
CHAPTER SEVENTY FIVE 

CURRENT   DEPTH   REFRACTION   OF   REGULAR  WAVES 

1 2 
Ivar G.   Jonsson and    John B.   Christoffersen 

ABSTRACT 

The complete set of equations for the refraction of small surface 
gravity waves on large-scale currents over a gradually varying sea bed 
is derived and presented. Wave lengths, direction of propagation and 
wave heights are all determined along the so-called wave rays as solu- 
tions to ordinary, first-order differential equations. 

Dissipation due to bed friction in the combined current wave motion 
is included. The ray tracing method is used in an example. A method for 
the calculation of current depth refraction of weakly non-linear waves 
is proposed. 

1 .    INTRODUCTION 

When water waves propagate over an area with a variable water depth 
and current velocity,the ensuing gradients together with the current 
wave interaction can cause drastical changes in the direction, length 
and height of the waves, see e.g. Mallory (1974). In this transformation 
of the waves, diffraction effects are often negligible, and the phenome- 
non is termed current depth refraction. 

This phenomenon is a significant physical process in many coastal 
and offshore areas, for instance near river mouths and tidal  inlets, 
in the surf zone along a beach, and where wind waves meet major ocean 
currents. The refraction is of great importance for erosion and deposi- 
tion in coastal areas, forces on offshore structures, and ship naviga- 
tion. 

Current depth refraction is a complex problem of wave propagation 
in an inhomogeneous, anisotropic, dispersive, dissipative and moving 
medium . Attempts to solve the general case have therefore been scarce. 
Noda et al. (1974) are probably the first to try this. They employed 
a global finite difference scheme for solving the governing partial 
differential equations and experienced so many difficulties that they 
advocated a search for a method which made integration along character- 
istic curves possible. Later Iwagaki et al. (1977) tried such an ap- 
proach, but since they mixed different kinds of characteristic curves 
and furthermore did not introduce wave action conservation, they did 
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not really succeed in creating a practical model. 
For wave height calculations on a current field the so-called wave 

action is important. Independently of each other this concept was found 
by Bretherton  and Garrett (1968) for a rather general class of waves 
and by Hayes (1968) for acoustic waves. Jonsson et al. (1970) introduced 
the similar concept for water waves on a current, see their eq. (5.6). 

Peregrine (1976), Phillips (1977), Jonsson (1978a), Peregrine and 
Jonsson (1983), and Peregrine et al. (1983) have given detailed reviews 
of waves on currents. 

While today efficient and accurate models exist for the calculation 
of pure depth refraction, see e.g. Skovgaard et al. (1975), a similar 
model for the calculation of current and depth refraction does not 
exist. It is the main purpose of this paper to introduce the complete 
mathematical framework for such a model, which also takes bed friction 
and dissipation into account. It will be shown that the existence of a 
phase function, combined with a dispersion relation and a wave action 
conservation equation (which will be shown to be just a manipulated 
energy principle),lead to ordinary (first-order) differential equations 
along so-called wave rays for all wave quantities. 

Small, regular waves are assumed; however, also non-linear waves are 
briefly dealt with. 

Also an example of the practical use of a current depth refraction 
model will be presented. It is based exclusively on ray theory. 

2.    ASSUMPTIONS AND BASIC CONCEPTS 

In most of this study small(and regular) progressive gravity waves 
are considered. Fluxes of mass, momentum and energy are integrated over 
depth and averaged over absolute period T , in that order. The problem 
is therefore formulated in two horizontal dimensions x.,i = 1, 2. 

A pure wave motion is defined as one with no net drift ; thus the 
average - over-depth current velocity U. is a zerothorder quantity. For a 
further discussion of this subject, see  Jonsson (1978b), p. 228, and 
Jonsson and Wang (1980), pp. 157-158. The current velocity is assumed 
constant over depth. 

Bed shear and accompanying dissipation is included. However, shear 
stresses in vertical sections are neglected. The bed slope is assumed 
small, so that the horizontal bed expressions are valid locally, i.e. 
jVh[<< kh, where V is the horizontal gradient operator (9/3xi,9/3x2), 
and k is the magnitude of the wave number vector k. , so that k = 2TT/L, L 
being wave length. Furthermore, only large-scale currents in space and 
time are considered, i.e. IVu[<<-kUand J3U/3t|<< " U, where Uis current 
speed, t is time, and a) = 2 TF/T^ is the absolute angular frequency. 

The study is witnln the framework of geometrical optics, i.e. wave 
fronts of small curvature are assumed thus excluding diffractive effects. 

