
CHAPTER THIRTY 

A Dynamical Expression of Waves in Shallow Water 

1 2 
Y. Tsuchiya, M. ASCE and T. Yasuda 

Making the assumptions that solitons are one of the most elementary 
excitation in random nonlinear waves in shallow water and that the waves 
have a coherent dynamic structure of solitons, we attempt to describe 
the swell-like waves theoretically "by deriving the asymptotic multi- 
soliton solution for the KdV equation.  Formulations of the random wave 
profiles and internal properties are also made.  We conclude from the 
comparisons between observed and theoretical results of the propagation 
characteristics of the swell-like random waves and their water particle 
velocities, that the waves in shallow water have a coherent dynamic 
structure of solitons and that the theoretical expression for the waves 
has practically sufficient accuracy in estimating their propagation. 

1.  IWTRODUCTIOH 

One of the outstanding features of swell-like waves propagating on 
shallow water is the coupling between their nonlinearity and randomness. 
How to express them theoretically is clearly of basic importance for 
coastal engineering because of the need to accurately calculate forces 
on coastal structures and to rationally estimate design waves and so on. 
Various attempts have been made to formulate them theoretically, for 
example, by using the nonlinear spectral analysis based on a perturbative 
approach from a linear mode, which was developed by Tick(l959), Phillips 
(I96l) and Hasselmann(l962).  However, the application of the nonlinear 
spectral analysis requires much labor because the nonlinear effects of 
the waves are remarkably stronger than those of ocean waves.  As the 
result, the design of coastal structures is generally carried out by us- 
ing the individual wave method which is a mere statistic approach and 
has no basis of the dynamics. 

The coupling between nonlinearity and randomness of the waves makes 
their dynamics seriously difficult, because- it provides active exchanges 
of energy among different modes and brings the above perturbative approach 
to   the chaotic situation.  From the new viewpoint of the dynamics of 
nonlinear waves, therefore, another approach may be needed in establish- 
ing the dynamics of the waves, instead of the usual perturbative approach 
mentioned above. 

In this study, we attempt to propose a dynamical expression of the 
swell-like waves based on soliton modes, including simultaneously both 
effects of their nonlinearity and randomness.  Further, applicability 
of the expression to field waves is examined by comparing it with 
observed data of wave propagation in the field. 

1 Professor, Disaster Prevention Research Institute, Kyoto University, 
Uji 6ll, Kyoto, JAPAH 

2 Associate Professor, Department of Civil Engineering, Gifu University, 
Gifu 501-11, Gifu, JAPAN 

435 



436 COASTAL ENGINEERING-1984 

2.     WAVE EQUATION  OF SWELL-LIKE WAVES  IB  SHALLOW WATER 

Consider  swell-like waves  in shallow water  of uniform depth and de- 
fine the two-dimensional coordinate system as  shown in Fig.   1.       By- 
assuming that viscosity is  ignorable 
in the  swell-like waves,  we derive 
the  equations governing  them as 

V2*= 0 

V, +<JM,-*,| ,=»+,'= 0 
(i) 

where <f>   is  the velocity potential,   z' 
the water  surface displacement from 
the mean water  level, x  and  z the 
coordinate  system,  t the time,  h the 
water depth,   and g  the acceleration 
of gravity. 

Furthermore,  assuming that the 
effects of nonlinearity and  frequency        Fig.  1  Coordinate  system and 
dispersion of waves are of the  same symbols used 
order and considering progressive 
waves  of  temporal evolution,  we introduce the  so-called Gardner-Morikawa 
transform 

1/2 , *     * 
£ = <= /    (x -t) .   r = 

3/2   * 
'-        t . x/h,   t*=tjg/h, z=z/h,   e=(h/L)2 

and the perturved solution 

z'/h   ( = £,) = £l,|+    e2l)2+ •• 

<&/hJ~gh= el/2*i + e3/2 <t>2 + • 

(2) 

(3) 

where L  is  the representative wave-length. 

