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ABSTRACT 

A new method for numerical simulation of tidal currents 
is presented. Based on a technique involving the 
splitting of operators,  it allows an accurate 
calculation of momentum advection, and wave propagation 
for large Courant numbers.  It also provides a 
satisfactory treatment of tidal flat uncovering and 
flooding, and permits the use of a curvilinear 
computational grid. The generation method for such grids 
is presented here,  followed by an engineering 
application on cartesian grid. 

1.   INTRODUCTION 

Mathematical modelling of coastal shallow water areas where 
currents are influenced by tide and wind became a common engineering 
practice during the 1970's. Corresponding techniques are still 
developing and improving not only because faster and bigger computers 
are available, but, more importantly, because greater emphasis is being 
given to the environmental aspects of engineering works. To design the 
facilities themselves free surface elevation and global discharges are 
usually sufficient, and a fairly coarse modelling is satisfactory. 
However, the study of the impact that such works have on the 
environment asks for more refined models, in particular for a reliable 
simulation of currents. 
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In order to satisfy these requirements the Laboratoire National 
d'Hydraulique (LNH-Electricite de France), Chatou, and Sogreah, 
Grenoble, France developed jointly a new method of numerical simulation 
of tidal currents and a new modelling system called CYTHERE ES 1. A 
schematic diagram of the system, as used at Sogreah, is shown in 
Fig. 1. 

This system was evolved for simulation of currents and 
consequently great care was taken to avoid three main drawbacks 
inherent in many programs developed in the 1970's, namely: numerical 
spurious damping and dispersion, inaccuracies and "polarisation" of 
velocity fields in AD I (alternating direction implicit method) for 
greater computational time steps, and inadequate simulation of 
uncovering tidal flats during ebb flow. Another difficulty is the 
choice between finite difference and finite element algorithms, the 
former being more economical, the latter representing the topography 
more accurately; an intermediate solution was chosen. 

2.   EQUATIONS 

Nearly all industrially applied modelling systems use finite 
difference (FDM) discretisation of equations. Although finite elements 
(FEM) are often mentioned in technical literature, their application to 
the tidal flow equations is not common because it is expensive. 

Indeed, they are no more suitable than FDM where hyperbolic 
equations are concerned and they lead to much higher computational 
costs. Their advantage as compared to FDM is that they give a much 
better fit with topographically complicated boundaries which are 
represented by stair-like steps in FDM. In order to minimise this 
disadvantage while using the more economical finite difference method, 
CYTHERE ES 1 can use an orthogonal curvilinear computational grid which 
improves boundary and current simulation in narrow estuaries and bays. 
The choice of an arbitrary (non-orthogonal) curvilinear system of 
coordinates was discarded because of the inaccuracies which such a 
transformation of equations would have introduced. Equations of tidal 
flow are written for an orthogonal curvilinear coordinate system by 
including projection parameters and metric coefficients. This allows 
the use of CYTHERE ES 1 in Cartesian coordinates as a special case of 
orthogonal curvilinear coordinates. In order to render the system 
efficient a preprocessor which generates a boundary fitted orthogonal 
curvilinear grid was developed. Its main principles are described later 
in this paper. 
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The two-dimensional tidal flow equations written for an orthogonal 
system of curvilinear coordinates (e*,/5) are: 

+ U grad ~ + ~  divU + gh gradZ 

dZ 
dt 

+ divU 

-2fiAU: -div(KgradU) = 0 (1) 

= 0 (2) 

VI 

Where: 

U    = (U,V) = unit width discharge vector through depth h; 
Z    = free surface elevation; 
T ,T = bottom friction and wind stresses, respectively; 
B  o 
2fiAU = Coriolis term, S2 being the earth's rotation speed; 
K, p     =  horizontal momentum diffusivity, water density. 