Two frames of reference are introduced. One is a coordinate system 
fixed in space; this is the absolute frame of reference, in which is 
used subscript 'a1. The other is a Galilean transformation of the first 
where the transformation velocity is the current velocity. Observations 
in this moving system are termed 'relative', and subscript 'rf is used 
here. 

Referring to Fig. 1 the following relation exists between absolute 
and relative phase velocities 

c  = c + U cos (6-a) (1) 
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WAVE ORTHOGONAL 

Fig. 1 -- Horizontal sketch for characteristic curves, angles and 
velocities. 

where angles 6 and a are explained in the figure. (Note that by defini- 
tion c is at right angles to the wave front, and that the vector 
U. + (c ). has no physical meaning). Multiplying (1) by wave 

number k yields the Doppler relation 

+ k. U. (2) 

in which the tensor summation notation is used, i. 
kU cos (6-a). The relative angular frequency is to 
ative period. The dispersion relation is 

2 
(D       =  g k tanh kh 

kiui   = KlUl+k2U2 = 
2rr/Tr,   Tr being rel- 

(3) 

with g being gravity acceleration. Relative phase speed is found from 
cr = to A- Note that while o)a = ma(h, kj_, U±)   we have ur s= <ur(h, k) . 

In Fig. 1 three sets of curves-are distinguished, streamlines, wave 
orthogonals and wave rays. The new concept is the wave ray, which goes 
in the direction of the absolute group velocity 

(c  ) . = ga I ga 
(cosu, siny) (4) 

The wave ray is not a unique concept.In the general (i.e. non-steady) 
case one must distinguish between Pay paths,   analogous to particle paths 
in conventional hydrodynamics, and ray   lines,   analogous to streamlines. 
In steady flow these curves are identical. The term wave ray will in the 
general case normally be used for the ray path, and in steady flow for 
ray line. The differential equation for the wave ray is 
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dx. 

at (c  ). ga I 
i = 1, 2 (5) 

in which in general (cga)i is a function of x^ and t. 
In Fig. 2 ray paths and ray lines are illustrated together with the 

concepts of ray tube element and ray tube, which will be introduced in 
connection with the wave height calculation. 

" RAY TUBE ELEMENT 
dA |~J) 

-*-x. 

Fig. 2 - Horizontal sketch showing ray path, ray line, ray tube element 
and ray tube. 

From (2) we find the relation between the absolute group velocity 
and the relative ditto (Cgr)i 

<cga)i 
3u>   SID 
 a _  r 
3k. = 3k. 

+ U. = (cgr). + U (6) 

which is illustrated in Fig. 1. The relative group velocity goes in the 
direction of the wave orthogonal and is given by 

(c  ). = c   (cosa, since) 
gr i   gr 

with the relative group speed 

(7) 

c  = \  c  (1 + G)    (8)  G = -7-|i%—- (9) gr  2 r                   smh 2 kh ' 

Also the relative phase velocity goes in the orthogonal direction: 

(c ). = c  (cosa, sina) (10) 
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The time derivative 'seen' by an observer moving along a wave ray 

with speed c   is 
ga 

dt  3t    ga'i 3x.   3t   Cga Dr (11) 

where 'r' is the length along the ray. This operator (d/dt) turns out to 
be extremely important. 

3. PROBLEM FORMULATION 

In an environment with waves and currents the coastal and ocean 
engineer is primarily interested in the effect of the fluid flow on 
structures, the sea bed and vessels. To achieve this goal one must know 
the wave length (L), direction of propagation (a), wave height(H), as 
well as the mean water level (b) and the current vector (U^), all as 
functions of space and time (xi, t). This enables a calculation of the 
total water particle velocities and pressures and thus the forces. 

The length and time scales for the waves are most often very much 
smaller than the corresponding scales for the current. Because of these 
contrasting scales it is natural to solve the wave field and the current 
field in two separate steps; this so-called two-level approach was sug- 
gested by Skovgaard and Jonsson (1976). Another good reason for this 
approach is that only at the current level one has to deal with partial 
differential equations. At the wave level, it turns out that only 
ordinary differential equations have to be solved. This is done by in- 
tegration from initial (i.e. one point) boundary conditions along the 
wave rays. There is naturally, a coupling between the two levels 
(through bed shear and radiation stress), and an iterative procedure 
will in principle be necessary. 

