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ABSTRACT 

In harbors affected by ocean swells,cargo handlings are often inter- 
rupted and irooring lines are broken as a result of severe ship mo- 
tionsl). In order to decrease such accidents, the noored ship notions 
in a harbor basin must be studied. In this paper the ship notions in 
the harbor basin are investigated by using three dimensional Green's 
function and close agreement between theoretical and experimental 
results can be found. New methods to reduce noored ship motion are 
also proposed. The efficiency of these methods is verified theoreti- 
cally and experimentally. 

1. INTRODUCTION 

At the initial stage of harbor planning, the hydraulic experiment 
with respect to stillness in a harbor is usually carried out and the 
degree of stillness in the harbor has been traditionally evaluated by 
the wave height. In the field, however, the limits of cargo handling 
in rough sea condition are judged by the ship movements. Therefore, 
lately, an analysis of moored ship motions in a harbor basin has become 
major interest for harbor planning. 

As for the ship motions, there are short-period ones induced by wind 
waves and swells such as surge, sway, heave, roll, pitch and yaw, and 
long-period ones such as surge, sway and yaw whose natural periods are 
decided by the moored system. Many studies concerning long-period 
motions of a moored ship along the quay wall in beam sea have been done. 
The authors have also presented a paper about the long-period ship 
motions induced by the harbor oscillations in an arbitrary geometry 
basin^'. Therefore, in this paper, the short-period ship motions are 
investigated by three dimensional method. 

The three dimensional analyses are divided into two methods, one is 
the singularity distribution method  and the other is the joining 
method of divided region^'. The latter method is used in this paper in 
order to analyze the ship motions along a straight quay wall and in a 
slip and these results are verified by the experiments. 

On the other hand, Joglekar and Kulkani^) have proposed the mooring 
system with the dash-pots in order to reduce the long-period ship mo- 
tion in bore tide. However, the effects of these dash-pots on the 
short-period ship notions was not clarified yet. In this paper, the 
new mooring system with dash-pots is also analyzed theoretically and 
experimentally. 
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! Region II _ 

Fig.l Definition of the 
coordinate system 

2. THEORY OF SHIP MOTIONS 

2.1  Mations of tfoored Ship Along the 
Straight Quay Wall. 

The authors will try to develop the 
joining method of divided region into 
that which can be applied to the ship 
motions along a straight quay wall. 
Since very large memory size and a great 
deal of cost are required in three di- 
mensional analysis, the method of images 
are applied to decrease memory and cost. 

Fig. 1 shows the moored ship and the 
coordinate system. The amplitudes of 
ship motions and waves sice,  supposed to 
be small, and fluid around the ship is 
assumed to be ideal and irrotational. 
The coordinates of the center of grav- 
ity of the moored ship are given by 
(0,0,Zj) in still water and by (X, ,Y„ , 
7c )  in waves. $ , <52  and 63 show 
the rotation of the center of gravity 
of the moored ship around X, Y and Z 
axis, respectively. Then, the ship 
motions are expressed by: 

(sway), 

(pitch) 

? ,UXl) 

Yo=n e 
-iat 

(surge), Zo-Z0=C e 
•iot 

.  * -iat , •,..  .  * -iat 
<52=<»2e    (roll), <53=u)3e 

(heave) 

(yaw) 
(1) 

„.  * -iat 
X0=5 e 
.  * -iat 
oi=n)ie 

where £ i  n , C,uxi , 102 and wj are the amplitudes of ship motions, 
i=y£r , O=2TT/T, T is the wave period and t is the elapsed time. The 
water region is divided into two parts as shown in Fig. 1. The veloc- 
ity potential in region I is given by: 

,W  gCo rrx I        s,c   1        > -rCOSh k (h+Z) ,v"> ,•,   . 
•f   a [{fo (x'y)+f l (X'Y) } coshkh +n=lf2 (x'Y) 

cos kn(h+z) 

cos kr,h 
(2) 

where g is the gravitational acceleration, £0 is the amplitude of 
incident waves, h is the water depth and the superscript w means the 
velocity potential along the quay wall, k and kn satisfy the following 
equation: 

a2h/g = kh tanh kh = -knh tan knh,  (n=l,2,...) (3) 

