
CHAPTER FIFTY TWO 

Prediction of Wave Group Statistics 

12 3 Steve Elgar,   R.T. Guza,    and R.J. Seymour 

Two methods of numerically simulating random seas, given a target power spectrum, are 
discussed. Wave group statistics, such as the mean length of runs of high waves, produced by the 
different simulation schemes are compared. For a large number of spectral components, no 
significant differences are found in the wave group statistics produced by the two simulation 
techniques. Using the simulation techniques, it is shown that ocean gravity wave group statistics 
are not inconsistent with an underlying wave field composed of linearly superposed random waves. 
The majority of the field data examined were collected in 9-10 m depth, significant wave heights 
ranged from about 20 to 200 cm, and the spectral shapes ranged from fairly narrow to broad. For 
the 9-10 m depth data, observed mean run length, variance of run length, and the probabilities of 
runs of a given number of high waves were statistically consistent with the linear simulations. In 
contrast to the apparent linear behavior in 9-3 0 m depth, waves in 2-3 m depth showed 
substantial departures from the linear simulations. 

Introduction 

Groups of high waves are commonly observed in the ocean. A run or group of waves is 
defined as a sequence of waves, the heights of which exceed a particular level (Goda, 1970). It 
has been suggested that such runs of large waves effect coastal structures such as breakwaters 
(Burcarth, 1979} and pipelines (Dean, 1980), and influence the response of ships to the wave field 
(Pinkster and Huijsmans, 1982). Additionally, groups of waves can excite other fluid motions, 
which may in turn produce noticeable effects (Bowers, 1979). 

There are several linear theories which predict wave group statistics, such as the mean 
group length, given only the energy spectrum. One such theory considers the wave field to be 
composed of a succession of discrete, independent waves, an assumption appropriate for broad 
band spectra. Results from the theory of runs are then employed to determine certain group 
statistics (Goda, 1970; Nagai, 1973). The mean length of such runs of waves greater than some 
critical height, Hc  is (Goda, 1970) 

E\j} = 1/(1-,) (1) 

where j is the number of discrete waves in a run, E[] is the expected value operator, and p is the 
probability that the height of a wave is greater than He .   The standard deviation of run length is 

"\j] = P
,/2

/(1-P) (2) 

For Rayleigh distributed wave heights, and for Hc   =    4m0
l! , where m0   is the variance of the 

time series, p =0.1348.   Thus, for these conditions 

E\j) = 1.16 

<r\j} = 0.42 

On the other hand, for narrow band energy spectra, an expression for the mean length of 
runs can be derived from Rice's (1944, 1945) results for the envelope of a random process.   For 
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this case, the mean length of runs whose envelope lies above He /2, for the H( given above, is 
given by (Vanmarke, 1972; Ewing, 1973) 

E\k] = l/2(m2/2xM2)1/2 (3) 

where ro2 and fi2 
are tne second moments of the spectrum about the origin and about the 

centroid, respectively, and k is the number of waves in the group, not necessarily discrete. 

Extensive numerical simulations (Elgar, Guza, and Seymour, 1984) indicate agreement (± 
10 percent) with Goda's prediction of a constant mean run length, equation (l), for very broad 
spectra, Qp <   2    Here Qp is defined as (Goda, 1970) 

Qp  = {2/W)[fS\f)df (4) 

where f is frequency and S(f) is the power spectral density. Unfortunately, Elgar, et al. (1984) 
could find no simple shape parameter that quantitatively indicated the region of validity of 
equation (3). Indeed, for spectral shapes similar to those found in the ocean, neither of the 
theories described above adequately predicts mean run length. Consequently, in order to predict 
wave group statistics given an arbitrary spectral shape, a simulation procedure is utilized. 

