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ABSTRCT 

The relationship between the directional spectrum and the cross- 
power spectra in an incident and reflected wave field differs from the 
situation with no reflected waves because the phase lag between the 
incident and reflected waves is not random. Extra terms, which may be 
called phase interaction terms, exist. Hence standard methods for 
estimating the directional spectrum are not applicable. In the present 
study, the MLM is modified for this situation and the method is termed 
the MMLM (Modified Maximum Likelihood Method). 

The validity of the MMLM is examined by numerical simulation. The 
results indicate that the MMLM has a high resolution power. Formulas to 
determine the reflection coefficient are derived and their accuracy and 
suitability are  examined. 

1.     INTRODUCTION 

This paper describes a method to measure the directional spectrum 
in an incident and reflected wave field and to determine the reflection 
coefficient of a structure in a directional sea. The directional 
spectrum represents the energy distribution in wave direction, so that 
in principle the incident and reflected wave energies can be separated 
by measuring the directional spectrum near a structure and then the 
reflection coefficient can be determined. However, standard methods of 
estimating the directional spectrum are not valid because the phase lag 
between the incident and reflected waves is not random. Therefore, 
these methods should be modified for application in such a situation. 

Many methods have been proposed for directional spectrum 
estimation. These are the DFT method (Direct Fourier Transform Method; 
Barber, 1963), parametric methods (Longuet-Higglns et al., 1963; 
Panicker and Borgman,   1974),  the MLM (Maximum  Likelihood   Method;   Capon, 
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1969), and others. Of all the proposed methods of calculation, the MLM 
has the highest resolution power, so that it is favorable to use to 
separate the incident and reflected wave energies. Therefore, in the 
present study, the MLM is modified to estimate the directional spectrum 
in an  incident and reflected wave field. 

Numerical simulations were carried out to examine the validity of 
the MMLM. By this means, accuracies of various formulas to determine 
the reflection coefficient could be  examined. 

The MLM was originally applicable only to wave gage arrays, but 
recently it has been extended for use with mixed gage arrays such as a 
pitch-roll buoy system, a clover-leaf buoy system, a wave gage plus 
current meter system, and so on (Isobe et al., 1984; Oltman-Shay and 
Guza, 1984). Hence it is also possible to extend the present method to 
mixed measuring systems. 

2.     DERIVATION  OF  MMLM 

2.1     Relationship between Directional Spectrum and  Cross-Power Spectra 

Suppose that the wave amplitude is small, and that the water 
surface elevation can be expressed as the superposition of component 
waves with wavenumber (vector), k, and angular frequency, a . The water 
surface elevation due to the incident waves, ru, at the point, x, and 
the time,     t,  can be expressed as: 

ni(x,t)   = yk e
i(kx_at)   Z(dk,da) (1) 

This was called the spectral representation by Koopmans (1974). From 
the physical point of view, Z(dk, da ) means the amplitude which 
represents the energy within [k, k + dk] and [a, a+ da ]. The 
quantity Z is a complex number. The absolute value of Z gives the 
amplitude of the component waves and the argument gives the phase at x = 
0 and t = 0. Since the phase lag between different wave components can 
be assumed to be random, Z(dk, da ) and Z(dk', da ) are independent for 
k  >f  k',   i.e., 

<Z(dk,da)   Z*(dk',da)> = 0 ( k * k'  ) <2> 

where the symbol < > denotes the ensemble mean. The wavenumber- 
frequency spectrum, S(k, a ), represents the power density(square of 
the amplitude), and is therefore defined as: 

<Z(dk,da) Z*(dk,da)> = S(k,a) dk da (3) 

where the symbol * denotes the complex conjugate. The wavenumber 
vector, k, is expressed by the wavenumber, k, and the wave propagation 
direction, 9. Hence, the wavenumber-frequency spectrum is a function of 
k, e, and a . For water surface waves, since k is uniquely determined 
from a by the dispersion relation, the spectrum becomes a function of 
9 and a and is called directional spectrum. 
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As shown in Fig. 1, if waves are reflected at the y-axis, the water 
surface elevation due to the reflected waves, rir> can be expressed as: 

nr(x,t) = /a/k r e
i(krx-at) Z(dk,da) (1)) 

where k denotes the vector symmetrical to k with respect to the 
reflection line, and r is the reflection coefficient which can be a 
function of k and/or a . Even though the amplitude of the reflected 
waves may change by the factor r, the phase on the reflection line is 
the same as that of the corresponding incident waves. Therefore the 
phase lag between the incident and reflected waves is not random. Let 
x be the vector symmetrical to x, then Eq. (4) can be written as: 

nr(x,t) = /0/k r e
i(kxr-at) z(dk;da) (5) 