By  substitution of Eqs.   (2)  and   (3)   into Eq,(l),  we can rewrite Eq. 
(l)  as 

i)r+3iHe/2 + 1eff/6 = £F(1,   1f.   nr, •••)+0(e2) 

<1, •j -V= e C/ff/2 + >?2/2) +0 (e2) 

(It) 

(5) 

The relation between the new velocity potential Q  and the original one 
is given as 

<t>/AV£A= £l/2(Q-ez*2 a er '2+ •••) (6) 
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Taking  e  =  0  in Eq. (It),  we 
obtain the well-known Eorteweg 
de Vries(KdV)   equation as the 
lowest order equation of the 
swell-like waves  as 

i?r + 3i)7)f/2 + >?j£?/6 = (7) 

-0.5(0) 

Fig. 2 which was calculated 
by the authors(1982) indicates 
the comparison of wave trans- 
formation in evolution process 
between the numerical solutions 
of Eqs.(lt) and (7) and the ex- 
perimental results obtained by- 
giving sinusoidal waves a 
initial condition of waves. 
From this figure, it can be 
considered that the second order 
correction when compared with 
that of the first order is rela- 
tively small for the wave trans- 
formation and that the soliton 
development can sufficiently be 
explained by the KdV equation.  Hence, from the viewpoint that the 
swell- like waves should be described as simple as possible, we may use 
the KdV equation as the governing equation. 

3.  WAVE SOLUTION OF-THE KDV EQUATION BASED ON SOLITON MODES 

3.1 Elementary Excitation in the Wave Field Governed by the KdV Equation 

We can derive the solution of the KdV equation perturbed from a 
sinusoidal wave solution by using Stokes expansion as 

Fig. 2 Coparison between numerical 
and experimental wave profiles 

V=Acos 0 + (3A2/4r) cos 29+ (27 A3/64r2) cos 30 + ••• 

r=(2nh/L)2 , (j=2nx/L~wt 
(8) 

where A is the Ursell number and u> the angular frequency.  The above 
expression describes that a sinusoidal wave becomes an elementary excita- 
tion of the wave field to be governed by the KdV equation.   It is, how- 
ever, noticed that the reduction of higher order terms requires much 
labor and that the number of sinusoidal modes is undetermined.  We may 
conclude that sinusoidal waves are inadequate as elementary excitation 
in the wave field to be governed by the KdV equation. 

The exact stationary solution of the KdV equation is known as cnoidal 
waves which is given as 

1 =A[•2
 j (v/3/T/2*)!?}-(£/iC+^-i)/^] (9) 

where #=(x/h- ct/h) ,  c   is the wave-celerity,  K and E the complete 
elliptic   integrals  of the  first  and the  second kind,   respectively,   of 
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which the modulus is denoted by k and en the Jacobian on-function. Eq. 
(9) describes the stationary waves which is simpler than Eq.(8), although 
it contains an elliptic  function. 

It is well-known that Eq.(9)  expresses a solitary wave(soliton), when 
the wave-period of cnoidal waves  is  taken  infinite,  as 

y=Asech2{(V3A~/2)# ) (10) 

This means  that  the cnoidal waves  contain  solitons as their limiting 
and are  rather elementary than solitons.       However,  using the  re- 

lation between Jacobian dn-elliptic and hyperbolic  functions  obtained by 
Toda(l970) 

dn»* = U/2KV     S_ aech'{(xK/K') ( X/2K-I)] - k/2KK'+E/K (ll) 

we can transform Eq.(9) into 

1= !!_ **<**>•* {(VTZ/2)d-1 xK/K'}- <.4aK'2/3i?-){3<.E/K)+2k*-2} (12) 

where 

tf = e-i/2( ,:-c*r) = {x/h_ct/h)<   c=\-(2aK'2/n2) { 3 (E/K) + k2- 2 } , 

a=A(K/2kK')2.    e = {h/L)2 

(13) 

Eq.(l2) shows that a cnoidal wave train with the amplitude A consists of 
a periodic sequence of pulse-like waves, that is, solitons with the am- 
plitude a, and that the cnoidal wave train can be expressed by making 
solitons its elementary excitation. As the modulus k becomes large, the 
number of solitons expressing a single wave crest of the cnoidal wave 
decreases.  When the value exceeds about 0.98, a is approximated by A 
so that the influence of the adjacent waves become negligible and the 
cnoidal waves can be expressed as the regular train of solitons with the 
same amplitude.   This means that periodic wave motion can be expressed 
by using a particle-like waves such as solitons, and that solitons are 
superior to cnoidal waves as elementary excitation in the wave field 
governed by the KdV equation.  We, therefore, may describe theoretically 
nonlinear random waves in shallow water by making solitons elementary ex- 
citation. 