The known quantities in a water area will be the 'geometrical 
depth' Dfx-^) (see Fig. 3) describing the bathymetry, and the Nikuradse 
roughness kj;(xj_) of the bed. Also certain lateral boundary conditions 
must be specified for the current field; for the waves, input data must 
be specified where the waves 'enter' the calculation area. Details of 
calculation for the current field will not be presented here; reference 
is made to Christoffersen (1982). 

MWS 

DATUM 

Fig. 3 - Vertical sketch. Definitions of geometrical depth D, mean 
surface elevation b, and mean water depth h. 



1108 COASTAL ENGINEERING-1984 

In refraction calculations one normally assumes a steady state. In 
this paper, however, we shall present the general non-steady formulae, 
since the derivation of these is not more complicated than the steady 
ones. The steady state is hereafter considered as a special case. 

4.      THE KINEMATICS 

The basic assumption of ray theory (kinematic wave theory) is that 
changes in wave characteristics are so slow that locally plane waves 
can be assumed, see Hayes (1970). This means that locally  we can intro- 
duce a phase function 

6 = u t - k.x + 6 (13) a    xi   o 

By differentiation of (13) we obtain 

(14) _3£ 
3x. 

= - k. (15) 

3k. 
l 

3t 

3(0 
+   37 

These two quantities are then allowed to vary on a larger scale, and 
by further differentiation we find the so-called consistency relations 

3k.     3k. 
(16)       _i = _J- (17) 

3x.     3x. 
J- 3 i 

Equation (16) expresses conservation of waves, and (17) that the wave 
number vector is irrotational. On this basis it becomes possible to find 
the wave number vector, and thus the wave length and propagation direc- 
tion, since L = 2Tr(k1

2 + k2
2)~~1  and tana = k2Al- (A further conse- 

quence of the assumption of locally plane waves is the Doppler relation 
(3)). 

Using the operator (11) on k^, and for 3k /8t inserting (16) yields 

(18) 

(19) 

dk. 
I 

dt 

3w 

1 

(c     ) . 
ga  j 

3k. 
I 

3x. 
3 

ince co 
a 

= co     (h,  kj , U.)   one obtains 

3 co 
a 

3x, 
a      3h 

3h      3x. 

3co 3k. 3co 
a 

3U. 

3U. 
3 

3x. 

co G 3U. r 3h 
j    ox, 2h 3x. 

1        1    J   1    J 

Using     (2)   to  give   3coa/3h =   3cor/3h and  3coa/3Uj   - J^-S , 
(17)   and   (6),   (18)   and   (19)   finally yield 

*•     -       -L      ^_ ^ (20) 
dt 

Here it is used that 3cor/3h = corG/2h, see Christoffersen and Jonsson 
(1980). Since d/dt is given by (11), the important result is achieved 
that through (20) the rate of change of the wave number vector is found 
along a ray. 

In conclusion, the ray path xi and the wave number vector kj_ along 
this path, are determined by the 4 ordinary, first-order differential 
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equations (5) and (20), with proper initial conditions. 

The absolute angular frequency can be determined either from the 

algebraic Doppler relation (2) or from (Christoffersen, 1982) 

3(0 
a 

to G 
r 3h 

dt 2h at 
3U. 

3 
3t 

(21) 

ray tube It appears that for a steady medium, Wa remains constant for 

element1, see Pig. 2. 

Similarly, an equation for dcor/dt along a wave ray can be found, 

see Christoffersen (1982), chapter 4. The relative angular frequency 

can also be found from the algebraic expression (3). 

In the next chapter it will be found that the evolution of the so- 

called ray tube element (Fig. 2) must be known in order to calculate 

the wave height along a ray. Since this is a kinematic problem, it will 

be dealt with in the present chapter. 

A ray tube element is a differential concept, to be visualized as 

an infinitesimally short 'tube' made up of neighbouring rays. Its area 

being dA, the 'Jacobian' J is introduced as 

dA De 
dA 

(22) 

since dA = De Dr (Fig. 2), and Dr = cga dt. In (22) suffix 'st' stands 

for 'start' or initial value. 

Knowledge of how a ray tube element changes as it moves is found in 

Aris (1962), pp. 83-84. The so-called Euler expansion formula simply 

states that 

dJ 

dt 

3(c  ). 
ga l (23) 

Using (6) and (2) to evaluate the right hand side of (23)(the divergence 

of (c  )^) it is found that 

8k.     32w    ,, 
i r     A n 

+ 
J dt 

3U. 