The wave function f0 corresponding to the incident and the reflected 
waves is given by: 

f 0 (x,y) = -i exp{-ik(x coscst y sines) }-i exp[-ik{(-2Yw~x). 

cosa + y sines}] 
(4) 

where yw is the distance between the quay wall and the center line of 
the ship, a is the angle of wave incidence. The functions f 1 (x, y) 
and f i"'(x, y) are the terms corresponding to the evanescent modes and 
they are expressed as Eq.(5) by using the Green's formula: 

fL(x,y) = - |.|{Axj fi(j) - A^ fi(j)} 
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f2
<n>(x,y) = - | .MBxjfAjJ-B^'fj) } 

where over bars indicates the normal derivative to the boundary, 
namely, f i (j)=3f i (j) A3v, f2""(j)=3f2""(j)A!v, N is the_nurrber of 
segments of the boundary of ship and A^i, A,,-:, B„J and B„-i are given by: 

i r        (l)     in iJ  *J  x3 in  XJ  a) 
Axj^J^.teo (kys)+Ho (kyi)}k ds, Axj^j^.^Ho (kYs)+H„ (kYi)}ds, 

Bxj=-^/&s{Ko(knTs)+Ko(kn Yl)>k ds, ^cj=-iJAs.g|{K„ (knYs)+K0 (knYi) }ds, 

Ys=V(x-5j)
2+(y-nj)'  , Yi=/(2Y+x+Cj)'+(y-nj)'! (6) 

where the coordinates ({, n) correspond to the boundary of ship, j is 
the number of segments of boundary of ship and the coordinates (x, y) 
express the internal point. 

On the other hand, the velocity potential in region II is given by: 

$=S£i a    [i|»(x,y)+ £ fe(x.y)cos s (z+qh) 

+i m^^~ ^ + ^<(1+ K>2"?* z1   1     ^Co      t<,o        Go n       J 

4 So Co        ?o        h 

(7) 

vihere s = STr/qh, q = 1-q and qh is the draft of the ship. When Ps are 
the wave forces, Ts are the moments of wave forces, Fs are the mooring 
forces and Ms are the moments of the mooring forces, the equations of 
motions of moored ship are given by: 

d2Z0 =. 

St5"" I    (8) 
d25s = 

dt2 

M !-#!. = Px + Fx,  M ^ 
dt2 dt2 

Iv f = Tx + Mx,  I,, 7 X dt2 y dt2 

Py + Fy, M - 

Ty + My, I* 

where M and Is are the mass and moments of inertia of the ship. 

The continuity conditions of fluid particle velocity and pressure at 
the imaginary boundary shown in Fig. 1 are given by: 

3x 
w 

-ia(5*-<4y + u^z-zo)}, (5=+a, 0 > z > -qh) , 

-% = -ia{n*4to$x - w, (z-z„) },   (n=+b,    0 > z > -qh) , 
dy 

^-_m. ,(-qh>z>-h), , (-qh >  z > -h) 

(9) 

where a=B/2, B the breadth of the ship, b=Ls/2, Ls the length of the 
ship. From Eq. (1) to Eq. (9) , the amplitudes of ship motions £*, ri*, 
z*, 101, 0J2 and (u3 and the unknown functions fi, f2" , 3f i/3v, SfJ/'Sv 
are obtained. 
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2.2  Motions of Moored Ship in a Slip 

2.2.1  Wave Height Distribution in a Slip 

Since the ship motions in a slip are naturally induced by waves in 
a slip, it becomes important to investigate the accuracy of wave height 
distributions in advance of the analysis of moored ship motions in the 
slip. Moreover, the three dimensional analysis of the ship motions 
especially in a slip requires very large memory size and a great deal 
of cost, so the method of images are also applied to decrease memory 
and cost. 