From Eqs. (1) and (5), the total water surface elevation,   n = ru  + 
nr,   can be expressed as: 

n(x,t)  = fafk  [ ei(kx'at)  + r ei(kXr-at)   j  z(dk,da) ^ 

Thus the complex amplitude, X(x, da ), which represents the energy in 
[a ,    a+ da  ] at the point x, becomes 

X(x,da)  = ;k  [ e_ikx + r e_ikxr ]  z*(dk,da) 

The cross-power spectrum, $mn(a ), between the water surface elevations 
at x = xm and x = xn is defined as the ensemble mean of the product of 
tlje complex amplitude, X(xm, da ), the the complex conjugate amplitude, 
X  (xn, da ).    That is , 

$m(a)  da = <X*(xm,da)  X(xn,da)> (g) 

If m = n, then $mn(a ) represents the power spectrum, and if i Mi 
$mn(a) represents the cross spectrum. Substitution of Eq. (7) into 
Eq. (8) yields 

* (a) da = LL,  [ e^ + re1**•: ] [ e^'^+re-*'^ ] 
inn       k k' 

x<Z(dk,da)   Z*(dk',da)> (9) 

From Eqs.     (2)  and  (3),  Eq.   (9)  becomes 

$    (a)  = /.    [eita*n+reikJ^r]   [e"ikXn+re"ikXnr]  S(k,a) ran K 
dk (10) 

This is the relationship between the wavenumber-frequency (or 
directional) spectrum and the cross-power spectrum in an incident and 
reflected wave field and will be used to derive the basic formula for 
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Fig. 1 Definition sketch of incident and reflected wave field, 
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Fig. 2 Co-spectrum for Mitsuyasu-type directional distribution 
functions. 
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Fig. 3 Result of directional spectrum estimation by the standard MLM in 
incident and reflected wave field. 
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estimating the directional spectrum. The product of the first terms in 
the two brackets in Eq. (10) represents the incident wave component and 
the product of the second terms represents the reflected wave component. 
The other two products are extra terms describing the interaction of the 
incident and reflected wave fields. Since these terms appear because 
the phase lag between the incident and reflected waves is not random, 
they may be called phase interaction terms. 

2.2    Magnitude of Phase  Interaction  Contribution 

Before proceeding to the discussion of the directional spectrum 
estimation, it is worth examining the relative magnitude of the phase 
interaction terms. Any combination of terms in the brackets in Eq. (10) 
has the following form: 

i(X) /k e ikX S(k,o)  dk (11) 

Mitsuyasu et al. (1974) proposed a standard directional distribution 

S(k,a) r            6-6o ,2s [ COS -=  ] 
(12) 

If Eq. (12)  is substituted into Eq. (11), the following result can be 
obtained  after  some manipulation: 

c(X) [[S/2]1 I s< s< CW  - J0(kR)  + 2      X       (-1)L   [,„_,;,,]   [-    s-     1 

c(0) 1=1 
L(s-2Z)!J   L(s+2Z)!J 

q(X) 
c(0) 

[[(s-l)/2]] 
I 

1=0 

x J2J(kR)  cos{2Z(6o~0)} 

(-D1   [•      S! 
rl (S-2Z-1) !'   l (S+2M-1) ! 