3ki3k-i   3x.     3k; 3h   3x. x  J    I      
x      r 

The second order derivaties in (24) are 

3 (o     3 u)  k. 
 r  _   r _i_ 
3k.3h ~ 3k3h  k 

3x. 
(24) 

(25) 

32o 

3k.3k. •( 

9 a) 
r 

"3k2" 

3o) 
r 

3k 

k.k. 
i 3 

3w 
r 

3k 13 
(26) 

The evaluation of 3kj/3x^ in (24) is quite tricky. Playing around 

with the consistency relations and the Doppler relation finally yields 

the 'derived ray equation' (Hayes, 1970). 
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J /3k.v    3k, r 3 a       3k„   3Zu>  ..   3U, •, 320, 
A. (_l\ = 

x -' -   L    k I       j k    3    ]- 

V       dK,  r d 0)    dK„     d 0)    -.     dU, •> d U, 
\ _ _  k     r  £   r_ 3h    k  _       k 
/    3x.  3k, 3k„ 3x.   3k, 3h 3x.   3x. I   k 3x.3x. 

2 
K, r 3 <u  M.  

3U, i k  r_ 3h    k 
x. Isk, 3h 3x.   3x. J 

3k, r 32w  ->,   3U, i  32u  ,,  .,   3"   a 2. r 3h  3h r  3 h 
3x. I 3k, 3h 3x. ' 3x. J   ah"2" 3x. 3x.   3h 3x.3x. ' jLk    I    1 J   on   x       j 1-| 

in which 3ur/3h = corG/2h. This equation contains three ordinary differ- 
ential equations, determining the symmetrical tenser 3k-;/3ki along rays. 
For details see Christoffersen (1982), and Jonsson and Christoffersen 
(1982). 

5.     THE DYNAMICS 

The mass conservation equation is simply 

•£-  (ph) + -^- (phUi) = 0 (28) 
dt dx, 

1 

The momentum conservation equations(Phillips, 1977, eq. 3.6.11), 
with the mean bed shear stress (1)3)1 added, read 

—•  (phUi) + •—-  (phUiUj + Sij) + pgh •—-+   (Tb)J_ = 0 (29) 
j i 

Standard sign convention is adopted for shear, i.e. the shear stress 
acting on the bed  is taken positive in the positive x^- direction. 
Phillips' bed shear stress appears with the opposite sign (his p. 65). 

The energy conservation equation (Phillips, 1977, eg. 3.6.18) with 
the total dissipation per unit area Ed added reads 

3/l2      1     2   2 
- (^-phUj  + E + -pg (b -D )t 

_/l  2 
3x 

+ g^- (j phU±Uj  + pghU±b + E (cga).j_ + Sij Ujl + Ed = 0      (30) 

Note that there is some ambiguity in Phillips' definition of dissipation, 
see Christoffersen and Jonsson (1980). In the above equations Sij is the 
radiation stress tenser given by 

k.k. 
Sij = Sij Sp + —^  Sm (31) 

k 

where S  and Sm are the pressure and momentum parts of the radiation 
stress given by 

S  = ~ E G   (32)        S  = i E (1 + G) (33) 
p    2 m  2 

2 
Here E as usual is the wave energy density, 1/8 p gH . 

Christoffersen and Jonsson (1980) derived the wave action equation 
for a dissipative steady medium. The wave action equation for a general 
unsteady dissipative medium is here derived in a simpler and more 
straightforward way. 

Eliminating first the mean surface height b by multiplying (29) 
by Ui and subtracting the result from (30) yields 
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3U 
^f    +   3^7    (  E   [coa)i] +  S„  ^    +     E„   -   (Tj,     U.   =  0 (34) 

Dividing by ior and using also (11) gives 

*   f*\     3   /E   ,    % \. 
Ed" (Vi ui 

3t     UJ +   8*i   Ur      (C5a>1 

OJ       \ U) dt ^D   3x. 
(35) 

Here, the variation of tor along a ray can be expressed in terms of the 
radiation stress tensor as (Christoffersen, 1982) 

dui 3U. 
A ^ =  - s.. —L (36) 
IO   dt       lj 3x. r l 

Inserting (36) in (35), the last terra vanishes, and the new general 
wave action equation emerges as 

.....    ,  V(c  ). ] + E  =0 (37) 3t    3x.  \     ga 1/   w 

in which wave action j/ and 'wave action dissipation1 Ew are by defini- 
tion 

E, - (x, ) . U. 
y- f    OS, Ew . d   :^ 

r r 

Note that all terms in (37) vanish for a vanishing wave motion. Thus 
the energy equation (30) for the total flow has been transformed into 
a neat energy equation for the wave motion. This can be further sim- 
plified, though.  Introducing (23) in (37) yields 