The region around the slip is divided into two parts, as shown in 
Fig. 2. The velocity potential in each region is given by: 

,i.ja(flM + flM}^hy 

_ _2£o. f2(x,y) cosh k(h+z) 
cosh kh J 

when the incident  waves into the slip are given by: 

Z = ?oexp{-i(kx cosa + ky sina + at)} 

the wave function f0 is expressed by: 

fo(x,y) = -2i cos(ky sina) exp(-ikx cosa) 

Using the Green's formula, the wave function fj and f2 

(10) 

(11) 

(12) 

are given by: 

M!+M2 l« l«TMi+ M2+ M3+ 1 

M!+M2+l" M1+M2+M3 

Fig.2 Division of the region around a 
slip and segmentation of the 
boundary. The angle of wave inci- 
dence is measured anti-clockwise 
from x-axis. 

fi(x,y); 

A. 
fl(j)- 

•Xjfl(j)} (13) 

f2(x,y)=-£ £{Axjf2(j)- 

Axjf2(j)} 

where Mi is the number of 
segments at the entrance and 
Ns is the total number of 
segments of the slip. When 
(x, y) are on the boundary, 
e=l/2, and when (x, y) are in 
the slip, e=1.0 . It is not 
convenient to apply the 
method of images to the par- 
allel boundaries, because the 
number of images amounts 
infinity and the times of 
computation becames long^) . 
So the Green's functions are 
chosen so as to satisfy the 
following relations: 

Axj =0 on C2 , C3   (14) 

As the following equation is 
satisfied on the boundary, 
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f2(j) = 0 on C2, C3, Cu, (15) 

the number of segments in Eq.(13) is reduced from Ns of Lee's method 
to Mi+ Mi,. Then the Green's function A^j which satisfies Eq. (14) can 
be obtained by the method of images as shown in Fig. 3: 

( ik • ">        —  f     ik 4 "'    8Yp 
VTJASJ" 2-P^H° ^ ds' **j=)&Bjr£,Ei (kVsv a8- 

Yi =/(Xj-xC+ (yj-y)S 

Y2 =/(-xj-2£s-x)<+  (Yj-y)
l~ 

|p-=-(yj-sr)Ai 
3Y2 
3v = -(Yj-Y)/Y2 

T3 3Y3 _ =/(-Xj-2X,s-x) 
2+ (-2ds-yj-y)1   , f± = -(2ds+yj+y)/Y3 

!^=-(2ds+yj4y)/Y„ Y<, =/(XJ-X)^+ (-2ds-yj-y)z , 

(16) 

P=2 P=l (X.,Y.) 
1 2   • • J. . J. 

f+- 

P=3   P=4 
Fig.3 Reduction of number of bounda- 

ry points by applying the 
method of images 

Besides the above alternations, 
the computation is carried out 
in much the same way as the 
Lee's method''. 
The memory size and cost in 
this case is one quarter of 
those in the Lee's method. 

Figure 4 shews the response 
of wave height to the wave 
period T. The coincidence of 
numerical and experimental 
results is fairly well. So the 
wave height distributions in 
the slip can be obtained exact- 
ly by the above method. 

2.2.2  Ship Motions in a Slip 

The region around the slip 
is divided into three parts, 
that is, the outer part of the 
slip region I, the under part 
of the ship region III and the 
rest part in the slip region II. 
The velocity potential in the 
region I is equal to Eq.(2) and 
is given by: 

* i -£ (17) 

where the superscript s means the velocity potential in the slip. The 
velocity potential in the region II corresponds to the one which is 
lacking in f0(x, y) in Eq.(2) and is given by: 
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x=o 
Y=-0.2 5ds 

-A AK\. • • 

l*\ *l    i 
i              /            * 

w\    * \£*r 
• T  i   i 

\» /• 
i  V   i   i    i 

2.0 

1.0 

0.0 

W-Kt 
• Experiment 

  Authors' Theory 

i  i  I  i  i 

J I L 
1.4 1.2 1.0    0. 2ls/h 

1.0 X-5   T(sec) 2-° 
J 1 u 

1.4 1.2 1.0     0.8  2£S/L 

Fig.4 Amplification factor of wave height H at the typical point 
in the slip,where Hi is the incident wave height. 