J2Z+1(kR)   cos{ (21+1) (9o-0) } 

(13) 

(11) 

where [[x]] denotos the maximum integer not larger than x, J is a 
Bessel function of the n'th order, and c and q are the co- and 
quadrature-spectra: 

XX)   = c(X)   -iq(X) (15) 

and 

( R cosG , R sine ) (16) 

Figure 2 shows the relative co-spectrum as a function of relative 
distance R/L (L: wave length) for $ = e0 -0= 0° and 30° For the 
quadrature-spectrum, the shapes of the curves are similar to the co- 
spectrum, but the maximum and minimum occur at the zero-crossing points 
of the co-spectrum. Thus the amplitude of <f> becomes the envelope of 
the curve.    Therefore, the relative magnitude of <J) is small for large 
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relative distance, unless the directional distribution is very narrow (s 
is large) and the principal direction almost coincides with the direction 
of the distance vector (0=9 ). 

o 

For the phase interaction terms, we have x = xnr - xm, xn - xmr, so 
that R becomes about twice the distance between the measuring point 
and the reflection line. Hence the phase interaction terms generally 
become small if the wave gage array is located far from the reflection 
line. Therefore, if the structure is long enough, the incident and 
reflected directional spectrum can be observed in the far field by 
applying the standard methods of estimation. 

Figure 3 is an example of a numericl simulation which shows the 
effect of the phase interaction terms. The peak incident wave direction 
is 150° and the reflection coefficient is 1, so that a spectral peak due 
to reflected waves appears at & = 30? The separation distance in the 3- 
sensor linear wave gage array are 0.2L and O.tL. The estimated 
directional spectra by the standard MLM are shown by the dashed lines 
for the cases that the distances between the nearest wave gage and the 
reflection line are 0, L, 2L, and •*> . The accuracy becomes higher as 
the distance increases. This is because the phase interaction terms 
become small. However, a 3-sensor array may not be sufficient to 
measure a bimodal directional spectrum. 

2.3 Formula for Estimating the Directional Spectrum 

In this subsection a formula for estimating the directional 
spectrum is derived from the relationship between the directional 
spectrum and the cross-power spectra, as given by Eq. (10). The maximum 
likelihood technique is used and the process is similar to that given by 
Davis and Regier (1977), and Isobe et al. (1984). 

Let 

v <k) = e"*^ + r e-**• (17) cm 

and 

T (k) = Y* CO Yon(k) ran     am   on ^gj 

Then Eq. (10) can be rewritten as follows: 

Wa) =/k- Tmn(k,) S(k''a) dk' <19> 

In general, the^estimated wavenumber-frequency spectrum, denoted 
with a caret as S(k,0 ), can be formally expressed as a linear 
combination of the known cross-power spectra: 

S(k,a)  = S t a^tk)   4^(0) (20) 
m n 
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where E means a summation over all measuring points and the a
mn(k) are 

coefficients.    Then,  substitution of Eq.   (19)   into Eq.   (20)  yields 

S(k,a)  = /k, S(k',a) w(k,k') dk' (21) 

where 

w(k,k')  =H am(k)   Tjnn*') (22) 
m n 

Equation (21) indicates that the estimated wavenumber-frequency spectrum 
is a convolution of the true wavenumber-frequency spectrum and the 
window function, w(k, k1),  which is expressed by Eq.  (22). 

Now    a_n is assumed to be of factorable form as 

a    (k)  = y  (k)  Y*(k) <23) mn 'm        'n 

Then  Eqs.   (20)  and  (22)  become 

S(k,a)  =Hy   (k)   $    (a)  y*(k) 'm mn n m n 

and 

(24) 

w(k,k')   = Z £ ym(k)  Tm(k')  Y*(k) (25) 
m n 

Substitution of Eq.   (18)  into  (25)  yields 

W(k,k') = |z Ym(k) y^')\2 (26) 

m 

which shows the value of the window function is non-negative. Then the 
estimated directional spectrum is always non-negative because the 
integrand in Eq.  (21)   is non-negative. 