Simulations 

The fundamental assumption of linear waves is that the sea surface can be represented as a 
linear combination of waves with random phases, 

N 

*?(')=   S  cn  cos (wnt~<pn) (5a) 

where JV > > 1 and 

C„  = (25(/„)A/)'/2 (5b) 

are the Fourier amplitudes, ojn =2TI fnJn = n A/ , and <j> n are random phase angles, uniformly 
distributed in |0,2TTJ.   An alternate expression for the sea surface is 

A' 

vi1} =   S  an  cos(wrtt) + bn sin (u>» t) (6) 
n "1 

where an and bn are independent, Gaussian distributed random variables with zero mean and 
variance S{fn)Af . Simulations using equation (5), which will be referred to as a random phase 
scheme, have spectra that always exactly match the target spectrum, S(f ), while simulations 
with equation (6), a random Fourier coefficient scheme, have spectra with a statistical variation 
about S [f ). Both methods were implemented, and as discussed below, yield nearly identical 
results. 

Comparison of simulation schemes 

For the random phase scheme, Fourier coefficients were coupled with random phases 
produced by a numerical random number generator (equation (5)). An inverse fast Fourier 
transform of the unsmoothed spectrum results in a simulated time series with the identical 
spectral shape as the target spectrum, but with random phases. To obtain random Fourier 
coefficients (equation (6)), Gaussian distributed, zero-mean, unit-variance random variables were 
generated, and then multiplied by (S(fn)Af J1'2, producing new Fourier amplitudes with the 
desired properties (Andrew and Borgman, 1982). Again, an inverse fast Fourier transform yields 
a simulated time series. 

Rice (1944 and 1945), invoking the central limit theorem, points out that both 
representations (5) and (6) will yield the same statistics in the limit as N -* oo. Nevertheless, 
both forms were used in the simulations because there is some question as to whether or not they 
produce the same results (Tuah and Hudspeth, 1982; Tucker, Challenor, and Carter, 1984). 
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Figure 1. Power spectral density of sea surface elevation in water 10 m deep. Circle, narrow 
band; asterisk, broad band. The spectra have 128 degrees of freedom, and the 90 percent 
confidence limits are indicated by the bars. (Reprinted with permission of AGU.) 
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Each set of random phases or coefficients, via the simulations described above, produces a 
time series whose properties are statistics which fluctuate about mean values. To compare the 
two simulation methods for a particular target spectrum, 100 simulated time series were produced 
for each simulation scheme, each with its own set of random phases or Fourier coefficients. This 
procedure was repeated for 29 target spectra, thus a total of 5800 time series were produced. 

The target spectra used to compare the two methods of simulating random waves were 
obtained from field measurements at Santa Barbara, California during the Nearshore Sediment 
Transport Study, conducted in January and February, 1980 (Gable, 1981). The time series used 
for this study were obtained from bottom mounted pressure sensors in water approximately 10 m 
deep. These spectra represent, a wide range of ocean conditions, including very narrow (by ocean 
standards) and quite broad band spectral shapes. Figure 1, and significant wave heights between 
20 and 200 cm. With typical peak periods from 8 to 20 seconds, the wave steepness (product of 
significant amplitude and wave number of the spectral peak) is in the range 0.006 to 0.1. Some of 
the field data were characterized by swell from distant storms, others by locally generated seas, 
and a few had multiple-peaked spectra, representing a   combination of sea and swell. 

Each time series used in this study was 8192 s (2.27 hr) long and was band-pass filtered 
between 0.04 and 0.JJ Hz. The bottom pressures were converted to sea surface elevation using 
linear theory. Individual wave heights were determined using a zero-upcrossing definition, and 
were considered to belong to a group if the crest to trough distance exceeded 4m0 ' , the 
significant wave height. The mean period of the waves was about 10 s, so there are 
approximately 800 waves per record, and about 80,000 waves per target spectrum for each of the 
two simulation schemes. The mean length of runs of waves greater than the significant wave 
height in the simulations varies from about 1 to 2.5, and the number of groups in each time series 
is between 30 and 100. It was shown in Elgar, et al. (1984) that simulations with 100 realizations 
as described above are extensive enough to estimate the mean length of runs and the frequency 
distribution of the number of waves per group to within a few percent of their true values. 