As mentioned in previous publication [lj, it is useful to give a 
physical interpretation to the six groups of terms of Eqs. (1) and (2) 
as follows: 

I. Local flow acceleration, 

II. Momentum transport by advection, 

III. Mass conservation and momentum transfer by propagation, 

IV,V. Momentum sources or sinks due to Coriolis force, surface 
wind stress and bed friction, 

VI.   Horizontal diffusion of momentum. 

The three dependent variables of Eqs. (1),(2) are: 
U(a,/3,t), V( or , /J ,t) and Z(a , /} ,t). 

3. FRACTIONAL STEP ALGORITHM 

A qualitative examination of Eqs. (1) and (2) shows that they 
represent three physical processes with distinctive features and for 
which numerical approximations present different kinds of difficulties: 

(i)   momentum advection, groups I and II, 
(ii)  momentum diffusion, groups I, V and VI, 
(iii) propagation, groups I,III and IV. 
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The algorithm used in CYTHERE ES 1 is based on the recognition of 
three physical phenomena and proceeds as follows. Suppose that the 
state of the model is known at time nAt (Z , U , V ) known at all 
points)» the new state at time (n+1)At is computed by the successive 
resolutions of the advection, diffusion and propagation operators. Each 
step is solved by a different numerical method so as to increase the 
accuracy and economy of the solution. 

3.1  First step - Advection 

The finite difference discretisation of advective terms in flow 
equations is the most important source of spurious damping and 
dispersion, both due to discretisation errors. To avoid this, 
space-centered finite differences are used such as: 

du  _, ul+l».1 - ui-l,.i    ;   du „. ui,.j+l - ui,.j-l (3) 
ax -     2Ax ay ~     2Ay 

Where: 

(x,y)   = horizontal coordinate axes, 

u(x,y,t) - flow velocity in x-direction, 

(i»j)   = indices of computational points in x- and y- directions 
respectively, 

(Ax,Ay)= space computational steps in x- and y- directions 
respectively. 

Approximation equation (3) is of 2  order if Ax = const, 
Ay = const. Numerical damping due to this approximation is negligible 
but dispersion is important and hampers the results so much that higher 
order approximations (4th order) are sought. The results are apparently 
more satisfactory, but this approach was not followed by the authors, 
who think that the high accuracy may often be misleading. Indeed, if 
the computational grid is not uniform (Ax,Ay variable) the order of 
approximation decreases. More importantly a higher order of 
approximation is theoretically better when assuming that Ax, Ay are 
small. Typically these intervals vary between 100 m and 1000 m. For a 
computational grid with Ax = 200 m Eq.  (3)  approximates  the 
derivative with a difference of two velocities at points which are 
400 meters apart! Fourth order approximation would involve 5 points 
distributed over a distance of 1000 m. In such a situation, the higher 
order approximation has the effect of smoothing and spreading out the 
differences through interpolation polynomials and local variations of 
advective currents cannot be accurately computed. 
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For the above reasons advective terms in the modelling system 
presented here were treated by the method of characteristics.based on 
the principle derived by Holly and Preissmann [4j. During the advection 
step the following system of equations is solved between the time n At 
and an intermediate time notation n+1/3: 

n+1/3 

At 

Where: 

-!*  1H + _£ 3u. = 0 
eada      e/} 3/5 

n+1/3 

At 
_a dv  _J3 dv _ „ 
eada      &     3/3 

(4) 

(u,v) velocity components along x- and y- axes of 
cartesian coordinate system, 

projections of the velocity vector on the a-  and /}- 
axes of curvilinear co-ordinate system, 

+ <&> 

= metric coefficients such that 

1/2 

The solution u 

da' 

n+1/3 

O 
n+1/3 

1/2 
(5) 

of Eq(4) is obtained by the method of 
characteristics in two dimensions as described in [l] . Although the 
computations are made at specified intervals, the method described 
in [4] enables  numerical damping and dispersion to be almost 

., ,  _    .      ,. . .    n+1/3   n+1/3 
completely avoided. Once intermediate velocities u    , v     are 
c       J.C   11     ....•   i   -^     ... J.  t      TTn+l/3  ,n n+1/3 found for all computational points, unit discharges U     = h u    , 
n+1/3   ,n  n+1/3     ,       _ A V     = n v     can be computed. 