The window function is normalized by putting 

w(k,k)   = 1 (27) 

In order for §(k,a ) to closely approximate S(k, o ), it is seen from 
Eq. (21) that w(k, k') should approach the Dirac delta function as 
closely as possible. Since S(k, a ) and w(k,k') in Eq. (21) are non- 
negative, this can be attained by minimizing the value of S(k, a ): 

S(k,a) ->-min. (28) 

From Eqs. (24), (25), (27), and (28), this problem becomes as follows: 

E E y (k) T (k) Y*(k) 'm   mn   'n 
m n  
S Z  Y (k) $  (a) Y*(k) (29) 'ra   ran   'n 
m n 
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This  is  equivalent to the problem of finding the maximum eigenvalue for 
given matrices,   $       and Tmn such that 

£ T     y* = U I      y* (30) 

mn 'n mn 'n n n 

and hence 

Hi1!      y* = A Y? (3D Im   mn ' n I m n 

where   $n"^ is the inverse matrix of   §im.    From Eq. (29), the maximum 
snvalue, 

*lm 
eigenvalue,     Amax>    is   inversely   proportional  to  the  estimated 
directional spectrum: 

Sfc,c)  cc 1/^ ^32) 

It can be seen from Eq. (18) that any vector orthogonal to Yon is 
an eigenvector with eigenvalue \ = 0 in Eq. (3D. Hence the only 
possible choice of Yn 

for a positive eigenvalue is of the form 

Y  + Y 'on   on 
(33) 

»..,= .= ,on ic o vector orthogonal to Yon. If Eqs. (18) and (33) are 
substituted into Eq. (3D and then multiplied with Yol from the left, 
the maximum eigenvalue, A   , oan De obtained as 

A   =ny  4>_1 Y* (34) 
max     'am mn 'on 

m n 

As seen from Eq. (17), A is a function of r. In order to determine 
the value of r, a relationship which is strictly satisfied in the uni- 
directional case was derived. That is 

dA   / dr = 0 (35) 
max ' 

This relationship is assumed to be valid in a general case and then 
substitution of Eq. (17) and (34) into Eq. (35) yields 

Z Z  $_1(a) [ emxrr^)  + ei*(*nr-*n) 1 

         (36) 
m n 

- L(a) mn 

2 Z Z  $_1(a) e^^-^mr) 
m n mn 

Since  the  value  of  the   reflection   coefficient   is  non-negative  the 
estimated reflection coefficient becomes 

( r0 < 0 ) 

r0 ( r0 > 0 ) 
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Finally,   from   Eqs.   (17),   (32),   (34).   and  (37),   the estimated directional 
spectrum becomes as follows: 

S(k,a) 

K/ [ E E $    (a)  e' ' mn m n 
,ik(xn-*m) ( r0 < 0 

K/rH $_1(a) e
iJk(Xn'^tl> 

m n 

{ZE $_1(a) [e^^n-^ir'+e*^1^-^ ] }2 

mn _    mn  

4 E E $-1(a)  g^^nr-^ir) 
m „   ran m n 

( rn > 0) (38) 

where K is a proportionality constant which can be determined from the 
relationship between the directional spectrum and the power spectrum. 
This relationship can be obtained by putting m = n in Eq. (10). The 
result is 

*•»   =4-1 S(ki,a)  + 2 ,/s(ki,a)  §(kr,a)  cos ki(s^-^nr) 

+ S(kr,a)   ]  dk± (39) 

where k^ represents the wavenumber vector within the incident wave 
direction and k. is the reflected wavenumber vector corresponding to k^. 
The symbol S(kr, a ) = r ^(k^, a ) represents the reflected wave 
spectrum. If Eq. (38) is substituted into Eq. (39), the equation for 
determining the value of K can be obtained for each measuring point. 
Hence   K can  be  obtained  by the  least  square  method. 

Equation (38) was derived by modifying the standard MLM for use in 
an incident and reflected wave field. Therefore, the present method is 
named the MMLM (Modifiend Maximum Likelihood Method). 

The procedure for calculating the directional spectrum by the MMLM 
is summarized as follows: 

1) For a given data set, compute the cross-power spectra, $mn(c ), 
for all possible  combinations. 

2) For a fixed value of a , determine k from the dispersion 
relation and the compute the directional spectrum by using Eq. 
(38), except for K . The computation range of the wave 
direction includes both the incident and reflected wave 
directions. 

3)  Determine the value of K   from  Eq.  (39);  then the directional 
spectrum is completely determined by  Eq.   (38). 
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3.     NUMERICAL  SIMULATION 

3.1     Procedure of Numerical Simulations 

Numerical simulations were performed to examine the validity of the 
MMLM. The procedure is similar to the one used for examining the EMLM 
(Isobe et al., 1984). Since from the theoretical viewpoint the energies 
ditributed among the wave frequency can be separated by cross-power 
spectral analysis, the directional spectrum is described as a function 
of only the wave direction,   9. 