3.2 Expression of the Swell-Like Waves Based on Soliton Modes 

It is possible to express approximately the swell-like waves by the 
perturbed approach from sinusoidal modes as made by Freillch and Guza 
(19&1*) .  However, the calculation becomes very complicated, so that the 
approach is not applicable to explain nonlinear random waves completely. 
Some attempts[Nakamura and Matsuno(l98o) and Hirota and Ito(l98l)] were 
carried out of the theoretical expression of nonlinear random waves by 
making cnoidal waves elementary excitation , but they merely succeed in 
the case of two-periodic waves in shallow water.   Consequently, the ap- 
proach making solitons elementary excitation may give the sole and possi- 
ble expression of nonlinear random waves in shallow water.  Hence, con- 
sidering that the swell-like waves in shallow water are the typical non- 
linear random waves, we assume that the swell-like waves have a coherent 
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dynamic structure making solitons elementary excitation^, that is, the 
soliton structure, as far as concerned with the dominant portions of them. 
In order to describe theoretically the swell-like waves under the ahove 
assumption and the condition of nondegeneration, we derive the exact 
multi-soliton solution of the KdV equation satisfying the continuity 
condition for wave profiles around the mean water level( 198*0 as 

,,= (4/3) C logF)ff-fo (lh) 

where 

F =   lim det \&ij+-*]k- f.\,   i£i, j<N (1?) 

/, = exp { Bi  ( f-«,-r - 3,- )}  ,  B, =V 3A; • 

<r,=A,/2-3i)0/2 
(16; 

in which both of A^ and &i  are integral constants,_  A^_ denotes the am- 
plitude of a soliton expressing its energy level, 5^ the phase constant 
determining the position of the soliton with the amplitude A^, c^ the 
wave-celerity of the soliton, and S^j Kronecker's S.      And, n is a sta- 
tistical quantity defined as an ensemble mean of solitons satisfying the 
continuity condition and given as 

7„=lim(2/3C)(logf )s \' (17) 

under the assumption that disturbances  exist at  infinity and  the period 
of  observation^': -C~S)   is   sufficiently long to describe the wave  phenom- 
ena. 

In analyzing  the  swell-like waves with the  soliton structure,  we may 
assume  the  following relation for spacings  between the  crests  of solitons, 
which  states  that  interactions  of  solitons are  negligibly  small. 

| ?,-£,- |>/3,      e-f<Kl.     -°°< •• <£i<£y <-< + °° (18) 

where 5^_  is  the coordinate of  the crest position of the  soliton with the 
amplitude Aj at i  = T0.       Under  the above  assumption,  Eq.('15)   can asym- 
ptotically be rewritten as 

F= .ff   { 1+/, exp (-B,A,)} (1Q) 

where 

A,=-(l/B,) log {  ,n    <.B,-Bi)'/(.B,+ Bi)'} (20) 

Substituting Eq.(l9) into Eq.(l4), we can obtain the asymptotic ex- 
pression of the swell-like waves based on soliton modes as 

1= .2 A{  sech
2 !?; -It-  !?i = (vT3y2) ( e-<:,•!•-«,•) . <S,= 5,+A, 21 

This expression asymptotically "agrees with the exact solution of the KdV 
equation even when the value of x is finite not but x •* «>, only if the 
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relation of Eq.(l8) is satisfied.   It is emphasized that this expression 
admitts arbitrary degeneration of the amplitudes of solitons and is in- 
dependent of evolution type.  Moreover, we can easily determine the in- 
tegral constants A^ and S^  from the observed data of swell-like waves "by 
using the asymptotic solution, although it is very difficult to determine 
them and transform the exact solution with unknown constants into the 
particular solution expressing actually the swell-like waves as far as 
the exact solution is used. 

