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ABSTRACT 

When a small amplitude wave climbing along an arbitrary 

sloping beach from deep water toward the shore,  the variation of 

characteristics in the process of wave motion has been described 

in this paper. From   the results of theoretical derivation,  it is 

found out that  the variation of water surface and amplitude are 

function of beach slopeia) and dimensionless distance (kx~) from 

the  shore. And under the condition of the beach slope is a = 0 

and a =  °o   that  the solution will become a progressive wave and 

a standing wave  respectively. 

I    INTRODUCTION 

Concerning the problems of water waves propagating on beaches 

of arbitrary slope, E.T. Hanson (1926) assumed the angle of 

bottom with still water surface to be of the form n/2q with 

integral q, andcons tructed a progressive wave derived from two 

standing waves. Lewy, H.  (1946) gave a contour  integral  represen- 

tation for a progressive wave for all angles between bottom and 

surface. Then, Stoker  (1947) derived the exact  linear theory and 

obtained approximate solution for surface waves  in variable 

water depth.   Biesel (1952) expressed the first-order approximation 

of the free surface  equations and the  trajectory of surface 
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particle by Lagrangian form. Carrier &   Greenspan (1957) 

presented the explict solutions based on the non-linear shallow 

water theory. 

All  the above  investigations concentrated on the behavior of 

wave motion in  the   region near  the  coast,  however,  they didn't 

include  the entire process of wave motion. Therefore,  in this 

paper,  the authors pay attention  to  the  theoretical analysis on 

the variation of the water  surface and amplitude when    the water 

waves propagating on beaches of arbitrary slope under  the condition 

without breaking. 

2.     THEORETICAL   CONSIDERATION 

^ 

Fig. 

From the sketch diagram of water wave propagating from deep 

water toward shallow water area as shown in Fig.   1,   the governing 

equations of wave motion in two dimensional   incompressible fluid 

are given by the follows: 

<I»„ + <&,„ =0 

0, + grj+~ (<p,2 +<byz ) -c 

V ( x , t ) >y>~h(x)   (1) 

y = V (*,/) (2) 
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<D„ = r)t + 0X rix y = rj(x , t ) (3) 

<pv =~ *,$, y = ~ h(x) (4) 

The  subscripts of the above  equations denote partial differe~ 

ntiation, and O is velocity potential,  )? z's water surface variation, 

h(x}  is water depth which can be expressed as h(x^) —x- tand — ax, 

and C is Bernoulli's constant, g is gravity acceleration. 

From Cauchy's integral theorem, there is a constant M 

existence in the process of wave motion under the conditions 

without breaking,   that 

\<S>\ + |®("> | <M    for 0<*<oo , rj(x,f)>y>- h(x)        (5) 

where   C)'*'  denotes  the   n"1   order's partial derivatives  of® with 

respect  to x, y or  t. Furthermore, since  the original source of 

wave motion comes from deep water,   so  that 

£im   ® = 0„ (6) 
x—>°° 

According to the above consideration that  seems  reasonable  to 

coincide with physical grounds and there is not any singularity 

taken place in the entire process of wave motion from deep water 

toward the shore. In the following derivation,   it is convenient 

to express  the quantities evaluated for y = fj (x , y ) by a bar, 

"—", over the quantity, and for y——h(x~)  by a bar under the 

quantity. Thus we have 

\ <J>„ dy=0v -Ov =®„ +hx®? (7) 

and 

<D„ dy = - I ®„x dy 

dx) _ 
«>* dy + <D* V' + *« h*    (ft) 



814 COASTAL ENGINEERING—1982 

From eq. (7) and eq. (8) , we get 

<&,=-— IWjv+<&>?* (9) 
OX J   _»<*> 

77;e« Me  integral  term of eq. (Q)will  be the following relation 

through integration by parts 

%dy = i?<A + h% - .y<R!,a> (10) 
-AC*) J   -ft ix > 

a^rf a/so  Me relation will be    as 

(11) A(*)"kvd.y = h(x)®* - h(x)$x 

Eliminating ®z from  eq. Wand eq. (ll) , and this  in turn lead 

through use of eq. (9) to 

d -       ri<-"'i 3 
<$,=-—(>(*)<&- I (y + h ) <D„ a\)0+ >?*<&- — ( ? %) 

-ft Gc ) 

0  • 
= -(*<& )»H | ( y + h )®xvdy - V <R* 

d x . 