For each realization, the mean run length and the frequency distribution of the number of 
waves per group were calculated. These quantities were then averaged over the 100 realizations 
per target spectrum. Higher order moments, such as the variance of run lengths, were calculated 
from the averaged frequency distributions. Average values were calculated for each simulation 
scheme, and compared to determine if there are any statistical differences between the two 
simulation schemes. Figure 2 shows that the mean run lengths from the random phase and 
random coefficient schemes are visually very similar. To test if the collection of mean run lengths 
from the random phase scheme was statistically consistent with the collection produced by the 
random coefficient scheme, Student's t test for paired data was calculated. Essentially, this test 
examines whether or not the two treatments (random phase and random coefficients) of the same 
data (target spectrum) produce the same result (mean run length). The t statistic obtained will 
be exceeded about 25 percent of the time due to random fluctuations. Thus, there is no support 
for the hypothesis that the mean group lengths produced by the random phase scheme are 
statistically different than those produced by the random coefficient simulations. 

Similarly, the variances of run lengths obtained from the random phase and coefficient 
methods were compared. Figure 3 shows the two simulation procedures have negligibly different 
run length variances. The ratios of the square of run length coefficients of variation (standard 
deviation normalized by the mean, random phase and random coefficient schemes) for each of the 
29 target spectra were compared to tabulated values of Fisher's F distribution. None of the 
values exceeded the tabulated values at the 99 percent significance level. 

Finally, the frequency distributions of the number of waves per group produced by each 
simulation technique for each target spectrum were compared. A chi-square test was used to test 
if the entire collection of frequency distributions produced by the random phase scheme differed 
significantly from those produced by the random coefficient scheme. The chi-square value 
obtained (with 77 degrees of freedom) is such that the hypothesis that the two collections of 
frequency distributions come from the same population can be accepted with more than 99 
percent confidence.   Indeed, as displayed in Figure 4, when corresponding frequency distributions 
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Figure 2. Mean length of runs greater than the significant wave height from the random phase 
scheme (equation (5)) versus mean length of runs greater than the significant wave height from 
the random coefficient scheme (equation (6)). The solid line indicates agreement between the two 
simulation methods. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Variance of run length (random coefficients) 

Figure 3. Variance of lengths of runs greater than the significant wave height from the random 
phase scheme (equation (5)) versus variance of the lengths of runs greater than the significant 
wave height from the random coefficient scheme (equation (6)). The solid line indicates 
agreement between the two simulation methods. 
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Figure 4. Frequently distribution of the number of waves per group corresponding to the spectra 
in Figure 1; circle, random coefficient scheme; asterisk, random phase scheme, (top) narrow band 
spectrum, (bottom) broad band spectrum. 
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from each simulation method are compared, they are seen to be almost identical. A more detailed 
discussion of the variability and statistics of the frequency distributions can be found in Eigar, et 
al. (1984). 

The parameters investigated above indicate that the random phase scheme produces wave 
group statistics which do not differ from the random coefficient scheme statistics any more than 
two collections of random coefficient (or random phase) generated statistics would differ from 
each other. Further discussion of the similarities of and differences between the two simulation 
procedures can be found in Elgar. Guza, and Seymour (in Press). 

Simulation-data comparison 

In order to determine whether or not linear simulations (i.e., random phase or random 
Fourier coefficient schemes) are adequate for predicting ocean wave group statistics, several 
different comparisons of measured and simulated data were made. The simulation procedures are 
the same as described above, but in this case statistics from ensemble averages of the 100 
simulation realizations are compared to the actual field data values for each target spectrum. 
One such comparison is of the mean length of runs. Figure 5 shows that the mean run lengths 
from the ocean data are visually well correlated with the mean run lengths from the simulations. 
As shown in Elgar, et al. (1984), the Ejj] for the 100 realizations for each target spectrum are 
Gaussian distributed, and the field values of Ejj] deviated from the simulation mean no more than 
would be expected for a Gaussian distribution, with 77 percent of the ocean E[j] falling within one 
standard deviation of the simulation mean. 

To test if the entire collection of ocean E[j] were statistically consistent with the simulated 
Ejj], Student's t test for paired data was calculated (Elgar, et al., 1984). The value obtained will 
be exceeded about 50 percent of the time due to random fluctuations. Hence, the hypothesis that 
the ocean mean group lengths are statistically consistent with linear wave theory cannot be 
rejected, and the simulation procedure successfully predicts ocean mean group lengths given a 
target spectrum. 

