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ABSTRACT 

A non-linear numerical method for calculating wave forces 
on floating bodies has been developed by Isaacson (1981). 
The time stepping procedure is programmed for a computer 
solution, and an incident wave train is time stepped past 
a fixed two-dimensional rectangular breakwater. The 
influence of various input parameters on the'accuracy of 
results is investigated, and optimal values of the para- 
meters are determined. The optimal numerical parameters 
are used to generate force and transmission coefficient 
results, which are compared to the results of other pub- 
lished studies. The method is shown to compare favorably 
with other results, with the non-linear nature of the 
method being clearly demonstrated by the different force 
curves produced by varying the wave height. 
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1. INTRODUCTION 

The forces generated by waves on floating breakwaters or floating 
bridges are generally predicted on the basis of linearized potential 
theory. A nonlinear method for calculating the wave forces for the 
case of a fixed body has been developed by Isaacson (1981) and 
subsequently extended to floating bodies undergoing motions (Isaacson, 
1982).  The method employs the second form of Green's theorem, 
together with the usual governing equations, to time step an incident 
wave train past the body.  In order to test the validity and range of 
the method, only the fixed body case is tested here.  Although the 
method has been used on three-dimensional bodies, we apply it to the 
two-dimensional case and exploit that simplification to conduct a 
study of the incident wave conditions and numerical parameters used 
in the method.  A comparison is made between force and transmission 
coefficient results generated by the method and those available from 
previously published studies. 

2. GENERAL DESCRIPTION OF METHOD 

For the two-dimensional case examined here, a body of rectangular 
cross-section with beam B and draught D is floating in water of 
uniform depth d. An x-z coordinate system is defined with x 
measured horizontally in the direction of incident wave propagation 
and z measured vertically upward from the still water level.  The 
origin is located at the still water level midway along the beam of 
the body.  Let  n  denote the free surface elevation above the still 
water level.  A definition sketch is shown in Figure 1. 

With the usual assumptions of an incompressible fluid and 
irrotational flow, the fluid motion is represented by the velocity 
potential  <J> which must safisfy the Laplace equation within the 
fluid region, 

i^ + if* = o . (i) 
3x2    3z2 

Assuming an impermeable seabed and body surface, the flow will be 
subject to the following boundary conditions, 

|| = 0       at  z - -d (2) 

34 

3$ _ 3n 
W "" "3t" 

0        on  Sb (3) 

on  Sf (4) 

-If- + gn + (V<t>)^  = constant on Sf .       (5) 

Here,  Sf and S,  are the free and body surfaces respectively,  n 
is the direction normal to the surface,  t is time, n  is the 
direction cosine in the z direction of the vector n.,  and g is 
the acceleration due to gravity.  The equations given by (4) and (5) 
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are the kinematic and dynamic free surface boundary conditions, with 
(4) being a form used by Isaacson (1981, 1982). 

The second form of Green's theorem provides values of <p at any 
point x - (x,z) on the closed boundary in terms of $ and its 
normal derivative on the boundary; 

Kx) - - -J- / lG(x,5) |i(£) - <KO |#(x»i)] ds •    (6> 

The point ^_ = (£,p)  is a point on the closed boundary in the x-z 
plane over which the integration is performed,  dS  is measured along 
the closed boundary, and  G is an appropriate Green's function. 

In order to consider a closed boundary over which the Green's 
identity can be integrated, vertical control surfaces extending from 
the free surface to the seabed are set at a chosen distance to either 
side of the body. The closed surface consists of the body surface, 
the free surface, and the control surfaces all reflected about the 
seabed.  The control surfaces are set sufficiently distant so that 
the scattered potential due to the wave interaction with the fixed 
body will not reach the control surfaces throughout the time stepping 
procedure. 

body segments,  Nf  free surface segments, and  N.  control surface 
segments.  This is shown in Figure 2.  Values of  <j>  and  3<j)/3n are 
assumed to be constant over each segment, and initial values of $» 
9(j)/3n,  and n are assigned to the midpoint of each segment 
according to a chosen wave theory defining the incident wave.  The 
initial conditions require zero flow in the immediate vicinity of the 
body. 