Taking into account these facts in addition to that the usual swell- 
like waves can be expressed by the asymptotic multi-soliton solution as 
the authors recently pointed out(l984), any wave motion to be governed 
by the KdV equation may asymptotically be expressed as a train of solitcns 
with various amplitudes under the assumption of Eq.(l8).  Macro-scopic 
properties of the waves then may uniquely be described by using the en- 
sembles of Aj and &^. 

3.3 A Complete Orthonormal System 

If the right-hand side of Eq.(2l) is transformed into a linear combi- 
nation of orthonormal system, {<f>^}, by using Schmidt's method, it becomes 
a complete orthonormal system because Eq.(2l) is a solution of the swell- 
like waves having a soliton structure. Eq.(2l) is then rewritten by the 
linear combination of complete orthonormal systems 

?7 = lim   S A, <l>L (t>, ) - ru = lim' 2 A, 2 c.. 0, ( rf. ) - ?;„ 
w-°° i =i W~

M
 i =i     / =i 

where 

(22) 

01 = (Pl/||<flll  , 

( <pi.   (Pi) ( f\<   ti ) 

-1/2, 

CF) = 

(  !p;-i.    <P\)   •••   (  <Pi-i .    •!>! ) 

G ( fi,   ••• ,   ft )-- 

•,   <P, ) 
-1/2 (/£2) 

( t»i.   *>i) ••• ( fi,   <!>,) 

(  #; .    (0, )   •••   ( <p, ,   (!>,) 

cn =Du ( du- Ai ••• dm) 

in which  (i|i^,<|>i)   is  the dot product defined by 

( Vi •   <t>j) =   I   <Pi 4>jdi 

(23) 

[2h) 



DYNAMICAL EXPRESSION OF WAVES 441 

and B-,J  a cofactor of d-^ element of the matrix [D] defined by 

' Ai   o 

CD] = 

where 

.dux  "' d« 

dU =    21 dji ( f, • fj)/\\ «•/ -    2    *,- ( *; .   <t>j ) || . (  J > « > 1  ) 

^//=1//H*'/-   yfL   </>j<-*j.   <t>l  ) 

(25) 

(26) 

1(.     EXPRESSION  OF THE  INTERNAL PROPERTIES  OF SWELL-LIKE WAVES  BASED 
ON  SOLITON MODES 

U.l Reduction of the Velocity Potential 

Not  only the  number  of  solitons  hut both of the amplitude A± and the 
integral constant n0 are invariant,   so that the wave-celerity c-  also 
become  invariant and each  soliton propagates  with a constant  speed.   We 
then introduce the  following transform of variables  into  each soliton. 

a i ~ f — ci T (2T) 

Assuming that "both n^ expressing the wave profile of the soliton with the 
amplitude A^ and Sl^ being the velocity potential are functions of a^, we 
obtain the relations 

3>),/3t=-c, dVi/doi ,   3 V ,/3£ = 31; /d°i 
(28) 

Substituting Eqs.(27) and (28) into the relation between £2 and n derived 
from Eq.s.'(5) and (6), 

(d<^y3x)yVW=eri + e'{v'V2 + (1^2)(.l-z*')  3*r;/3?2+ 3Q/3r ) + ...   (29) 

which may be transformed to 

Q <J>/3* )/•/?£= S Vi -10+( 2f, ->)„ )2/2 + ( l-z«!)/zi3!V3«2 

i i i ' 

-f c,(Vi-V0) + ~- (30) 

It is found that the water particle velocities of the waves having the 
soliton structure have the particle-like property to be governed directly 
by the amplitude of each soliton and the periodic property dependent on 
the ensemble of solitons through the continuity condition for wave pro- 
files. 
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4.2 Expression of the Water Particle Velocities 