& = S£JL [{f
i:'(x,y) ^Shkth+zL + - «    cos 

k"(hH-Z) ,        (18) rl±      a    l    '  cosh kh   n«i       cos k^i 

The velocity potential in region III is the sane as Eq.(7) 

?III=#EI (19) 
As shown in Figure 5, boundaries are chosen as follows: the entrance 

Ci, the quay walls surrounding the slip Cz,  C3, Ci, and the ship sides 
C5. They are divided into M!~M5 segments. 

At the entrance the following conditions must be satisfied: 
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II 3v 3v 
,on Ci (20) 

Substituting Eqs.(17) and (18) into 
(20) and multiplying each term of 
above equations by cosh k(h+z) and 
cos kn(h+z), and integrating from 
z = -h to z = 0, following relations 
are obtained. 

(21) 

fo(i + 
, 10) 
fi i) 

„(0),. 
= f2   (i '        1 

f»> i) = f2""(i • 
3(fo (i)+f,10' i)) 3f2<0> 

3v 
(i) 

1 3v 

3fi""(i) 3f2"" (i)     j 
3v 3v 

on Ci 

where the symbol i shows the i-th 
position of segment instead of 
x,y axes. If the coastal line is 
straight, one of the boundary condi- 
tions is simplified as follow: 

y 
A 

Region I 
Ci 

M5+l... 
sss '    '  o 1 1 / M.+M.+l / •v5   .' / 

y •s / s / s / 2 / 
i' 1 v —— s 
i;Ms 

III • 
c  y 

2   / 
' '    C 

/ s / c5 II s 
S s / s / 

> 
C3 

Fig.5 Definition of the coordi- 
nate system of the moored 
ship in the slip 

3fi'(i) 
3\) 

3fa'°'(i) 
3u 

on Ci (22) 

Since the normal to the boundary is directed outward in region I, the 
wave function fi101 (i) is given from the Green's formula as 

Ms+M,  ...  MJM/I-.X *. = <•*>,. 
ff"'(i) 

2 .,=, 
T{f{"(j,»^9CL 3v H0'"(ky) 

3fi (j) 
3v •} ds (23) 

D=M5+i 
Substituting Eqs.(21), (22) into Eq.(23), the boundary conditions for 
f?(i) is obtained: 

•  Ms+Ml        _ (0) 
i . ^ H"'(kvl kfo (i)  ds . on Ci (24) f2 (l) 

where f2""(j) = 3f2
(0,(j)A3v . 

be obtained. 
In the same way, the next condition can 

_,    i M5+Mi       _„„, 
f2"(i) = i . I    K„(knY) kf?\j) ds , on d (25) 

where f2""(j) = 3f2"tj)A3v. 

Applying the Green's formula to the boundaries Ci, CV,C5, the next 
equations can be obtained: 

Ms+Mi+Mi.   ...      _ 10, 
f2(i) = 

f2
n'(i) 

j£i (Aij f2"'(j)-Ai:J f2 

~      £ { Bij f2 
j=l 

(j)-B: 13 

(j)} 

"'(j)} 
(26) 

where Ai Bij' Bij 

on Ci,Ci,,C5 

are given as follows: 
flij=- IJASJ £,{H§,(kv}k **• An=- ILj j^A^ >ds 
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Bil~ T/ASJ !,{K° (k^P»}k ds' *$- IJLj i^0 (knYP' MS   (27) 

where Yp and SYp/^ are equal to those given by Eq. (16). 

Since the particle velocity normal to the boundary G, is zero, the 
following boundary condition is added: 

The above equations from (23) to (28) can be written in the matrix 
form: 

where 

,01) = _c<"'f"'+^;W (W_pWein) 4{3m'i^'-o'^X1"' 

r un ^-j}"1'f"" +R°" fw _g(nle<nl4.5"° e wjpWjf"" 

fo(M5+l) 
^o) = I f o (M5+2) 

, n=l,2. 

}     (29) 

, G"= 0 (30) 

lf0(M5+Mi) 

and f<ll>,e<"1 and X'm are the vectors of the wave functions f2<mon the 
boundaries_C5, Ci and CK,Respectively. A"", A"", B"", B'"\  C"" , C("' , 
Dm , D"", P"", C"", R"", R'"\ S°" , S"', T'"' are the known matrices. 