At a given time t,  time stepping equations obtained from (4) and 
(5) are used to get  N^  values of n  and  <j>  at  t+At.  A numerical 
integration of (6) at each body and free surface segment gives  N = 
N^+NL equations in N unknowns (N^ values of $  and Nf values of 
9$/3n), which are solved on the computer using conventional matrix 
solution techniques.  Values of <\>    and  3<f)/3n on Sc  are given at 
all times by the chosen incident wave theory.  Thus, all values of 
$,     34»/3n,  and n  are obtained at  t+At,  and the process can be 
repeated as many times as necessary for the desired flow development. 

With the velocity potential  $  obtained for each segment at each 
time step, we can obtain the pressure distribution on the body 
surface using the unsteady Bernoulli equation, 

p • -pl-^ + lw)2] • (?) 

A numerical integration of Eq. (7) over the body surface yields the 
forces on the body at each time step.  The numerical procedure 
described above is readily programmed for computer solution.  The 
flow chart for such a solution is shown in Figure 3.  A more complete 
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derivation of the theory and numerical procedure is given by Isaacson 
(1981, 1982). 

3.   INCIDENT WAVE CONDITIONS 

3.1. Incident Wave Decay Length 

A harmonic wave predicted by either linear or Stokes's fifth order 
wave theory is used to prescribe the incident wave.  To satisfy the 
condition, that there initially be zero flow in the vicinity of the 
body, the incident flow is attenuated over a given decay length,  L^, 
as shown in Figure 4. When considering computing effort, a short 
decay length is desirable in order to reduce the length of the free 
surface and hence the number of segments needed on the free surface. 
A long decay length is expected to give smoother, more accurate flow 
development at the expense of much larger computing effort. 

The program developed for this study is run with values of L, 
varying from 0.25 up to 1.75 wavelengths, and the maximum forces on 
the body generated by the first fully developed wave to interact with 
the body are recorded.  The results, shown in Figure 5, indicate that 
a decay length of about 0.75 wavelengths and less yields somewhat 
unreliable results, while a decay length of 1.25 and greater does not 
change the results significantly.  A value of  LJ = 1.25  or 1.50 is 
recommended for accurate results. 

3.2. Group Velocity 

Depending on the order of the time stepping procedure (see 4.2), the 
initial conditions along the entire boundary are specified at two or 
more time steps according to a chosen wave theory.  The modulation 
envelope of the incident harmonic wave train travels at the group 
velocity c .  For linear wave theory,  c  is given explicitly by 

However, when using Stokes1 fifth order wave theory, a reasonable 
value for the group velocity must be assumed since no explict 
expression for c  exists. 

To examine the effect of specifying different values of  c ,  the 
program was run twice with an incident wave given by linear wave 
theory, the first time letting  c  equal its linear theory predicted 
value given by (8), and the secona time setting  c  equal to the 
wave speed,  c,  which is about twice the predicted value of the 
group velocity.  It was expected that specifying a value for  c 
higher than that predicted by linear wave theory might lead to 
quicker flow development.  However, the flow development results are 
found to differ only for the first few time steps, with subsequent 
flow development and force results being almost identical for both 
runs. 
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We conclude that the method itself with its physical constraints 
expressed by the boundary conditions and the Green's identify very 
strongly defines the flow development and overrides any attempt to 
force a faster flow development in the vicinity of the body by 
setting the group velocity to a higher value. 

When using Stokes' fifth order wave theory for the incident wave, the 
group velocity is now set equal to that predicted by linear wave 
theory. 

4.   NUMERICAL PARAMETERS 

4.1. Time Step Size and Segment Length 

Both the time step size and the segment length are required to be as 
large as possible in order to minimize the computing effort for the 
time stepping procedure.  The time step parameter At/T determines 
the number of cycles of the procedure for each wavelength, while the 
segment length parameter AS/L controls the size of the matrix that 
is solved at each time step.  Here,  At  is the time step size,  T 
is the incident wave period,  AS is the segment length, and L is 
the wavelength. 