From  the kinematic condition at free surface of eq. (2) ,  taking 

the partial derivative with respect  to t,  so that 

Vt = C <ft< + ( 5wl< + «V<iv,   ) ) (13) 

TAe« substituting eq. (13) ;'«/o ea. (3) , we get 

<D„ = C ®t, + ( <M>*. + ®„<iii   ) J + <A>7* (14) 
g 

Thus, from eq. (12) and eq. (14) , we have 
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_ _     g   r?<*>n 
<D,, = C g hd>, ), - ( OyP,, + 0,0,, ) -g- C — I C-j'+A )®*,d)0 

{//> £o wow we /zave made no assumptions in addition to those made 

in deriving the non — linear theory. In other words, water waves 

propagating along an arbitrary sloping beach will be described 

completely in eq. (15) . Unfortunately,  since eq. (15) is a high 

order non— linear partial differential  equation,   so that analy- 

tical solution is not able to be obtained and the approximate 

solution will be presented in this paper. 

From eq. (6) , we  know that wave motion propagating along 

an arbitrary sloping beach comes from deep water.   Accordingly, 

it  is reasonable to imagine that the velocity potential in deep 

water,  <f>    ,   is part of wave motion in the propagating process. 

In this case,   the velocity potential would be proposed by the 

following form, 

® = <k + ^ <J6) 

The above equation makes a brief statement that the velocity 

potential,  <P , existed in the propagating process is consisted 

of the velocity potential  in deep water, <j>    ,  and the velocity 

potential due to shoaling and reflection,  (j> , . 

After susbstituting 96^ into the last three terms of the 

right side of eq. (15) , then the first — order approximation of 

wave motion will be given as 

o,, = ( g ho.), - C ( ?«,), ( 3»)« + C ^ ),(?„),t ] 

-£(— (y+^C^^dy^+gtyC^-),}, 
0 X J    -hex) 

(17) 

Furthermore,   expanding the integral   term of eq. (17) and from  the 
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condition that ^ substituted in eq, (14) , we have 

«.<=(j»0,),-[^(i).)« + (i)ii (18) 

Because 0^ is part of <I> , we know that $    is a particular 

integral of wave motion.    In other wordes,   eq. (18) involves a part- 

icular solution and a complementary function which will   satisfy 

the following homogeneous equation, 

1>t, = ( g h<5>, ), (19) 

Since the complementary function is due to shoaling and 

reflection of sloping bottom boundary,   that the velocity potent- 

ial at water surface is well  to be proposed as the following 

form. 

yt Oix-fft+s > Z(x) 

where the exponential  in eq. (20) represents the factor due to refl- 

ection,   k and a are wave number and angular frequency in deep 

water respectively,  e  is the change in phasse as wave climbing 

along beach. Z ( x ) is the function of water surface elevation 

resulted from shoaling and reflection. 

After substituting eq. (20) into eq, (19) , and taking real part, 

that  it  is easy to transform the result  into zero order of Bessel 

function.  And the solution will  be given as 

ZX *)= A Jo  ( 2 /— ) (21) 
a 

where J0 is the Bessel function of the first kind of order zero, 

and A is a function of a, which has to be determined by an 

appropriate condition.    Therefore,   the velocity potential  due 

to shoaling and reflection will be 

— I kx 
<h =A Jo (  2 J — ) cos (  kx - a t + 6 ) (22) 

a 
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Then the solution of wave motion can be expressed as 

®=0 + #'=-¥—?• /„ (  2 •/—) cos ( kx-ot+e ) 
a a 

a g -\ COS ( kx + ot ) (23) 
a 

The last term of the above equation is the solution of progress- 

ive small amplitude wave at water surface,  and a is the amplit- 

a 
ude, A is to be of A0 — A . 

g 

From the theory of reflection as light —wave,   the change of 

phase,   e , is function of bottom slope,  a ,  will be found out,  as 

e=:e(a)=2 tan~* a (24) 

Combining eq.^and eq. (24) then substituting in eq .(2) , and take 

the first — order approximation that we have the water surface 

elevation 

fkx 
J?( x, t~) —Ao]o ( 2 v — ) sin(kx — a t -\-2 tan'1 a ~)+asin( kx+at~) 

