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Abstract 

A numerical model for refraction of linear and cnoidal waves over 
an arbitrary bottom is presented. The model, which is based on the 
ray theory of refraction (11), utilizes linear theory in deep and 
intermediate water and cnoidal theory in shallow water. The model 
permits one to determine nearshore wave properties using a nonlinear 
wave theory. Nearshore wave properties such as wave height, celerity, 
and wave angle determined using the linear-cnoidal refraction model 
may vary considerably from those determined using a linear refraction 
model. In general, cnoidal waves refract less, travel faster, and 
shoal higher than linear waves. This result can have a considerable 
effect on coastal engineering design, particularly in the areas of 
coastal structure design and longshore transport computations. 

Introduction 

Linear theory is generally used for wave shoaling and refraction 
computations despite its well-documented inability to accurately 
predict shallow water wave characteristics (6). Several investigators 
(6, 8, 14) have used nonlinear theories to analyze wave refraction 
over straight and parallel bottom contours but have not extended the 
work to an arbitrary bottom. Crowley et. al. (5) have developed a 
nonlinear refraction model for an arbitrary bottom utilizing vocoidal 
wave theory. This paper presents a numerical model for wave refrac- 
tion over an arbitrary bottom which incorporates linear theory in deep 
and intermediate water but uses cnoidal theory in shallow water. 

The numerical model presented herein is based on the ray theory 
of refraction. Ray theory suffers from several shortcomings, 
especially the inability to provide realistic solutions in areas 
of strong convergence and caustics. A variety of refraction- 
diffraction models have been developed in recent years (1, 2, 12) to 
overcome problems associated with ray theory. These models may 
utilize either linear (2, 12) or nonlinear theory (1). Refraction- 
diffraction models are clearly an improvement over ray theory, but use 
of these models requires substantial computer time even for a 
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relatively small geographical area (2). Ray models are therefore 
indispensible at the present state-of-the-art and are often used as 
input to a refraction-diffraction model or to a physical model. Ray 
models were recently used on two major coastal engineering projects 
(9, 10). 

The objective of this paper is to present the governing equations 
for wave refraction, present the linear and cnoidal equations used in 
them, and discuss their numerical solution. Application of the model 
to straight and parallel bottom contours and an idealized shoal are 
presented and discussed. Differences in nearshore wave 
characteristics based on cnoidal versus linear wave refraction are 
emphasized. 

Wave Refraction Equations 

Figure 1 illustrates the nomenclature and coordinate system for 
the wave refraction problem. The wave ray (orthogonal) travels with 
celerity, c, makes an angle, A, with the x-axis, and its position at a 
given time, t, is defined by the coordinates, x, and y. The wave ray 
separation faction, 0, which is related to the refraction coefficient 
by K = /1/e, is also defined in Figure 1. The governing equations for 
wave refraction used in the model are those presented by Skovgaard et. 
al. (13) with time, t, as the independent variable. Wave ray paths 
are governed by the following equations: 

WAVE   ORTHOGONAL SEPARATION 
FACTOR    (3 = r" 

Fig. 1   Wave refraction nomenclature. 
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x = c cosA (1) 

y = c sinA (2 

I (hx sinA " hy A = -^ (hY sinA - hv sinA) (3) 

Where the subscripts on h denote a partial  derivative (i.e., 
h    = Zh/Zx) wave separation is determined using the following x equation: 

where 

+ pt 6 + qt 6 = 0 (4) 

pt = "2 dh (h* cosA + hy sinA) (5) 

dc       9 
qt = c — (h  sin A - h  2 sinA cosA + h„„ 

*•   £jn  
AA
      

AJ yy 

2 
cos2A) + c ^-§ (hv sinA - h„ cos)

2 (6) 
<U\d      x      y 

Equations 1 through 6 are valid for both linear and cnoidal 
theories (14). These equations require determination of the wave 
speed, c, and its first and second derivatives with water depth (i.e., 
dc/dh, d2c/dh2) according to a particular wave theory. This is done 
readily for linear theory because one can uncouple the wave speed and 
wave height computations. On the other hand, the cnoidal wave speed 
depends on wave height and thus the wave separation factor, e. This 
complicates evaluation of the wave speed derivatives with depth 
because other variables such as wave height also vary with depth. 