Substituting Eq.(2l)   into Eq.(30)  and  evaluating the velocity poten- 
tial of the waves  to the  second-order approximation,   the horizontal and 
vertical velocities  in the Eulerian coordinates  u and w are  obtained re- 
spectively as 

v - r ^o     A, , ,z.z,     9 z .2 , "I 
-^=2A, sech2 !?,-'J0 + ZA,sech2^    ~+ —{ 2-3 (-) }--A,-{ 1 - ( - )   } sech2^, 
v^A      I I L   2        2 A 4 A 

+ - ( I Ai sech2,?,- )2- V + ^,'jjAi (31) 
2     i 2iV      I 

-^- = i(-)l vCffsech2,?,tanhtfj   2+{(i)-l ) A,-( 3 sech2^ - 1 ) 

+ 2lA>sech2
!5>+2 >)o-A,l (32) 

i J 

Further,  those  in the Lagrangian coordinates U and W are  expressed as 

—==^=+222 -tanhi?,-  |„ tanh^sech2!9y+')0z*Zv'3A,3tanh!?,. sech2!9,-      (33) 
VgA    v#A        i  j       Ci i 

-—=-  (-)f2 2 tanhtf. j      sech2,?; ( 3 sech2!?,-2 ) 

--')0+2A2sech2!jy(3sech2;?,-2)-22 — -sech2!?, sech2t?y tanhtfy }     (34) 

4.3 Expression of the Mass Transport Velocities 

In this study, the expression of the velocity potential has been de- 
rived under the assumption of Eq.(28) as shown already, so that the water 
particle velocity is independent of the restriction caused by the so-calt 
ed Stokes' definition of wave-celerity.   The mass transport velocities 
:can then be defined both in the Eulerian and Lagrangian coordinates. 
Denoting the observed period as T*, the mass transport velocity in the 
Eulerian coordinate: u is defined as 

^-=i,/'•-?-*• (35) 
Vgh    1     Jo     Vgh 

Rewriting Eg.(31) into the expression of H solitons which are included 
in observed data within the period of T* and introducing this into Eq.(35), 
we obtain 

»V3AJ 
_!L=JLf

T*(Iili..ech.1,i.)'A^I,o.__±f {!_(£)•)! SgE    2T*  J»  i 2 ° 2T* '   v/<  '( Cj 
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IT* IT* 
X 1 2 tanh #,• | „ - tanh di ( seen2!?,- + 2 ) L    } 

"       , Vo lK~i   2 tanh !?. |T*.. 
(36) 

By the same means,  the mass transport velocity U in the Lagrangian coor- 
dinates is  derived by the horizontal velocity for the observed period as 

U        «       21,»    i      fAl, V3A7 IT* 
—— =~^: + —- i ——\j—    ' at* sech2 #, + tanh #,• J 
•JJh    Vgh      T* i    c]   V 3 2 Mo 

2    " "   A,     [Xl                               T*     2    " " VAfAy 
 Z2 L\/— tanh^losech2^.-!,,   + =j, 2 2.  

I       tanh !?. tanh tf, sech2 l?. <^« 
•'n 

(37) 

5.  APPLICATION TO FIELD WAVES 

5.1 Soliton Analysis and Synthesis of Observed Data 

For expressing theoretically observed waves on soliton modes, we 
must decompose them into a number of solitons to determine their ampli- 
tude A^ and phase constant <5^.  Then, employing these values of A^ and 6^ 
into E<i.(21) may yield a theoretical expression of the waves witha soliton 
structure. 

Under the assumption that the right-hand side of Eq.(23) is a complete 
orthonormal system, moreover, the ensemble of the amplitude {A} by making 
the inner product between the theoretical wave profile n given by Eq..(23) 
and the observed wave profile Y can be calculated by 

A H 

dm (Y + V0,  «S, ) 

<.Y+VC,   0„) 

(38) 

5.2 Accuracy of the Expression of the  Swell-Like Waves 

An observation of the  swell-Ike waves was  carried out on the  7th of 
March,   198l,  by using the wave observation  system,  at the  Ogata Wave 
Observatory,  Disaster Prevention Research Institute, Kyoto University. 