Rearranging the expression (29) , the wave functions f"" and i""0 

(n=l,2,...) on the ship boundary can be transformed into: 

f "" = u<mf'">+ u<» , (31) 

where H°" is the known matrix and u"" is the known vector. 

Once the relation between f 2"" and f2"" on the ship boundary is 
obtained, the procedure of the calculation hereafter is the same as 
that of ship notions along the straight quay wall. 

3  EXPERIMENTAL VERIFICATION 

3.1 Experimental Apparatus and Procedure 

The experimental setup in cases of the quay wall and the slip are 
shown in Figure 6 (a) and (b), respectively. The wave basin of 30 m 
long, 20 m wide and 0.6 m deep was used in the experiment. A rectan- 
gular floating body of 2.4 m long, 0.455 m wide and 0.098 m deep was 
used as a ship model. The other dimensions of this ship model are 
shown in Tables 1 and 2. The ship model was moored by coiled springs 
whose spring constant was 67 gf/cm. The ship motions were measured by 
the 6-component measuring instrument. 

3.2 Results and Discussion 

3.2.1  Ship Motions Along the Quay Wall 

The kinds of experiments of the ship motions are carried out under 
the following conditions. In one group, the wave period is varied and 
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the angle of wave Incidence was kept constant and vice versa in the 
other group. 

(a)  Ship motions in beam seas 

In Figure 7, the ship notions measured in experiments are compared 
with the theoretical results. As can be seen in the rolling notion, 

the calculated period of 
-.-Slope 

Wave     
Generator 

Wave gage 

Ship Model 

Concrete Block 

(a) 

Wave gage 

j^Wave Direction 

Model Harbor 

30m- 

b£ 
(b) 

m 
Fig.6 Arrangement of moored ship in the 

wave basin 

resonance is little bit 
smaller than that of the 
experiment. The reason of 
this difference is the effect 
of eddy-making which is not 
taken into account in this 
analysis. While experimental 
results of heaving and sway- 
ing motions seem to be 
predicted fairly well by this 
theoretical analysis. 

If the floating body is 
symmetric with respect to the 
x-axis in beams seas, pitch- 
ing, surging and yawing 
motions should not occur in 
the potential theory. Al- 
though the solid lines in 
Fig. 7 in these ship motions 
shew the results considering 
the difference of the center 
of gravity from the center of 
figure in y-direction, there 
is wide division between 
theoretical and experimental 
results especially in yawing 
motion. The asymmetry of 
waves and the effect of eddy 
shedding may account for this 
discrepancy. 

Table 1 Dimensions of moored ship 

along the quay wall 

Table 2 Dimensions of moored ship 

in the slip 

Natural period (sec) 

Sway 8.2 ,Surge 5.5 ,Heave 1.22 

Pitch 1.7 ,Roll 1.34,Yaw  3.8 

Moment of inertia 

Pitch 486 x 106(g-cm2) 

Roll 313 x 10s(g.cm2) 

Yaw 497 x 105(g.cm2) 

Natural period (sec) 

Sway 7.7 ,Surge 5.0 ,Heave 2.08 

Pitch 2.5 ,Roll 1.38,Yaw  3.89 

Moment of inertia 

Pitch 569 x 106(g.cm2) 

Roll 432 x 105(g.cm2) 

yaw 593 x 105(g.cm2) 
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(b)  Ship notions in waves of arbitrary angle of wave incidence 

5.0 3.0 

2.0 

0.0 

2.0 
h 
|? 

1.0 

0.0 

Surge 

• Experiment 

  Theory 

  Modified 
Theory 

0   30   60   90"   0   30   60   90"    0   30   60  90" 

Incident Wave Angle (deg.) 