Linear Theory 

Linear theory is used when the relative depth d/L >.10 or when 
the Ursell parameter, U = HL2 /h3 < 15, (15,16). Equations for the 
linear wave celerity, c, and its derivatives with depth are as 
follows, (13): 

(7) 

(8) 

(9) 

c = |i tanh kh 
2ir 

dc c        G 
dh h    1 + G 

d2c _      dc          2g 

dh2 dh    c2 (1 + G)2 
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2kh (1Q) 
sinh 2kh 

where T = wave period, h = water depth, k = wave number = 2ir/L, and 
L = wave length. Wave heights in the linear region are computed as 
follows: 

H = HQ KR Ks (11) 

where H = local wave height, H0 = the deepwater wave height, KR = the 
refraction coefficient, and Ks = the shoaling coefficient. The 
shoaling coefficient according to linear theory is as follows: 

Kc 
= ]Jt="h  '^h^ M J- r.\ (^' S = Vtanh (kh) (1 + G) 

Cnoidal Theory 

Cnoidal theory is used when the relative depth, d/Lo <.10 and/or 
the Ursell parameter, U > 15. The cnoidal equations used are those 
reported by Svendsen and Brink-Kjaer (15). These equations represent 
first-order cnoidal theory. 

c2 - „u „ . H 9h (1 +£ Ac) (13) 

U - 4 m K2 = ^ (14) 

Ef = pgH
2 c Bc (15) 

where     A„ = | - 1 - |j=- (16) c  m     mK 

Bc = ~2  [I (3m2 " 5m + 2 (4m"2) 1) <17) m 

- (1 - m - f)2 ] 

Where m = elliptic parameter , p = mass density of water, K = 
complete elliptic integral of the first kind, E = complete elliptic 
integral of the second kind, and E^ = the wave energy flux. Wave 
speed derivatives dc/dh and d2c/dn2 are determined by adjusting 
Equations 13 through 15 for refraction and combining them to give the 
following: 



1122 COASTAL ENGINEERING -1984 

A = c2 - gh - gAc Ef^
2 B-1/2 c'1'2 a"1'2 - 0 (18) 

0 - E-f B^2 c3/2 S"1/2 - ^ K2 4 

+ i| m. JL|_= o (19) 

where m'  = the complementary elliptic parameter (1 - m) and Ef0 is the 
reference value of energy flux.    The first derivative of the wavespeed 
with depth, dc/dh, is determined by applying the chain rule to 
equations 18 and 19: 

°h + °c$-+,v!r + BB$-0 ^ 

where # = ^ (hy cosA + h„ sinA)"1 (22) dh "Idt u'x uu:,HT "y 

The subscripts on x and ft denote a partial  derivative e.g.,3Xn =Z\f h. 
Equations 20 through 22 are solved simultaneously for dc/dh, dm'/dh 
and ds/dh.    The second derivative of wave celerity with depth, 
d2c/dh2, is determined by applying the chain rule to equations 20 and 
21 to give: 

i      +9 1,      dc + i        dm'+ i      it& + Ahh      L V dh      Ahm'  dTT     Ahs ih 

9l        dc dm1      „ dg dm'      ,        dc d£ 
*Vc dh" dh       '"W dh dh       ^ec dh dh 

cc    dh c dh'       mm     dh m   dh' 

+ A      ^f + A   £f " ° $3    dh g dh' 

(23) 
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"hh + 2fihc dh + "hm' W- + % m + 

, dc drn^  „    dm1 dg  _   dc dg 
^m'c dF dh  l V' W 3h l  V dh 3F 

/d(^2 . _ d2c . n ,dm',2,_  d2m' + a     (—) + a   —y + a     , (—-) + n —3- 
cc dh    c dh1^   mm  dh     m' dh^ 