Similarly, the variances of run length obtained from the ocean data were compared with the 
corresponding variances produced by the simulations, Figure 6. Fisher's F distribution was used 
to compare the ratios of the square of run length coefficients of variation. As shown in Elgar, et 
al. (1984), the hypothesis that the run length variances come from the same population cannot be 
rejected. Thus, the simulation procedure correctly predicts field values of run length variance 
given the energy spectrum. 

Finally, a comparison of the frequency distributions of the number of waves per group was 
made, as shown in Figure 7. The details of this comparison can be found in Elgar, et al. (1984). 
Again, the conclusion is that the simulation schemes are capable of predicting field probability 
densities given only the power spectrum. 

All the above statistical tests were applied to both the random phase simulations and the 
random Fourier coefficent 'simulations, with negligible differences as expected. The values 
presented above are from the random phase simulations. 

Simulations of shoaling waves 

The results presented so far indicate that the assumption of a linear, Gaussian process, as 
expressed by equation (5) or equation (6), produces statistics consistent with observations of 
ocean wave group statistics in 10 m depth. However, as waves shoal they are expected to become 
more nonlinear. Consequently, a linear representation, such as (5) or (6) should not necessarily 
produce wave group statistics consistent with observations of shoaled waves. That this is the case 
is shown in Figure 8. Values of E[j], both observed and simulated (from the measured spectrum 
at the appropriate depth) are shown as a function of depth, from 10 m, through the breaking 
region (about 2 m), and into 1 m of water. The simulated run length varies during shoaling 
because of substantial changes in the observed spectrum. Simulations and observations are 
similar in 9-10 m depth,  but as the waves shoal the observed Ejj] becomes much greater than 
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Figure 5. Mean length of runs greater than significant wave height from the numerical 
simulations versus mean length of runs greater than the significant wave height from the ocean 
field data The 45° solid line indicates agreement between simulations and ocean field data. 
(Reprinted with permission of AGU.) 
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Figure 6. Variance of the lengths of runs greater than the significant wave height from the 
numerical simulations versus variance of the lengths of runs greater than the significant wave 
height from the ocean field data. The 45 ° solid line indicates agreement between simulations 
and field data. 
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Figure 7. Frequency distribution of the number of waves per group corresponding to the spectra 
in Figure 1; circle, simulations; asterisk, ocean field data, (top) narrow band, February 2 (42 
groups were observed in the field data); (bottom) broad band, February 15 (74 groups were 
observed in the field data). Bars indicate ± 1 standard deviation of simulated values. (Reprinted 
with permission of AGU.) 
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Figure 8. Mean length of runs greater than the significant wave height versus depth of water. 
Asterisk, ocean field data; circle, simulations, bars indicate =t 1 standard deviation of simulated 
values.   (Reprinted with permission of AGU.) 
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linear simulations predict. The ocean E[j] remains higher than the corresponding value from the 
simulations until the waves break. This trend occurs in many of the data sets, and requires a 
nonlinear model to be predicted from a given deep water spectrum (Elgar, et ah, in preparation). 
Other group statistics observed in the field data are also inconsistent with the linear simulations, 
as described in Elgar, et al. (1984). Consequently, it is inappropriate to use the linear simulation 
technique to predict wave group statistics for very shallow water waves. 

Conclusions 

The theoretical models which predict wave groups statistics given only the power spectral 
density are not appropriate for the vast majority of ocean spectra, On the other hand, wave 
group statistics such as the mean length of runs of high waves, the run length variance, and the 
frequency distribution of the number of waves per group can be predicted by a linear numerical 
simulation from the energy spectrum. The two methods discussed here, a random phase scheme 
and a random Fourier coefficient scheme, produce nearly identical statistics for the spectra and 
conditions considered in this study. 

Although the linear simulations accurately predict wave group statistics in water 8-10 m 
deep, very substantial disagreement with the simulations was found for shoaled waves in 2-3 m 
depth. Thus, the linear simulation procedure is inappropriate to use in shallow water where 
nonlinearities are important. 
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