Fig.   3 describes  the position of the wave gauges of capacitance type 
installed along the  observation pier 315m long in the  offshore direction. 
The water depths  at which the wave gauges are  installed are  shown in the 
figure.       Wind  speed and direction during  the  observation were about 3m/s 
and S,  respectively.       Incident waves were long  crested and approaching 
parallel with the pier as  swell-like waves   suffering  from no  influence 
of wave breaking. 

A comparison of power spectra computed by the  FFT method between the 
waves observed at P.  1 and P.  2 is shown in Fig.  k with their values of 
skewness  and kurtosis  of the water  surface displacement.       And,  the Ursell 
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• /*" 
315 

Observation Pier   ,'PJ.P.2\ 
>  •- *> tea **     "  -  -  - ' 

/• 

(a)  Plane view of observation pier 

  P • ljOnshore   C.W.G.J„P.2(Offshore C.W.G.) 

£ 
S 

k—^ 
-* 

3 

Unit:m 
(b)  Side view of  observation pier and wave gauges  installed 

Fig.   3    Positions and number of installed wave gauges 

number(Ur)  at P.   1 calculated 
by the  zero-up crossing method 
is  i»5.9.       The power  spectra 
exhibit pronounced  secondary- 
peaks at  frequencies about 
twice the main peak frequencies 
due  to nonlinear  interaction 
among  sinusoidal modes.       It  is 
considered  from this  figure 
that the waves are  swell-like 
with fully developed nonlinear!ty. 
Low frequency components  of the 
waves  have considerable energy 
which is probably due to water 
surface displacements with long 
periods,   such as  surf-beat, 
independent  of  the  soliton modes. 
Mechanism of their  excitation is 
different from that  of the waves. 
The appraoch based on soliton 
modes  can therefore be applied 
to the  observed data,  if  the  low 
frequency components under o.otaz 
are excluded with a numerical 
low-cut filter  of critical fre- 
quency  of fc  =  O.Otaz. 

102 

10 

p.i 

 P.2 

Skewness Kurtosis 
P.I 1.X4 5.13 
P.2 1.16 4.61 

Fig, k Spatial variation of power  spectra 
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Fig.   5 shows comparisons of wave profiles between the data observed 
at P.  1 and P.  2 mentioned above and the theoretical results obtained by 
the  expression of Eq.(2l).       Clearly,  Eq..(2l)   has  sufficient accuracy in 
expressing the wave profiles under the  swell-like  sea condition. 

Simulated by soliton spectra     Observed 

A.     A       A    A   -       I\\r\    A     A    A,     \ .A    ~„ 
W     ^ 

0.4J 
0.24 

h    /o 
0.2 

a 
-0.21120 
0.4 ! 

H   n ' ^ -  A      A     A 
h    u~^ 
0.2J 

1/v    A    A    A    A    A "U^jffgA    A    A, 
t(sec) 

A^,A   A^A,   A^A, 7      V?       v^>      s~^     Oil—'       i-&»    \! 

120 

240 

P.2 

0 

Q"1.^   -A    A      A.     A     A 
-0.2-1120 

""^      ^    v?     ^37" 
60        ., 

t(sec 
 A^      - A 

*p=^ 

/\   A „A 
120 

180 
\35<*   \y  ^ 

t(sec) 240 

Fig.   5    Comparisons  of wave profiles between the  observed data and 
the  theoretical results 

One of the comparisons between the  observed data and  the  theoretical 
profiles  of  the waves  propagated from P.   1 to P.   2 is  shown in Fig.   6. 
This figure states that this approach can express the propagation of the 
waves,  as well as  the wave profiles  with  satisfactory accuracy. 