+ B  (dB)2 + a d2| = 0 
gg dh    g dh^ 

where 

(24) 

d2g _ d2g fd2hrl ,9^ 
dh2 " ds2 tds2) UbJ 

d?l= 1 dc (h CosA+ h sinA)^-^ 
ds2  c2 dh  x      y     dt  dh 

i (hxx sin
2A + hxy 2 sinA cosA + hyy cos

2A) - (26) 

d c l  (hY sinA - hu cosA)
2 g 

l?="sinAf hx + cosA (cosA hxx+ si nAhxy) 

+ cosA ^| hy + sinA (cosA hxy + sinA hyy) (27) 

^ = -c-^(sinAhx-cosA V (28) 

2   2 Equations 23 through 28 are solved simultaneously for d c/dh . 

Numerical Solution of the Linear and Cnoidal Equations 

The linear dispersion equation (Eq. 7) is solved by the Newton- 
Raphson method. The cnoidal wave equations (Eq. 13 through 15) are 
combined to form the cnoidal shoaling equation (15): 



fl 
f2 

M = 

(U) • 

(U) = 

•(Hr 

= _Bc-2/3 u-1/3 

= Bc2
/3 U4/3 

Br
CLr)

2/3 /h2 

Ac 

N = = M-i h/gT2 
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M fx   (U) + N f2  (U)  = 1 (29) 

where f,   (U) = -Br"
2/3 U"1/3 Ar (30) 

(31) 

(32) 

(33) 

The reference values of Hr, Lr and Br may be given in deep water 
according to linear theory or in shallow according to cnoidal  theory; 
the choice depends on where refraction computations are started. 
Eq. 29.  is solved numerically using the Newton-Raphson Method. 
However, several  precautions are necessary to ensure a proper 
solution.    The Newton-Raphson procedure is formulated in terms of the 
complementary elliptic parameter, m', instead of the elliptic 
parameter, m.    This is necessary because, as the elliptic parameter, 
m, approaches 1 (i.e., m'  approaches zero), the numerical  computations 
cannot be computed with accuracy. 

The elliptic functions E and K are evaluated using the 
Arithmetic/Geometric Mean (AGM)  scale presented in (7).    The following 
AGM scale is used to evaluate the elliptic functions: 

aQ = 1 bQ = VW cQ = /T 

I     f z        J.    k     ^ k       -   ./=.    K r~        -   I *i - 7 («„ + K) b. = /FIT c,  = i (a   - bj (34) *1      2 v"o '  uo' "1     r"o"o "1      2 v"o      "o 

aN = \ (aN-l + bN-l} bN = 'Vl  bN-l CN=i(aN-l ~h-l] 

The coefficients an, bn, and cn are computed using nine steps 
(N=9) which give accurate estimates (i.e. eg < 10-6).    From the AGM 
scale, E and K are computed as follows: 

K = it/2aN (35) 

E = K(l - \ (cQ + 2cx + 22c2 + — + 2NcN
2)) (36) 
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A second difficulty encountered in solving the cnoidal shoaling 
equation by the Newton-Raphson Method is that the equation has two 
roots (14, 15). Skovgaard and Petersen (14) conclude that the correct 
root corresponds to the smallest value of m1 or the highest value of 
m. The Newton-Raphson interaction is started at a sufficiently low 
value of m' (i.e., m' = 1 x 10"37) to assure convergence to the 
correct root. Iterations are continued until the value of m1 is 
determined within an accuracy of 1 x 10_6. 

The cnoidal shoaling equation describes the variation of a wave 
of given energy flux and wave period in the cnoidal region. 
Originally, Svendsen and Brink-Kjaer (15) solved the cnoidal shoaling 
equation assuming a continuity in energy flux between linear and 
cnoidal theories at the matching point of h/Lo = 0.10. However, this 
results in a discontinuity in wave height. Svendsen and Buhr-Hansen 
(16) compared the shoaling characteristics of laboratory waves to 
shoaling predicted by cnoidal theory and found that cnoidal theory 
predicted shoaling more accurately if wave height instead of wave 
energy is matched at h/Lo = 0.10. This presents some difficulties for 
wave refraction computations because there are discontinuities at the 
linear-cnoidal interface not only in wave height and/or wave energy, 
but also in wave celerity, separation, and other variables. This 
problem is of secondary importance for practical applications. 