If one considers the cyclical motion of the fluid particles over a 
wave period, it is readily apparent that the time step At must be 
sufficiently small to ensure that the motion of the particles is 
small compared to the segment length, and hence that At/T should be 
less than AS/L for accurate flow development.  Thus, for a given 
value of At/T,  AS/L must be small enough to yield accurate results 
while being large enough to remain greater than the given At/T. 

Since the body dimensions are significantly smaller than the 
wavelength for waves of longer period, the segment length parameter 
AS/L found to be appropriate on the free surface may not be very 
useful on the body surface if only one or two segments are needed to 
meet the specified global AS/L requirement.  Recalling that <j)  and 
3tJ)/3n  (and hence  p)  are constant over each segment, a minimum 
number of segments are needed on the body surface to adequately 
describe the pressure distribution over the body surface.  The moment 
acting on the body is most likely to be sensitive to this 
consideration.  For purposes of the body segments we define a 
parameter AS^/L^,  where AS^ is the body surface segment length, 
and Lv  is the dimension of the body along which the segment lies 
(in our example, B or D) . 

Optimal values for At/T, AS/L, and AS^/L^ have been determined by 
letting each vary in turn while holding all other parameters constant 
and recording the force results. 

It is found that as At/T is decreased, the force results quickly 
converge to uniform values. Little increase in accuracy is gained by 
setting At/T to values less than 0.05, and for At/T = 0.04  the 
results obtained are within 3% of the converged values. 
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The segment length parameter  AS/L was set to values ranging from 
0.05 to 0.25.  The earlier discussion concerning upper and lower 
limits for AS/L is confirmed as the results remain relatively 
consistent when AS/L is in the vicinity of 0.1, diverging as AS/L 
is increased or decreased beyond a limited range.  When AS/L  is set 
to a value less than approximately twice the value of At/T,  the 
results diverge to the point where the computer solution is unable to 
continue.  It is concluded that AS/L should be at least two or 
three times greater than At/T,  and that a value of 0.1 for AS/L 
will yield good results. 

As previously discussed, a global limit on AS/L may not provide 
enough body segments to calculate the force results accurately.  One 
should also check that the segment lengths on the body surface as 
defined by AS^/L^ fall within the global constraints on AS/L 
determined above. Values of AS./L,  ranging from 0.1 to 
0.25 have been tested.  As with the global segment length parameter 
AS/L,  AS^/LL  is found to be constrained by upper and lower bounds. 
A maximum value of  ^S^/L^ = 0.2 (five segments along each body 
dimension) is found to be necessary to adequately describe the 
pressure distribution on the body.  More segments on the body, while 
desirable to define the pressure distribution more accurately, would 
potentially conflict with the requirement that AS/L be larger than 
At/T.  It is recommended that for a particular body shape, a minimum 
of five segments be used along each body dimension and that the 
relationship of  AS^/L^  to  AS/L  and  At/T  be checked to ensure 
that it falls within the required range. 

4.2. Time Stepping Equation 

As mentioned in Section 2, the time stepping equations for n  and <f 
on the free surface are obtained from (4) and (5).  Applying a 
central difference approximation to (4), we obtain 

]t+At "  VAt  +  2At^^t 

A similar expression can be obtained for ^r+At on ^f usinS (5)• 

For better accuracy, higher order time stepping methods are 
desirable.  For our purposes, the Adams-Bashforth multistep methods 
are useful.  These are described by Burden, Faire and Reynolds 
(1978). 

The central difference method and the Adams-Bashforth two, three, 
four, and five step methods have each been tested with the same input 
parameters, and the forces at each time step recorded for each 
method.  The plotted results are shown in Figure 6.  It is found that 
the central difference method produces a slightly uneven plot, 
particularly for the first few time steps.  The two, three, and four 
step methods give smoother results.  The five step method produces 
highly erratic results which sawtooth about values coincident with 
the other plots. 
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The sawtoothed results of the five step method are probably caused by 
small perturbations from smooth results being magnified by the 
fitting of a fifth order polynomial to previous points when 
projecting forward at each time step to values at  t+At. 
Anticipating that the same effect could occur for the four step 
method, the Adams-Bashforth two and three step methods have been 
adopted as the preferred time stepping techniques. 

