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Steep Unsteady Water Waves: 
An Efficient Computational Scheme 
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A new method  for computing the unsteady motion of a water 
surface, including the overturning of water waves as they 
break,   has  been developed.   It is based on a Cauchy 
thoerem boundary integral for the  evaluation of  multiple 
time  derivatives of  the  surface motion.  The numerical 
implementation of the method is efficient,  accurate and 
stable. 
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Most of these methods have been found to suffer from 
a "sawtooth" numerical instability [7], which is usually 
controlled by some kind of smoothing. They can also be 
computationally expensive; using an implementation of the 
method of Longuet-Higgins and Cokelet, New [4] found that 
about 20 hours of processor time on a Honeywell level 68 
(multics system) computer were needed to determine, with 
reasonable  accuracy,  the motion of a breaking wave to the 
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point at which the jet strikes the lower surface. 

The method described here uses Cauchy's theorem for 
analytic functions of a complex variable to formulate the 
boundary-integral equation in a form suitable for efficient 
solution by iteration. The same equation is used to find 
extra time derivatives of the surface motion at each step. 
For a given accuracy the resulting truncated Taylor series 
is used to estimate the maximum acceptable time-step, and 
to perform the time stepping. 

The method is found to be both stable and very 
accurate for steep steadily-propagating waves. Unsteady 
waves can only be checked against other numerical 
solutions. Comparisons with solutions obtained using the 
approach of Longuet-Higgins and Cokelet give clear 
indications that this method is more accurate. Furthermore 
the program for this method is found to run an order of 
magnitude faster, for given accuracy. 

2.    Outline of Method 

Incompressible irrotational flow  is  described  by a 
velocity potential satisfying 

where 

V2A        =        <i>+<b =0 (1) xx       Tyy 

u       =       V*. (2) 

It is assumed that the fluid is bounded below by an 
impermeable flat bottom at y = -h. The appropriate 
boundary condition for $       is 

* (x,-h,t) = 0. (3) 
y 

With these conditions governing the behaviour of the 
body of the fluid it is possible to focus attention on the 
fluid surface alone; as described in section 4, a 
boundary-integral equation can be used to summarise the 
whole fluid's behaviour in terms of its surface properties. 
In particular the normal and tangential gradients of $ at 
the surface can be determined, knowing only the surface 
values of <|> . This gives the velocity u from (2). The 
kinematic condition, that a surface particle moves with its 



STEEP UNSTEADY WATER WAVES 957 

own velocity, shows that the instantaneous movement of the 
surface is then fully determined; if (X,Y) marks a 
particle on the surface then the rates of change of X and 
Y are given by 

£ (X,Y) - u - (*x,*y). (4) 

To follow the motion of the surface further it is 
also necessary to know the way in which <t> varies. 
Bernoulli's equation gives the rate of change of $ on 
the surface as 

ff = 4 " <*/p • gY> (5) 

where P takes the value of the surface pressure which for 
many practical purposes may be taken as a constant, the 
actual value of which makes no difference to the motion of 
the fluid. 

Most existing numerical schemes for following the 
movement of the fluid surface make use of this formulation 
with the following basic algorithm. 

Given  (X,Y, $)  on the surface at the time  t: 

i) solve V2<|) = 0 with +y(x,-h,t) = 0 
to obtain Vll) on the surface and hence 
evaluate  D(X,Y, <t> )/Dt 

ii) time-step to obtain (X,Y, <j> ) on the 
surface at the time  t + At,  and repeat. 

3.    Extended Approach 

Equations (1) and (3) can be successively 
differentiated with respect to time to yield the following 
equations and bottom conditions: 

V2<t>t = 0  with  *t (x,-h,t) = 0 

V2 + tt   =  0       with     4>tty (x,-h,t)   =  0 (6) 

etc. 

Clearly       <t>t, <t>tt. and all  similar Eulerian derivatives of 



958 COASTAL ENGINEERING -1984 

<i> satisfy Laplace's equation and the bottom condition just 
as $ does. In the same way therefore it is possible to 
solve for the gradients of these derivatives and obtain the 
corresponding Eulerian rates of change of velocity, for 
which they are the appropriate potential functions. This 
can be seen by differentiating (2). Extension of the 
kinematic condition (4) to obtain D2(X,Y)/Dt2 etc. is 
also straightforward. Similarly, differentiation of 
Bernoulli's equation (5) gives the corresponding Lagrangian 
rates of change of <t>  on the surface. 

In order to determine these higher derivatives it is 
necessary to obtain  <f,

t , <t>tt etc.  on  the surface.  By 
using Bernoulli's equation once again and expressing the 
result in terms of Lagrangian, rather than Eulerian 
derivatives of pressure, these can be found in terms of 
known variables.  For example, 

Thus the Eulerian derivatives of <j> are given once P, 
DP/Dt etc. are specified. For a constant surface pressure 
all Lagrangian derivatives of P at the surface would 
simply be zero. 