Fig. 8 Relationship between ship motions and angle of wave incidence 

Figure 8 shows the comparison of the experimental results with the 
theoretical results when the angle of wave incidence is changed from 
0 to TT/2. Both results show fairly good agreement. However, the 
theoretical results of rolling motions become smaller than the experi- 
mental ones at the small angle of wave incidence. The cause of this 
disagreement seems to be the difference between the numerical resonance 
period and the experimental resonance period as shown in Figure 7. The 
yawing motion in the experiment becomes larger than the theoretical 
one. This enlargement is thought to be caused by the eddies induced at 
the both ends of the ship. Finally, experimental values of almost all 
ship motions decrease by one-half of theoretical ones near a = 90° . 
Figure 9 schematically shows the straight quay wall of finite length 
and the floating body. The all reflected waves from the quay wall 
affect the floating body when a < on but the effects of the reflected 
waves on the floating body become small when cte = a t, «i, and the 
effects vanish entirely when a > a.2 •    But the reflected waves always 
affect the floating body in the theoretical analysis, because the quay 
wall is assumed to be infinity. This is the reason that experimental 
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results become smaller than theoretical ones near a = 90 . By the way, 
as the angle 0^ shown in Fig. 9 becomes small when a approaches 90°, 
the effects of the incident waves and reflected waves on the ship 
motions can be considered nearly equal. From the above facts, the 
incident wave hieght is considered one half when a > 012 and it is con- 
sidered to decrease from one to one half when a2 _> a ^ ai. The dotted 
lines show the results conducted by the above modTfied theory. The 
experimental results indicate the validity of the above way of 
thinking. 

Wall „. oir 

Fig.9 Reflected wave by the quay wall of 
finite length 

3.2.2  Ship Motions in a Slip 

Figure 10 shows the ship motions for three angles of wave incidence, 
a = 30°, 60°, 90°. It is clear from these figures that the resonance 
periods in a slip are different from the natural periods at the open 
sea. For example, the natural period in heave at the open sea is 
0.8 seconds which is represented by T^ , but the natural period in 
the slip is 2.08 seconds which is expressed by TjL as shown in Figure 
10 (b). And the natural period of the rolling motion in the slip is 
1.38 seconds which is expressed by T^ , but the resonance periods are 
1.15 seconds which are represented by Tj^ and 1.35 seconds as shown in 
Figure 10 (c). The resonance at Tpn seems to be induced by the lateral 
oscillation which is the second mode harbor oscillations having loops 
at the boundaries C2 and C, in Figure 5. Though Tp£ and T^ do not 
coincide each other in this experiment, the rolling motion should be- 
come large when the both resonance periods coincide. 

Another important characteristics of the ship motions are the 
coupled resonances among mutual ship motions. Namely, as the ship is 
surrounded by three quay walls, the waves induced by predominant ship 
motions in one mode affects the other mode of ship motion. And many 
peaks of ship motions can be seen in Figure 10 in comparison with the 
ship motions along the straight quay wall or in an open sea. For 
example, the resonance of heaving motions at T = Tjjg and Tj]g induces 
the new resonance in swaying and rolling motions at the same wave 
periods. And the resonance of rolling motions at T = Tpn and Tpn pro- 
duce the ones of swaying motions at T = TjJjand of heaving motions at 
T = TTJJand Tog . The same phenomena can re seen in the other ship 
motions, though they are not shown in Figure 10. By the way, since 
the damping forces due to eddy-shedding which will be obtained from 
free oscillation test are not considered in this analysis, the theoret- 
ical peaks of ship motions are fairly larger than the experimental 
ones. These disagreements should be improved by considering the 
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1.4 1.2    1.0 0.8 2»./L 

Pig.10 Ship motions in the slip 
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damping forces in Eq.(8). But it is clarified that the theoretical 
and experimental results show fairly good agreement except near the 
resonance periods. So it can be concluded that the short-period ship 
motions in the slip can be predicted by using the above potential 
theory. 

4  MOORING SYSTEM WITH DASH-POT 

The authors have already discussed the effect of the perforated quay 
wall  on the ship motions, but it was found that all ship motions 
along the perforated quay wall were not always smaller than those along 
the ordinary quay wall. So the dash-pot system is considered as the 
another damping system of moored ship motion9'. In this section, the 
damping effect of dash-pot system on the short-period ship motion is 
analyzed. 