The program developed for this investigation was also tested without 
a body present, using the optimal values of the numerical parameters 
as determined above.  The time stepping technique yielded a wave 
train progressing along the free surface as expected. 

5.   RESULTS 
5.1. Exciting Forces 

Using the method described in Section 2, the exciting forces on a 
two-dimensional rectangular cross-section were obtained for a range 
of incident wave angular frequencies  u,  and for different values of 
wave height to water depth ratios, H/d.  An incident wave decay 
length of 1.25 wavelengths was used, with 25 time steps per wave 
period, 10 segment lengths per wavelength, and 5 segments along each 
body dimension.  The Adams-Bashforth three step method was used as 
the time stepping technique for the equivalent of (4) and (5). 

The force results for a beam to draught ratio,  B/D = 4.0  are 
plotted in Figure 7, with Vugts' (1968) deep water experimental 
results and Fraser's (1979) linear finite element results shown for 
comparison.  The results of Figure 7 clearly demonstrate the non- 
linearity of the method, with different force curves resulting from 
different values of E/D.  The results show that the method used here 
has a fairly wide range of application, and that the magnitude of 
most of the force results compares well to previous experimental and 
theoretical results.  While the results for the horizontal exciting 
force coincide closely with Fraser's linear results, the non-linear 
method produces curves for the vertical force and moment that differ 
significantly in slope from the linear predictions. 

5.2. Transmission Coefficient 

An interesting byproduct of the method is the capability to monitor 
the transmission coefficient for the fixed body case.  Since the 
fixed case is used here only as an idealization to calculate exciting 
forces that can be used for a subsequent analysis of the actual 
response of a moored breakwater, the observed transmission 
coefficients are of little or practical value, but do provide a lower 
limit for the transmission coefficient of a responding body. 

The program was run with the same input parameters described in 
Section 5.1, but for B/D = 2.0, 4.0, and 8.0 in turn. The results 
for the transmission coefficient  K_.  are shown in Figure 8 together 
with the results of Nece and Richley (1972) for  B/D = 5.0.  The 
experimental results are for an incident wave of the same steepness 
for a given OJ as for our results. 
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The results obtained for the transmission coefficient are found to be 
relatively independent of water depth over the range tested.  As 
expected, the present results for a fixed body give lower values for 
K^  than Nece and Richey's experimental results for a responding 
cable moored body, and thus appear to provide a reliable lower limit 
for Kd. 

6. CONCLUSIONS 

By testing a computer program based on the nonlinear numerical method 
described here, optimal values of the numerical parameters were 
determined.  It was found that 25 or more time steps per wave period 
and at least 10 segments per wavelength were needed to obtain 
accurate flow development.  There should also be at least 2 to 3 
times as many time steps as segment lengths per wavelength.  The 
decay length of the initial incident wave profile should be 1.25 or 
more wavelengths. 

The method itself as defined by the physical conditions and boundary 
integral determines the group velocity of the flow development, and 
specifying a different value of the group velocity for the initial 
time steps changes the flow development of only the first few time 
steps. 

Using a central difference time stepping equation produced a slight 
sawtooth effect in the force results, while using a four or five step 
method occasionally produced a divergent instability, probably due to 
the fitting of a higher order polynomial to the values at previous 
time steps.  The recommended time stepping procedure is a two or 
three step Adams-Bashforth method. 

Force results from the program were plotted in the appropriate 
dimensionless form over a range of frequencies.  The results produced 
different force curves for different values of the wave height to 
water depth ratio, thus verifying the nonlinearity of the method. 
The force curves obtained compared well in magnitude to previous 
numerical and experimental results, although the slopes of the curves 
varied significantly.  The transmission coefficient for the fixed 
rectangular breakwater over the range of frequencies tested appeared 
to provide a reliable lower bound for the transmission coefficient of 
responding bodies.  It is concluded that the nonlinear method used 
here has a significant potential for improved accuracy in the 
prediction of forces on floating bodies and their transmission 
coefficients. 
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