The algorithm for calculating the surface motion can 
thus be extended in the following way 

Given  (X,Y, <l> )  on the surface at the time  t: 

i) solve V2<f> = o with *y (x,-h,t) = 0 
to obtain '"t on the surface and evaluate 
both  D(X,Y,+ )/Dt  and *t 

ii)    similarly   use    *t>t to   obtain  both 
D2 (X,Y, * )/Dt2   and  <f>tt 

iii) proceed in the same way to calculate up to a 
chosen order of time derivative 

iv) time-step, using Taylor series in X, Y and <t> 
with some backward differencing, to obtain 
(X,Y, <f> ) on the surface at the time t + At, 
and repeat. 

A scheme using calculations up to D3/Dt in this 
algorithm has been implemented numerically. 

Some immediate advantages are found with this 
approach. Firstly, it is possible to take larger time 
steps for a given accuracy. Secondly, the derivatives are 
calculated for the same surface profile, (X,Y).  This means 
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that the solutions are all obtained using exactly the same 
boundary-integral kernels. Both of these result in an 
improvement in numerical efficiency and hence shorter 
computer running times. It is also useful to have more 
detailed information calculated about the surface motion at 
each time step. 

4. Integral Equation 

For a variety of reasons it was decided to use 
Cauchy's integral theorem as the means of solving Laplace's 
equation. Its use leads to a fairly simple formulation in 
which the singularities in the integral kernels are easily 
taken into account. This contrasts with the more 
cumbersome logarithmic singularity found with approaches 
which use Green's identity. In addition the Cauchy 
formulation is soluble by iteration which can be a quick 
method of solution. 

(i)   Cauchy's Integral Theorem 

W = U + iV 

s  (arclength) 

Figure 1: Closed contour 

For • satisfying Laplace's equation within the 
contour C, illustrated in figure 2, the complex potential 
gradient, <l>u - i<l>v , is an analytic function of the 
variable, w = u + iv. The following useful expression of 
the principal value form of Cauchy's integral theorem is 
then satisfied. 

4 = ~ -f Im LATI +':ds' + - i- Re LA-1 *' n  it J    |_W'-WJ n     7r J    [W'-Wj ys 'ds\ (8) 

In this  equation 
surface position, 

the  arclength derivative,  W ,  of the 
W(s),  is the complex unit tangent, and 
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<t>s     and     ^     are  the  tangential  and  inward normal  gradients 
of     $   ,     respectively. 

(ii)     Application 

iy 

-in 

q(Z -2ih) 

Figure 2: Physical plane 

In the complex  representation of the physical plane, 
z = x + iy,  the complex gradient of the potential becomes 

q = (9) 

and the bottom condition  (3)  can be satisfied by adopting 
the "reflection" condition, 

q(Z - 2ih) = q (Z), (10) 

with the fluid assumed to extend continuously below the 
bottom to the reflection of the complex surface, Z, in 
the bottom. 

It is useful at this point to assume that the system 
is periodic in x so that only a finite length of surface 
need be considered. No generality is lost in taking the 
spatial period to be exactly 2 IT . The periodic surface 
Z(£) in the z plane is then transformed to a closed 
contour   W(C)   in  the  w  plane  by  the  conformal 



STEEP UNSTEADY WATER WAVES 961 

transformation, 

w  =  e       u + iv. (11) 

Applying the formula (8) to this contour and the 
transformation of the reflected contour leads to the 
following integral equation 

i l    r ws w? A     = - > Im    TT4- +  T-2. n Im bfr+ ~^j •;«• 
(12) 

HRe [w=^ 
wc 

w.e-2h/w,*J     5 'r^' 

where <l>£- is simply the derivative of <t> with respect to 
the parameter ? along the surface, while 4>v is the 
outward normal gradient of $ scaled by IWp | . Supposing 
that (12) can be solved for <f>v, the complex potential 
gradient of  <t>  in the physical plane is then given by 

(iii) Numerical Solution 

In order to solve equation (12) numerically it is 
now convenient to identify £ as a point label parameter 
with X(?), Y(?) and $ (5) defined on the surface for 
integral values of ? . Derivatives with respect to £ can 
be estimated using either central difference or Fourier 
series methods. By considering a Taylor expansion for W' 
the singular part of the integral kernels in (12) can be 
seen to be of the form 

w 
— -oa'-Q. (14) W-W   £-£'   2W 

Since (5 - 5' ) is real this makes it clear that only 
the kernel comprising the real part of W / (W - W') is 
genuinely singular, and since * 

lim 
r€ ^ 

e-s'   T« (15) 

the effect of this singularity in  the  integral  is easily 
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determined.  It can thus be shown that the formula 

iRe [Ar] •*«• - ,4Re [&] *i (16) 

can be used to provide a numerical estimate for this 
integral. Taking account of the other non-singular 
components of (12) the integral kernels were expressed in 
matrix form. Given any potential function <j> (5) on the 
surface, the derivatives •g and •« were estimated 
numerically and the matrix equations were solved 
iteratively for <j> . V<j> was then obtained using 
equation (13). 