Based on the energy conservation at the intersecting point 

of mean water level and bottom boundary, where the potential 

energy exists only,  that we find 

A0 ( a ) = a C cos ( 2 tan~1a ) + ./ cos2 ( 2 tarT'a ) + 3 ] (26) 

The relationship between A0  and a has been shown in Fig. — 2 

From this figure,   it  illustrates that A0  decreases with a increa- 

ses,   and as a =oo ,   it becomes standing wave,  ar = 0 that  it will 

be a progressive wave. 
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9 - tan a 

Fig. - 2 

After substituting eq. (26) into eq. (25) , the water surface elev- 

ation,  rj ( x , t ") , will be obtained.   There are three examples 

presented through Fig. — 3 to Fig. — 5 

V — o.o a 

\           0 -30° 

crt*0 

1 1 

'   \   \ 
  * ~ 

L       4 s^$ //6 7 8 

* V^/ 

t kx 

Fig. - J 

Furthermore,  arrange the result of the expansion of eq. (25) , 

that the relationship among water surface elevation, wave ampl- 

itude, wave number,  bottom slope and dimensionless distance can 

also be expressed as the following forms, 
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Fig. - 4 

V — 0.0 
a 

:^<-T 0-60° 

t \ 

 at -0 

i \2     N.       3     \ 4/            5 /$      j f      7    \ .       8 
J kx 

Fig. - 5 

rjQx , t) = [A0Jo ( 2 V— ~) sin(_ kx + t) + a sinkx ~}cosot 

and 

/kx . 
+ f a cos kx—AoJo ( 2 V ) cosQkx + e ) ] s«»ff/ 

= B( x , a ) sin ( OT ( x , «) • A:+ CT f ] (27) 

£(*,«)={( asinkx+A0Jo ( 2 V — ) sin( kx + e ) )2 
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+ ( a coskx-AoJo ( 2 V—) cos(kx+e ) )2 y'2 

a 

asinkx+AoJo ( 2y — ) sin(kx + e ) 
m(x,a}= Itan-'i —  j + nK~j/x 

a coskx—AoJo ( 2y—) cos( kx + e ) 
a 

where n is a positive integer. 

From the expression of eq. (27) ,   the amplitude of wave motion 

climbing along an arbitrary sloping beach has been obtained as 

eq. (28) and it is function of the dimensionless distance kx and 

bottom slope «.    That  is to say,   the amplitude varies along the 

horizontal distance due to shoaling and reflection as water waves 

propagate from deep water toward the shore.    Several illustrat- 

ions have been presented in Fig. — 6 for a = o  ,  1 / *J~~Z ,  1 , 

J~~Z and co 

2.0 

B(x,a) 
a 

i.o 

0.0 

\W \\v 
\ \ V 
\ \ V      J 

90' 

//    1 //      / x.   / \   t\  r *<     s \ > 
*\   /    \   /  \ /   v     /   \ 

"\ -*-T   N 

3°\ 1 
i   V 

r'2> 
1 V i i           i        Vi           r           I 

V N 

V     i 

V 

1.0     2.0     3.0      4.0     5.0     6.0      7.0     8.0     9.0     10.0     I 1.0    12.0 
kx 

Fig. - 6 

Figure — 6 illustrates the solutions for the bottom slope  0° 

, 30° , 45° , 60° and  90° according to eq. (28) . And we can see 

that all the variation of water surface will gradually decrease 

and become small   amplitude wave in deep water except for the 

case of,  8 = 90° , under that condition ,   it becomes a standing 
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3.     DINCUSSION AND CONCLUSION 

From the theoretical results as above metioned that the 

variation of water surface and amplitute are function of beach 

slope and dimensionless distance from the shore.   And the 

results will be more reasonable than Stokers'  (1947) which is 

expressed in eq. (30) 

— fk~x 
<&(x,f)=A1{cos(.ot~(1')Yo( 2V — ) 

a 

Ikx 
+ sin{ at-ti )/o ( 2-J— ) ) (30) 

a 

where At  , et are the same significance as  in this paper.    But 

Stoker' s solution,   because contains only the linear terms so 

that the solution for the deep water becomes a straight line. 

Our solution,   on the other hand, give a more reasonable solution 

which is a small amplitude wave when we  include the potential 

function in deep water. 
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