The procedure for the numerical simulation is as follows: 

1) Specify a functional form for the directional spectrum, Sg(6), 
and reflection coefficient, r(9). Here, the Mitsuyasu-type 
directional distribution expressed by Eq. (12) is used. To 
fabricate a bimodal distribution, two Mitsuyasu-type distribution 
functions with different 6o and s are superimposed. 

2) Calculate $mn for a given wave gage array from Eq. (10). For 
the power spectra, $„,„,» a fraction of the total incident wave 
energy is added as a noise component. 

3) Calculate Sg(8)   from Eq.   (38)  and compare to Sg(8). 

3.2    Results 

Figure 4 shows an example of the numerical simulation. A 3-sensor 
linear wave gage array in which the gages are set at (x, y) = (0.2L, 0), 
(0.4L, 0), (0.8L, 0) is used. This arrangement is the same as in Fig. 
3. For all the figures in this paper, the reflection line coincides 
with the y-axis. The solid line represents the true (given) directional 
spectrum. The peak direction of the incident waves is 150°and the 
reflection coefficient is 1, so that the spectral peak due to the 
reflected waves appears at 9 = 30t The estimated results are shown for 
various values of e , the ratio of the noise power to the total incident 
wave energy. The resolution power decreases with increasing noise 
component; however, the MMLM has higher resolution power than the 
(standard)   MLM  for the same amount of noise  (cf.  Fig.  3). 

Numerical simulations were carried out for a wide range of wave 
gage arrangements in order to study adequate arrangements. Results were 
similar to the case of the standard MLM. The minimum and maximum 
distance between wave gages should be about 0.2L and 1.5L. As can be 
seen from Fig. 5, the resolution power increases as the number of wave 
gages increases. The detailed shape of the array does not influence the 
result very much.    This is quite different from the DFT method. 

Figure 6 shows one problem in the MMLM. If the wave gages are 
located far from the reflection line, spurious peaks can appear in the 
estimated spectrum, as shown in the figure. This occurs when the modes 
of the standing waves at the measuring points are the same for the true 
and spurious peak direction. It should be possible to remove these 
false peaks after calculation, since they are always very sharp and 
recognizable.      If   one   wave   gage   is   located   within   0.2L   from   the 
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Fig.  4    Influence of noise on the resolution power of the MMLM. 
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Fig.  5    Comparison among true and estimated directional spectra 
for various wave gage arrays. 
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reflection line and another one is about 0.2L from the first one, this 
trouble can be avoided. 

From these results, linear arrays in which the distances between 
the   reflection   line   and   the   wave   geges   are   0.2   1,    0.4   1,    0.8   1, 
1.6   1    (1   is   the   minimum   wave   length   to  be   observed.)   can  be 
recommended. However, as will be seen later in Fig. 7(a), a 2- 
dimensional array is necessary to improve resolution power near the 
normal  direction. 

Figure 7 shows the results for various true directional spectra. 
The numbers of wave gages used are 2, 3, and 4. The array types are 
linear and the locations of gages are indicated in Fig. 7(a). Figure 
7(a) corresponds to normal incidence. Accuracies are not high because 
the resolution power of the linear array in the array direction is low. 
A 2-dimensional array is necessary to improve resolution power in this 
direction. The peak incident wave direction is 120" for Fig. 7(b). 
Three or four-sensor arrays may have sufficient accuracy. Figure 7(c) 
shows the results for a uni-directional case. If the noise component is 
excluded, the estimated spectra should approach the true spectrum. 
However, since the relative noise amount of 1$ was added in the 
numerical simulation, the resolution power for the smaller number of 
gages decreases significantly. Figure 7(d) corresponds to a broad 
spectrum. The estimated spectrum by the 4-sensor array becomes bimodal. 
In order to avoid this, the distance between the wave gages should be 
reduced. Figure 7(e) is for the bimodal incident wave spectrum. The 4- 
sensor array gives an accurate estimation even in this case. The 
reflection coefficient for Fig.  7(f)  is  0.5 and the  MMLM  is valid. 