5.    Accuracy, Stability and Speed 

The resulting scheme for following the free surface 
motion was tested in a number of cases and was found to 
show no sign of the "sawtooth" numerical instability. 
Figure 3 shows one such test using 32 points to follow the 
propagation of a steep steady surface wave in deep water 
(with ak = 13/32 or about 92% of the highest wave) for 
ten wave periods. It is interesting to note the particle 
drift of nearly twice the wavelength, A , with the 
triangle A marking the same particle. The results are 
just as should be expected to within an accuracy of about 
A /101* . This accuracy reflects an accuracy in the phase 
speed for the calculated wave of about  0.005%. 

-2A- 

t = 10 periods 

3A 

Figure 3:     Steep  surface wave  (ak = 13/32)  after 10 
wave periods using 32 points. 
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On a Honeywell level 68 (multics system) computer 
the program took about 2 minutes of C.P.U. time per wave 
period to execute this calculation, a running time which 
could have been reduced with fewer points and/or larger 
time steps at the sacrifice of some accuracy. The examples 
shown in figures 4 to 6 below each took about 20 to 30 
minutes of C.P.U. time to calculate, and may be compared 
with the 20 hours, or so, experienced by New [4]. 

There are some limitations to the method. It was 
found that it is not always possible to reliably calculate 
progressively higher and higher derivatives. This is 
particularly so in regions of large strain rates, such as 
under the jet of a breaking wave, where the spreading out 
of surface particles leads to a reduced ability to resolve 
the wave profile. Since higher derivatives vary more 
dramatically in this region they are found to be the first 
to suffer from a loss of resolution. One can still proceed 
making use only of lower order derivatives. 

Another region where a lack of resolution was 
encountered is at the tip of a jet such as can be seen in 
figure 6. The shape of this jet tip reflects a situation 
in which the point marked with the triangle A is being 
accelerated into the fluid while points nearby are being 
accelerated outwards. Smoothing was used to control the 
motion in this case. It is not clear whether this observed 
tendency reflects a growing numerical instability or 
whether a genuine physical phenomenon, such as a breaking 
up of the jet tip, is taking place. 
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Some Examples of Results 

For the examples presented below the acceleration due 
to gravity was given the value unity. Except in cases of 
zero gravity no generality is lost by this choice. 

i) Figure 4 shows the detail of a very small jet formed 
at the crest of a breaking wave which was generated 
by suddenly imposing a mean water depth of 2.5 
(where the wavelength is 2 IT ) on the otherwise deep 
water travelling wave of figure 3. After about two 
wave periods this causes the small jet to form at the 
crest of the wave. It is interesting to compare the 
profile at the wave crest with the 120° angle shown 
by the dotted line in figure 4. 

11.0, 11.1, 11.2 

(wavelength: 2ir) 

Figure 4:  Formation of a "spilling breaker" by introducing 
finite depth into the wave in figure 3. 
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ii) By contrast figure 5 shows the development of a very 
large plunging breaker arising from an initial large 
amplitude travelling sine wave. Figure 6 shows a 
detail of the jet tip of this wave taken as far as 
the computation would allow. 

Figure 5: Massive plunging breaker from an initial 
travelling sine wave of amplitude 0.844, in 
deep water. 

* y 

t  =  3.32 j 
A'' 

—0.4 

-0.5 

-}—*\ 
0.6ir 0.7ir 

Figure  6:     Detail  of  the  tip of  the   jet   in  figure  5. 
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iii) A curious example of surface motion leading to both 
the formation of a vertical jet and a plunging 
breaker is shown in figure 7. The initial conditions 
leading to this are illustrated by the dotted lines, 
showing a stretching of the surface in one region and 
a convergence and focussing of the motion of the 
surface in another. 

= 3.2 

Figure 7: Surface motion arising from the symmetric, 
periodic, initial conditions in shallow water, 
of a flat surface with strongly convergent 
(and divergent) flow, as indicated by the dotted 
lines. 
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7.    Conclusions 

The use of higher derivatives and the use of 
Cauchy's integral theorem have led to an efficient 
numerical scheme for calculating the motion of steep 
surface waves. The efficiency of the program means that it 
can now be used in a wide variety of ways. It is already 
well suited to fundamental studies of nonlinear wave 
phenomena such as breaking. With little further 
development it could be used for assessing forces on 
structural elements or vessels which are small compared 
with the dimensions of the wave. This type of computation 
could replace the "design wave" concept where steep steady 
waves are currently used. For this application some 
measure of breaker "strength" should be developed. 
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