisk)
by U, and consider Eq. (B19) at a level z=2, where G = 0. The re-

sult is:
= kEV Tyl (B20)
2 pU2 [

2

V/33 kg a/r vV T/pU

This equation is only valid when Eq. (Bl&j can be applied. Practi-
cally Eq. (B19) and (B20) differ only slightly from the numerical
solution in the range of a/r > 1 and 7/(p 0% )> 0.1.

° ! >

62

wherein: ¢
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Appendix C: Analytical calculation

COASTAL ENGINEERING — 1984

of Lundgren's A-value

In this appendix the analytical solution for the time-averaged veloc-—
ity field will be treated. With Eq. (12) this field can be found from

the time—averaged shear stress velocity.

The last can be found from

the definif}on of the shear stress velocity by Eq. (5) in the fol-

lowing way

As described in Appendix B, the ratio p /P
tion of the dimensionless height z* above the bottom using Eq.

when « = 0° and Eq. (B10) when «

*2) can be found as func~

(87)
(B8) the dimen-—

= 90°, From Eq.

. =" s . -y~
sionless p can be derived. For various values of T/Tb those curves

are plotted in Figure Cl, in the case of «

Py /B0t B .5
?/sb =.0IS 148 .572

1.0
.75

° ol
x

analytical profile for S*
— — — lirear approiimation
+ —.~—agsuaption § according to Eq.(B8)

Fig. C.| Profile for ;* and 5‘ (anal. and approx.)
becomes significant. As the

dash-dot

= 0°.

For iggegrating over the depth
accoqupg to Eq. (12) the curves
for p are approximated by a
vertical and an oblique line (see
Fig. Cl). The vertical line cor-
responds with the value of
p*= v %% , the oblique
connects the bottom point p™
with the point, where p *

line
=p*
= 6‘; b

—_— —

P Py

+ 8z (c)

can only be
As will be

This approximation
applied, when p* < L.
shown later this restriction
covers the cases where the
influence of waves on a current
line in Figure Cl de-

notes p*(given by Eq. (B8)), the intersection point of the drawn line
and the dash-dot line is also a point of the oblique line.

From Eq. (B7) and (B1D) it shows, that in the intersection points,

(z*=z*), where §"= p* the value of 1%/ $*? equals 1.5, when o= 0°
and 272/n E{3}~1.216 when U = 90°C. Generally it can be defived
that:
VAR |
ﬁ‘ = L 2 (C2)
1+ (m+ncos o )
/5 we

wherein: m’ = Z;_Z E {3} -1 = 0.216

1 V2 -n

n

E {}

Using Eq. (B8) for p* from Eq.
*

complete elliptic integral of the second kind.

(Cl) the height of the intersection

level z* = z is found:
5 —
8 T
z; = - ——=1In { 2 5 } (C3)
3w 1+ (m + n cos awc)

1) In an approximation, up to the first harmonic.
2) The asterisks have the same meaning as in Appendix B.
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Then from Eq. (Cl) B can be derived:

) —» *
B=1(p =p, )z (c4)
The level z; , where the vertical line and the oblique line intersect
equals:
— —
2y =1 -p )8 (c5)

From integration , according to Eq. (12), the velocity 4,* at the
level z* can be found. For z* > z* a logarithmic velocity profile is
found (%ig. 6d) i.e. a straight line on logarithmic paper through the
point (z* ,U* ) under the inclination arctan (x/V T /p). Extension
of this fin ,in downward direction yields the level a z where ¢ is
the magnification of the apparent bottom roughness (Fig. 64y :

B* Z*

Inoa=(1-—2 n-K B (e, (c6)
* k o

™ %o Vit
Using Eq. (14) this gives the A-value of Lundgren according to Eq.
(15) wherein:

—_—

12

- . _ ., e ] o —b - B

K] K2 In 2z K3 zy 5 K2 =1 ~ H K3 —

(B and z* according to Eq. (C4) and (CS))T f_ 9
The coef¥1cienc Kys Ko and K, can be written as function of t/(p §, )
and o . These functions are approximated with power-series—expan-
sions Tor the cases . = 0° and Yo = 90°:

4 T
n,,
K, =1L kinﬂ“(];gv)} (i=1,2,3) (c7)
n=0 b
The coefficients kin are listed in the table below.
a — an®
Gye = 0 o, =90
kg k| ky Ky k, Kq K, k, ky K,
K | -.914 .623 159 .0110 - ~.3921 .2264 -.1325 -.0410 -.002850
K2 .284 ~-,285 -.0416 -.00214 ~ L1120 ~.0858 ,0737 L0175 . 001092
Ky | 2,654 511 -,408 -.0761 -.00464 1.3845 1395 .3302  .0883 . 006240

The values of the coefficients for 0°< Oye < 90° can be approximated
by linear interpolation.

Eq.(C7) and (15) relate A to ?/(pﬁ%) and z§ ; this relationship can
be easily converted to the presentation according to Lundgren (FigJ)
Here 7T/{p0?) replaces T/(pPf) . Evidently these dimensionless va-
riahles can be converted to each other with the aid of the ratio
Pu/0 , given in Eq.(7) as function of the ratio a/r . Furthermore in
Lundgren's presentation the variable a/r replaces z%;these variables
are related in the following way (using Eq.(8)):

o 1 1
alr

*

o T X% ﬁbT = Gokn

'U)(Cﬂ)

(c8)
b