£•     ( j/j) +  Ew J = 0 (40) 

This means that wave action _$/ - and thus wave height H - can be cal- 
culated along a wave ray by solving the ordinary differential equation 
(40). By introducing (22), an alternative version of (40) appears as 

Jr  ( JfDe) + E  c  De = 0 (41) 
dt   -^       w ga 

with wave action flux J$ =   d c ga 

6.      WAVE HEIGHT CALCULATION 

The wave height equation is most easily found by looking at the 
steady case. With 3/3t = 0 we find from (11) and (41), D (j^De)/Dr 
+ E De = 0, where 'r' is distance along the ray, and 'e' is distance 
at right angles to this (Pig. 2). It thus appears that wave action 
propagates between neighbouring rays and is dissipated through wave 
action dissipation. The wave action flux through the ray tube is 
J$st Dest at one end ('st1 stands for start), and J§fDe at an arbitrary 
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point  (Fig. 2). Taking the square root of the ratio between these two 
quantities yields the wave height equation 

JL_ = J l".r._ J  cga,st J Dest J 
H ^   Tio   ,1c     1  De  1 , 

(42) 
"r,st  '   ga J^st, st 

=  K   x   K    x  K    x  K 
o        s       ra      f 

in which Kc is the 'Doppler coefficient
1, Ks the 'shoaling coefficient

1, 
Kra the 'refraction coefficient', and Kf the 'friction coefficient '• It 
can be shown that (42) also is valid in the non-steady case, see e.g. 
Jonsson (1982). The three first coefficients are determined by the kine- 
matics of the current-wave field, and it is immediately seen from (22) 
that J = (Ks  Kra)~

2, i.e. 

iT = KaJ'H^ (43> 
st 

By dividing (40) withJ^gt Jst (Jst - D and introducing the expression 
for Kf in (42), we find for the friction coefficient 

i.e. yet another ODE to be solved along the rays. 
There remains the calculation of Ew in (44). From (39) it appears 

that this calls for the determination of bed shear db)i and dissipation 
Ed. In Christoffersen and Jonsson (1984) a detailed calculation proce- 
dure is presented for the calculation of these quantities. The method 
is based on two-layer models for the current-wave boundary layer, one 
for 'small roughnesses' and one for large roughnesses'. In general the 
following approximate result was obtained: Ed = (xb )^  U^+  <(Twb)i 'uwb'i

>' 
whereby from (39) we find Ew = < (Twb)i (uwh)±  >  A)r . Here <,Twb)±  is 
the wave part of the bed shear stress and (uwb)i the wave particle ve- 
locity just outside the wave boundary layer at the bed. 

7.      SUMMARY OF RESULTS 

The procedure for the calculation of the wave field (k^,H) is 
hereafter. The wave ray - along which all other quantities can be cal- 
culated - and the wave number vector are determined by the four dif- 
ferential equations (5) and (20) with proper initial conditions, assum- 
ing water depths and current velocity known. Note that operator d/dt 
is given by (11). 

The wave height is then determined by (43). Doppler coefficient 
Kc is found from its definition in (42), and the Jacobian J by the 
four differential equations (24) and (27). Finally Kf is found from 
(44). 

The above procedure is generally valid. In practise a steady sit- 
uation is often assumed, and simpler equations emerge, see Christoffer- 
sen (1982), and Jonsson and Christoffersen (1982). A discussion of the 
possible calculation of the current field, and of the interaction 
between the waves and the currents through radiation stress and bed 
shear is given in the former reference. 
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8.      EXAMPLE 

To illustrate the effect of currents on waves, we look at condi- 
tions outside an inlet with a 'jet' ebb flow as shown in Fig. 4. 
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Fig. 4.  Horizontal plan. 
Ebb current velocities (m/s) 
outside inlet. Arrows indi- 
cate current direction and 
numbers are current speed. 
The current is symmetrical 
about the x2-axis. Grid 
spacing is 200 m, and water 
depth is h - 10m +0.02 x2 

(X2 >0),i.e. bed slope 1:50. 
The inlet entrance is 200 m 
wide, with water depth h  = 
10 m. Discharge through inlet 
is 2 = 8,000 m /s, giving an 
average-over-width current 
velocity U0 = 4m/s. 