4.1  Theory of Ship Mations with the Damping System 

<«> 
Ring gage 

/            Dash-Pot 

=t<! ?* *£           (5W 
G "-JtJJd 

mm 
Fig.11 Arrangement of dash-pot(Sd is 

measured anti-clockwise from 
positive x-axis) 

In order to simplify the problem, it is analyzed by the two dimen- 
sional theory in the simulation. The coordinate system is shown in 
Figure 11. One end of the dash-pot on the ship has the coordinate 
lxai,  z^P) and the other end on the quay wall has the coordinate (xj2>, 
ZcP). These ends can rotate freely by universal joints. The length 
between both ends % is expressed by: 

^/txi'-^)2 + 
, 12! 
(Zd ' Zd )' (32) 

When the ship starts to move, the end of the dash-pot on the ship 
moves with the ship movements, but the other end on the quay wall 
does not move. The change of the length of mooring line AJI3 is 
approximated by: 

A%=[; 
(2) 

*a • 
L= -{?* 

to _ 
-(zd -z0)o)f 

-4' 
ad 

(?*+xd<uf)]e (33) 

Since the damping force caused by dash-pot can be considered to be 
proportional to the velocity, the damping force F(jp can be given by: 

Fdp -v, dteflU 
dt Fdp 

-iat 
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-i^d^d -zd ) [r1l  , u> * 

(34) (5* -(zd " Zo)u*} 

{?* + x^wf} 

where k(j is the damping coefficient. In the case of orifice with 
constant area, k^ is given as follow-'-"' : 

,  _ 8TTU%> Al ,,,-, 
^ " {(a„ +ap)Cd}

2 ' (35) 

where u is the coefficient of molecular viscosity,JL, is the length of 
the orifice, A3, a0 and ap are the cross-sectional areas of cylinder, 
orifice and piston clearance, and C<j is the coefficient of discharge. 
Using FrjD, the forces Fx in x-direction and Fz in z-direction and the Tfc moment fare given by: 

121      to 

Fx = - Fdp.^3-  , I (36) 
121       111 

*d -*& 

% ' 

# -4' 
Jtd ' 

(zd -z0) 
CD 

+ Fz-Xd 

Fdp-^V^ ' (36) 

If above forces and moments caused by dash-pot are substituted into the 
equations of ship motions (8), the amplitudes of ship motions can be 
easily obtained by the same method as that of section 2. 

4.2  Hydraulic Experiment 

In order to verify the short-period motions of ship equipped with 
dash-pot, the hydraulic experiments are carried out. The arrangement 
of the experiment is shown in Figure 12. The sketch of the dash-pot 
is shown in Figure 13, and the characteristics are described in 
Table 3. 

Both results of the ship motions with and without dash-pot are shown 
in Figure 14. It is found from these figures that the ship motions in 
every mode with the dash-pot is smaller than those without the dash-pot. 
Therefore, the new mooring system with dash-pot seems effective to 
reduce the ship motions. 

Furthermore, the theoretical and the experimental results have good 
agreement each other. So it is clarified that the ship motions with 
dash-pot can be explained by the above mentioned theory. The force 
acting on the axis of the dash-pot is measured and is compared with the 
theoretical results. Both results show the same tendency, however, the 
theoretical one is larger than the experimental one. One reason of 
this difference comes from the inaccuracy of the measurement of compres- 
sive force by ring gauge. So the method of measurement should be 
improved hereafter. 
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Coiled Spring /° 