0.4 
,0.2 

0.2 
0 

-0.2 

Soliton spectra propagated Observed 

t(sec) 120 

180 t(sec) 240 

Fig. 6 Comparison of wave propagation between the observed and 
theoretical data 

Figs.   7 and 8  show    another comparison on swell-like waves with the 
Ursell  number  22.h at P.   1.       The observed data  in these  figures were 
obtained by  the  same  observation  system under the  similar  sea  condition 
and analyzed as well.       The expression has  sufficient accuracy,   so  that 
the dominant part  of these waves  have the  soliton structure  for which the 
formulation can.bemade by the soliton modes. 
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0.4    Simulated by soliton spectra 
_0.£ P.l 

/%     ,/\   ..A. /V £> »._» £s_ 

Observed 

uAwA. 
120 

240 

0.2J 

-0.2"!l20 180 
t(sec) 240 

Fig.  T    Comparisons  of wave profiles "between the  observed  data and 
the theoretical results 

Soliton spectra propagated Observed 

Fig. 8 Comparison of wave propagation "between the observed and 
theoretical data 

5.3 Extensive Application to Waves Under the Various Sea Conditions ( 

Observations of waves were carried out by use of both the array con- 
sisting of nine capacitance-type wave gauges installed along the obser- 
vation pier mentioned above and the line array of four ultra - sonic-type 
wave gauges installed at the offshore end of the pier to obtain direc- 
tional spectra.   Fig. 9 shows the positions of the wave gauges at 
which the water depths are also shown.  Fig. 10 indicates the changes 
in wind speed and direction within a period of the observation and the 
relation between them together with the data numbers of which abbrevia- 
tion is expressed by DNO. 

Fig. 11 shows some comparisons of wave profiles at the points of \jh, 
CW5, CWT and CW9 between the observed data of DNOs 27, 31 and 3k and the 
theoretical results by soliton modes. The Ursell numbers at UU of DNOs 
27, 31 and 31* are ^.7, 18.0 and 11.1, respectively. We may conclude 
that the expression by soliton modes has sufficient accuracy in express- 
ing the wave profiles under various sea conditions, as far as their 
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dominant portions are concerned,  although  the  influence of wave breaking 
is  not negligible in these  comparisons  where about a few ten's  percent 
or more  of the waves are broken. 

|<- 27.3 4- 317 -t- 31.6 -4- 27.0 4- 36.0 -\- 31.6 -+ 182 f- 31.7 —• 

-A—D D 0—Q A D-CK^c: 

/V 

cwi2 cwn   cwio   cv/9  ewe    CW7  ewecwss^Xh 
(41)     16.2)        16.9)        17.4)      (63) 15.7)      (5.3) 15.31 ^ l»hJT' 

CW'Capacitance type 

U -Ultra sonic type       m,., 

Fig. 9 Positions and their numbers of the installed wave gauges 
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results 

5.1* Accuracy of  the Expression of Internal Properties 

An observation of horizontal water particle velocities of the  swell- 
like waves  with the  Ursell number 19.6 was  carried at Ajigaura coast fac- 
ing  the Pacific  ocean by Horikawa  et al.       The velocities were measured 
at the water depth of 2.28m by using an electro-magnetic current meter 
which is  installed at the height  of  0.62m above the  sea bottom. 

Fig. 12 shows part of the comparison of the velocities between their 
observed data and the theoretical result calculated by Eq.(31). Fig. 13 
also  shows  similar  comparison of wave profiles.       It is  found from these 
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Fig, 12 Comparison of horizontal water particle velocity between 
the observed data and the theoretical results 
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 Simulated by soliton spectra 
 Observed 

t/g/h 
Fig. 13 Comparison of wave profiles between the observed data and 

the theoretical results 

results that the expression of the water particle velocity based on 
soliton modes has accuracy similar to that for wave profiles as far as 
the expression of wave profiles has sufficient accuracy. 

6. CONCLUSIONS 

From the viewpoint that the soliton is one of the most elementary ex- 
citation in the nonlinear random waves, we have attempted to describe 
swell-like waves in shallow water theoretically by deriving the asymp- 
totic multi-soliton solution under the assumption that the waves have a 
coherent dynamic structure composed of solitons alone.  The expressions 
of wave profiles and internal properties such as water particle and mass 
transport velocities were derived by using the asymptotic solution, in- 
dependently of both the evolution type and the degeneration of the amp- 
litudes. 

Further, applicability of the expressions by soliton modes was ex- 
amined by comparisons between observed and theoretical wave profiles and 
internal properties.  We conclude from these comparisons that the ex- 
pressions by soliton modes practically have sufficient accuracy in ex- 
pressing various properties of the swell-like waves. 
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