Fig. 5.  Horizontal plan, 
rave rays (....) on ebb cur- 
rent in Fig. 4. Arrows indi- 
cate orthogonal direction, 
and numbers are wave heights 
(m) (no dissipation). The 
thirteen computed rays start 
at X2 = 5,000 m (h = 110m) . 
The corresponding x^-values 
vary from x^ =-3,600 m to 
X! =-1,200 m, with 200 m 
spacing. The angle of inci- 
dence is here 30°. Initial 
wave height is H st 1 in, and 
absolute wave period is T  = 

With angle of incidence 30  far from the inlet, the computed ortho- 
gonal directions and wave heights (no dissipation) are presented 
along the rays in Fig. 5. The fact that wave rays and orthogonals 
do not coincide (when currents are present), is most clearly seen 
near the inlet entrance, where current velocities are large. The 
most striking - and perhaps unexpected - result of our calculations 
as presented in Fig. 5, is the marked reduction in wave height in 
the central part of the ebb current. The reason for this is that 
the oblique incidence of the waves on the opposing current in ques- 



1114 COASTAL ENGINEERING-1984 

tion, in this area generates a sharp reduction in refraction coeffi- 
cient. This is a result of the obvious increase in ray spacing here. 

9. NON-LINEAR WAVES 

In Shen and Keller (1973) and Shen (197S) (considering non-linear 
wave propagation in shallow water without a current)'it was found that 
the kinematics to a first approximation was governed  by linear theory, 
i.e. wr = k l^jh,  which is the shallow water version of (3). This meant 
that non-linearity only played a role in the calculation of the dynamics, 
which was governed by a Korteweg-DeVries equation. This equation is 
known to have cnoidal wave solutions, see Svendsen and Hansen (1978) 
where the energy flux has been calculated for cnoidal waves. 

3.0 
H/H0 

\~ 0.001 

2.5 

\\    . 
vl     v—-, 0.004 
\\    V-T 

2.0 \    1 

vA 
• 

1.5 
\V\             ^0-02 

• 

1.0 

n r 

v\ \\   \ / / 

1              .        .           1              1 . VL.o. U.O i       in-2     ?           •;       m-1     ? 5           1 

Fig. 6 - Shoaling curves. Full lines: Cokelet's theory. Dashed lines: 
Svendsen and Brink-Kjar (1972). (From Sakai and Battjes, 1980) 
Dots: Present study. Values of H /L are shown. 

Further Ryrie and Peregrine (1982), considering refraction of 
numerically exact finite-amplitude waves, found that linear wave theory 
normally proved quite accurate for predicting the wave directions. These 
observations really indicate that a first simple extension to include 
weakly non-linear waves, could be to keep the linear-wave kinematics 
unaltered, and only take non-linearity into account in the wave action 
equation (40). This means that one just replaces the linear wave energy 
density in (38) with the non-linear wave energy density E = B(ra) pgH 
where 

B(m) = 1 
3mz 

(2 + 2mj 3 I'" (45) 
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see e.g. Sarpkaya and Isaacson (1981), p. 185. 
Here mj = 1-m, and further K(m) and E(m) are the complete elliptic 

integrals of the first and second kind, respectively. The parameter 
r2/v,3 = 

Because of B(m) (= 1/8 for linear waves), a fifth factor Kn= yB^/B 
is introduced in (42), to account for non-linearity. 

To illustrate the applicability of this new and simple approach, 
we show in Fig. 6 the results of shoaling without a current. 

In the figure, the Sakai and Battjes (1980) results for shoaling 
of finite amplitude waves (using Cokelet's theory) have been compared 
with our model, and with the results of Svendsen and Brink-Kja?r (1972), 
showing that our model yields encouraging results for the wave heights, 
also giving a smooth transition from deep to shallow water. The smaller 
the steepness, the better the agreement with the Cokelet theory. 

The proposed extension does not only give improved results, (as 
compared with linear theory), but it is also easy to implement in a 
refraction program capable of treating arbitrary bathymetries and 
current fields. 

10.      CONCLUSIONS 

The assumption of locally  plane waves, combined with a dispersion 
relation and wave action conservation, have led to the complete set of 
equations for current and depth refraction of regular water waves. These 
are ordinary, first-order differential equations for all wave quantities, 
when formulated along the so-called wave rays. Bed friction and accom- 
panying dissipation is included. The ray equations form the basis of 
a computer program, which is applied to a case of refraction on an ebb 
current outside an inlet. A method to incorporate non-linear waves in 
the system is proposed. 

Dr. Ove Skovgaard, Laboratory of Applied Mathematical Physics, is 
acknowledged for his unfaltering interest and good advice on the compu- 
tational problems. 
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