Numerical Solution of the Refraction Equations 

The governing equations for wave refraction (i.e. 1 through 6) are 
solved as an initial value problem in a manner similar to Skovgaard 
et. at. (13). Equation 4 for the wave separation is rewritten as two 
first order differential equations and the governing equations are 
solved as a system of ordinary differential equations: 

Z = B (37) 

Z = -pt Z - qt B (38) 

with the following initial conditions: 

x = xQ 

y = y0 

A = AQ (39) 

B = B0 

Z = Zo 

The integration is carried out using a combination of the Runga-Kutta- 
Gill  and Adams-Moulton methods for initial  value problems. 
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Evaluation of Water Depth and Water Depth Derivatives 

Water depth values are stored in a bathymetry grid.    The partial 
derivatives of water depth are computed using central  difference 
finite difference formulas.    Values of water depth (and/or its 
derivatives) at a point which is not on a grid point are interpolated 
using the following formula (4): 

f1+p,  j+q •  (1-P)   (l-q)fu  + Pd-q)   fi+1J 

+  (1-P)qf1fj+1  + Pqf1+1> j+1 («) 

where i  and j denote the x and y grid point respectively, and p and q 
define the x and y position within a grid space and f denotes the 
water depth and/or one of its derivatives. 

Verification for Straight and Parallel  Contours 

Calculations were performed for straight and parallel bottom 
contours.    The results were compared to analytical  solutions based on 
Snell's Law.    Snell's Law is expressed by the following: 

(41) Ray Paths: ^~ - = constant 

Ray Separation: COS a 
p  COS a 

(42) 

In the above equations a = the wave ray angle with the shore normal. 
The bathymetry grid for the verification runs was arranged so that 
a = A (the wave ray angle with the positive x-axis). 

Problems in matching linear and cnoidal theories preclude 
complete verification of the model for straight and parallel contours. 
For this reason, the model was verified for the linear and cnoidal 
ranges separately. Accuracy of the linear portion of the model was 
similar to that reported by (4) and (13) for both Eq. 41 and Eq. 42. 
Typically, linear refraction computations deviated from Snell's Law 
results only about 1 part in 10,000 per time step for a variety of 
conditions. 

The numerical model was tested in the cnoidal region for straight 
and parallel contours by using initial conditions appropriate for 
cnoidal theory. To avoid erroneous results accurate initial 
conditions must be specified; these values include: 

x,y,A,Z, 6 

and    c,dc/dh, d2c/dh2, Bc,L,h,U,H,Ac 
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The initial values for e, and Z are given by the following according 
to (13): 

COS  g 
COS  ast 

(43) 

1 - fbrist 
("hx sin A + hy cosA) S (44) 

where A = a for the test cases, and st denotes the starting value. 

Figure 2 shows the bathymetry grid, initial conditions, and wave 
rays for both cnoidal and linear theory for one of the test runs. In 
general, computational accuracy is less for cnoidal theory than linear 
theory. Typically, the results deviate from the Snell's Law results 
about 5 parts in 1000 per time step. This error stems from a variety 
of factors such as grid size, time step, and initial wave conditions, 
but primarily results from round-off error in the computation of the 
elliptic functions and more importantly in computation of the 
derivatives of the elliptic functions. Effort is presently underway 
to improve the accuracy of these computations. In the meantime, the 
verification results show the numerical scheme to be adequate for 
engineering applications. Uncertainties in incident wave conditions, 
bathymetry, and subjectivity associated in bathymetric smoothing, 
overshadow the small round-off error present in the model. 