Figure 8 shows the result for a complex situation. The incident 
directional spectrum is bimodal and the reflection coefficient changes 
with direction as indicated by the solid line in the lower figure. It 
can be seen that many wave gages are necessary for this case. 

3.3    Estimation of Reflection Coefficient 

There are several possible ways to estimate the reflection 
coefficient. Equation (37) gives an estimation of the reflection 
coefficient at the peak direction, 6m. This can be defined as a 
representative reflection coefficient,  denoted by r   : 

rm = r(6m) (40) 

A second definition is as the square root of the ratio between the 
reflected and incident spectra estimated at the peak direction: 

where 6mr is the reflected wave direction corresponding to the incident 
peak direction. A third definition is as the square root of the ratio 
between the integrated reflected and incident wave energy: 
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Fig.  7    Comparison among true and estimated directional spectra 
for various true spectra,    (continued) 
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Fig.  7    Comparison among true and estimated directional spectra 
for various true spectra. 
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Fig. 8 Comparison among true and estimated directional spectra 
and reflection coefficients for a complex wave field. 
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Fig.  9    Comparison among true and estimated reflection coefficients. 
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rs = /^ef.  S(9)  d6 / /in> S(9)  dO C*2) 

For the uni-directional case, the reflection coefficient can be 
calculated from data records at two points (Goda and Suzuki, 1976, for 
example). When the two points are on the x-axis, this can be written by 
using the results of a spectral analysis as 

/l + c2' 
/TTcr 

-2c cos (kd cos60 - A) 
+ 2ccos(kd cosGo-A) (43) 

where    c    is the ratio of the power spectra,  A  is the phase lag,  and 
d   is the distance between the measuring points. 

Figure 9 compares the true and estimated reflection coefficients. 
The Mitsuyasu-type directional distributions were used with s = 10 for 
Fig. 9(a) and (b) and s = 100 for Fig. 9(c). For true reflection 
coefficients of 0, 0.5 and 1, the estimated values are plotted against 
the peak incident wave direction. The solid, dashed, dotted, and chain 
lines indicate the values of rm, rsm, rs and ra, respectively. As seen 
from Fig. 9(a), a 2-sensor array may not be sufficient. If a 3-sensor 
array is used, rm gives a fairly accurate value when the true reflection 
coefficient is small, whereas rsm is relatively accurate for large 
values. However, the error is large when the peak incident direction is 
nearly parallel to the reflection  line. 

4.     CONCLUSION 

In an incident and reflected wave field, extra terms which may be 
called phase interaction terms, appear in the relationship between the 
directional spectrum and the cross-power spectrum. If the wave gage 
array is located near the reflection line, this contribution becomes 
significant and therefore the standard MLM is not applicable. The MLM 
was modified for estimating the directional spectrum in such a situation 
and the method was named the MMLM (Modified Maximum Likelihood Method). 
The  final  result  is  expressed by  Eq.   (38). 

Numerical simulations were carried out to examine the validity of 
the MMLM. The results demonstrated that the MMLM has high resolution 
power and can separate incident and reflected wave energies. The 
resolution power increases with increasing number of wave gages, but the 
effect of the detailed wave gage arrangement is small. In general, the 
minimum and maximum distance between the wave gages should be about 0.2L 
and 1.5L. However, these criteria depend upon the number of gages and 
the width of the directional distribution. Spurious spectral peaks 
appear  if the  wave  gages  are located far from the reflection line.    If 
the wave gages are located at 0.2 1, 0.4 1, 0.8 1,  1.6 1 (1  is the 
minimum wave length to be observed) from the reflection line, the array 
is effective for wide range of wave length. A 2-dimensional array is 
necessary to improve the resolution power near the direction normal to 
the  reflection  line. 
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Various formulas to estimate the reflection coefficient were 
examined. As long as the peak incident wave direction is not coincident 
with the reflection line, the reflection coefficient, r , determined 
directly by the MMLM is accurate for small values of the true reflection 
coefficient, whereas the reflection coefficient determined from the 
resulting power ratio of the incident and reflected waves, i"sm, is 
accurate  for  large  values. 
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