Weight 
-t-^;3-o4MC   Block 

Side View 
Fig.12 Experimental arrangement 

Table 3 Dimensions of 

dash-pot 

Xd'1' 0.303m 

Zd'" 0.197m 

xd2' 0.843m 

zd12' 0.297m 

Ac 9.62cm2 

0 10mm 

a0 
14.1nm2 

3LK 4.0mm2 

Machine Oil 

Fig.13 Dash-pot used in the experiment 

4.3  Optimum Design of Dash-Pot by Numerical Simulation 

Using the above mentioned theory, the optimum design of dash-pot 
system is investigated. Figure 15 shows the calculated ship motions 
and axial forces acting on the dash-pot in case of various installed 
angle of dash-pot 63. From these figures, it is found that rolling 
motions are significantly affected by 0^ and become smallest when 
6,3 = -57° , however,63 does not affect another nodes. On the other 
hand, the axial force F is the least when 63 = -57°. As it is not 
favorable that the axial force which is the force acting on the bits 
on the ship and the quay wall is large, the angle 63 = -57° is the 
most suitable one to reduce the ship motions by dash-pot. Let 0g be 
the angle as shown in Figure 11, 63 = -57"corresponds to 6Q = 90 . 
This fact shows that the dash-pot should be equipped so as to make 
the damping moment maximum and to suppress the rolling motion. 
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Fig. 14 Comparison of ship motion with 
and without dash-pot,and the 
axial force of the dash-pot 
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SHAY | 

- 
^ 

-   /y 
kd(ton/ni-s) 
  0.044 
 0.094 
-•- 0.194 
-••-0.294 

\',K«\ 

1.0 T/TR„ 1.5 

l.STsec 2.0 

Pig. 15 Ship notions and axial Fig. 16 Relationship among ship 
force of dash-pot obtained motions,axial force and 
by numerical simulation damping coefficient when 

6G = 90° 

Figure 16 shows the effects of damping coefficient kg on the ship 
motions and the force acting on the dash-pot when 6Q = 90°. It is 
noticed that the swaying and heaving notions are not heavily influenced 
by kg, but the rolling motion is reduced satisfactorily with the 
increase of kg. 

The resonance of roll can be seen in the region when kg < 0.094 
ton f/(m.sec), but the resonance disappears when kg > 0.094 ton f/ 
(m.sec). The larger kg becomes,the smaller the roll becomes. While 
the axial force acting on dash-pot increases. So the smallest value of 
kg where the resonance of roll disappears is regarded as the optimum 
damping coefficient which is expressed as kg,. Though it is obtained 
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from the above numerical model, it can be also estimated by the 
following simple method. 

Now, the equation of rolling motion of free oscillation is expressed 

I62 + kg (\&2+ M-g-GM-S2= 0  , (38) 

where I is the virtual moment of inertia in roll, JJ-i is the length 
between the center of gravity of the ship and the one end of the dash- 
pot on the ship, GM is the metercentric height. Let the natural period 
of roll be TRH, and define eR and define nR by: 

2ER = ^, nR = M-=. (*L)2- {39) 

Then it can be said from the theory of mechanical vibration that the 
re; 
10 
resonance of roll disappears when the following equation is satisfied 

ER   1 

1R 12 <40) 

The damping coefficient k<j which satisfies the above condition is also 
the optimum damping coefficient k^ , so by arranging the expression, 
k^ is obtained as follow: 

_ 1  M-g-GM-TRn . . 
**«  72    FT?' ( ' 

Since TRH = 0.8B/VGM ,    Eq.(41)   is rewritten by: 

.            0.8 M-g-B/GM ,.ON kfl„ = -7= 5— (42) 

Now, for example, substituting experimental conditions M = 0.455"0.093 
ton/m, GM = 0.13 m, Tpn =1.3 seconds and Jti = 0.36 m into Eq. (42) , 
k(j0 = 0.124 ton f/(m.sec) which is between 0.094 ton f/(m.sec) and 
0.194 ton f/(m.sec) is obtained. From this, it is clear that the 
optimum damping coefficient can be estimated by Eqs.(41) or (42). 

5  CONCLUSIONS 

The motions of a moored ship in a harbor basin and the mooring 
system with dash-pots are investigated. The conclusions are summarized 
as follows: 

1) The ship motions along the quay wall and in the slip can be 
analayzed by the three dimensional analysis. 

2) Wave height distribution in the slip can be estimated by the method 
of images which is suitable to save cost of computation. 

3) In order to reduce the short-period ship motions, a new mooring 
system with dash-pot is proposed. It is clarified that the system 
is very useful for reducing the rolling motion. Furthermore, it is 
clear from the numerical simulation that the angle 6Q should be 
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adjusted to ir/2 and the optimum damping coefficient of the dash-pot 
is given by Eq. (42). 
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