Fig. 2 shows that the cnoidal wave rays refract less than the 
linear rays, (i.e. the wave ray separation is less and the nearshore 
wave angle is higher for the cnoidal rays). Not evident from Fig. 2 
is the fact that the cnoidal rays shoal significantly higher than the 
linear rays. These results are summarized in Table 1 which compares 
the cnoidal and linear wave rays at an equal nearshore depth. The 
above findings are consistent with those of Skovgaard and Petersen 
(14) who investigated cnoidal wave refraction over straight and 
parallel contours. A direct comparison to Skovgaard and Petersen (14) 
is not possible because computations performed for this paper were 
started in the cnoidal region whereas the results of Skovgaard and 
Petersen were related to deepwater values. 

Table 1. Typical Results for Straight and Parallel Contours 

Wave Characteristics at h = 2.5 feet (0.76 meters) 

Theory   K     KR       C AH, 
feet per second   (degrees)   feet 

       (meters per second)     

Linear   1.32  0.793     9.06 34.3    0.96 
(2.76) (0.29) 

Cnoidal      1.56      0.787 10.25 38.7 1.15 
(3.12) (0.35) 

.' W U l) to 
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Fig. 2 Refraction over straight and parallel contours. 
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Fig. 3  Refraction over an idealized shoal. 
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Results For An Idealized Shoal 

Refraction of cnoidal waves over an arbitrary bottom is 
illustrated by applying the model to an idealized shoal, similar to 
that used by Walker (17). The idealized shoal and bathymetry grid is 
shown in Fig. 3. Fig. 3 also shows the initial conditions and wave 
rays for a series of linear and cnoidal rays. Qualitatively, the 
refraction pattern for the cnoidal rays differs significantly from the 
linear rays as the cnoidal rays converge less over the shoal. The 
results are analogous to those for straight and parallel contours. 
Table 2 provides a comparison of linear and cnoidal results for ray 
number 4 at nearly equal depths. Table 2 indicates that the linear 
rays bend more and converge more than the cnoidal rays (i.e. higher 
wave angle and higher refraction coefficient). Table 2 also indicates 
that, despite the higher refraction coefficient for linear theory, the 
resulting wave height is higher for the cnoidal ray. This suggests 
that wave shoaling, rather than refraction, dominates the wave height 
growth. In summary, the cnoidal rays travel faster, propagate 
further, refract less, and shoal higher than linear rays. 

Table 2.    Typical  Resi ilts For An Arbitrary Bottom 

Wave Characteristics for Ray No. 4 

Theory A           g               h 
degrees                      feet 

(meters) 

8.28      0.9406      1.90 
(.579) 

Ks 

1.42 

KR                     C 
feet per second 

(meters per sec. 

H, 
feet 

)  (meters) 

Linear 1.031               7.75 
(2.36) 

1.41 
(.43) 

Cnoidal 3.65      0.9673      2.04 
(.622) 

1.85 1.017             10.38 
(3.16) 

1.74 
(.53) 

Summary 

A numerical model for the refraction of linear and cnoidal waves 
is presented. The numerical model provides an engineering solution to 
the refraction of cnoidal waves. The model shows that cnoidal waves 
refract less and shoal higher than linear waves. Problems associated 
with matching linear and cnoidal theories require further research but 
the present model can be used until such research is available. The 
numerical approach is a general procedure which provides framework for 
incorporation of other nonlinear theories, such as third order Stokes 
waves in deep and intermediate water. Present effort is directed 
towards improving the numerical accuracy of the elliptic function and 
elliptic function derivatives. 
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The results shown in Fig. 3 for an idealized shoal are indicative 
of the differences between cnoidal and linear refraction for prototype 
applications. Clearly, nearshore waveheights based on cnoidal theory 
will vary considerably from those based on linear theory. This could 
have a considerable impact on coastal structures located in an area of 
divergence subjected to nonbreaking or near breaking waves. Higher 
nearshore wave heights and more importantly wave angles would have an 
impact on longshore transport calculations. 
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