3.2  Second step - Diffusion 

Diffusion step equations are solved between two intermediate time 
notations n+1/3 and n+2/3 in terms of unit discharges. 

yn+2/3 __ yn+1/3    l 

vn+2/3 _ yn+l/3    x 

At 

da 
(K *!l+if^J -) + (K a/3 v" a/s y 

da da  e ' df,   ^  5/5 e> FU 

(6) 

(7) 

Where F is the Coriolis acceleration parameter. Eqs.(6) and (7) are 
well-known parabolic equations. Their numerical solutions are accurate 
even with crude methods, so an ADI approach based on a fully implicit 
finite difference scheme is used for this step in CYTHERE ES 1. It 

gives new values (U,V)     at all computational points. 
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3.3 Third step - Propagation 

This step is a crucial one because of the computer time it 
requires and also because of the numerical inaccuracies generated when 
economy in computer time is sought by using inadequate methods. 
"Polarisation" of velocity fields when using Alternating Directions 
(ADI) methods was described firstly in [3] then in [l]. Let us define 
Courant number Cr as: 

Cr = At vs VS i 
(8) 

At = computational time step, 
h = local flow depth, 
g = acceleration due to gravity. 

Nearly all industrial programs use implicit finite difference schemes 
which enable Cr values of greater than 1 to be used, whereas explicit 
schemes are numerically unstable in these conditions. Since the fully 
implicit methods lead to excessive computational times, the ADI 
implicit methods are widely used. These methods, however, may give 
completely wrong results for Courant numbers greater than 5 to 10. 
Indeed the velocity fields become "polarized" along either x- and 
y- axes when the time step At  corresponds to Cr greater than 5. This 
phenomenon is described in reference [l] and examples of obviously 
absurd results obtained with the ADI method for higher Cr values are 
given. Moreover the ADI method cannot correctly compute velocity fields 
along and a-cross channels which are not parallel to the x- or y- axis, 
as has been shown in [6] . For these reasons a more efficient and 
accurate algorithm was used by the authors. 

Working equations for the propagation step are: 

zn+1 - zn 1 
At e  e „ a    f, 

n+1 _ n+2/3 
a             a 

At ~  S 

At ~  & 

Where: 

£<u«y +ipiya> 

i_ az    j£ dz 
e. da     h    dt c* h2   + p     Sa 

1    3Z*_ldZ VU« 
 ^T    T ~      -      0      T-T 

d/S      h    dt       B    C* hz 
1     T, S/S 

(9) 

(10) 

(11) 

Chezy coefficient, 

IN   =o^ + 91/2. 
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Lack of space does not allow the authors to give details of the 
discretisation, the main principles of which can be found in \_l]. 
Essentially, right hand terms of Eqs (9) to (11) are written under 
implicit formulation such as: 

£hdZ=£_ 
&„ da      e„ 

n+1  ,„ n+1        n  , r 
9h   (f%   + (l-O)h  (f^) 

da da 
(12) 

Then, from Eqs. (10) and (11) expressions for increments AU, AV during 
one time step At, as functions of known values and Z   are extracted, 

(Note: AU = Un  - U    , etc). These increments are substituted into 
Eq (9) which, discretised, becomes an algebraic system of equations for 

the Z    , (k = 1, 2, ..., m), where m is the number of computational 
points in the model. 

This final system of equations is solved by an iterative method 
which is based upon the conjugate gradient method and is, with the 
method of characteristics used for the advection step, of crucial 
importance in the algorithm. Indeed, nowadays models of tidal areas can 
contain anywhere between 2000 and 8000 computational points; this 
effectively prohibits matrix inversion. Explicit formulation would lead 
to excessively small time steps. The ADI methods may give, as mentioned 
above, misleading results even when the time step is physically 
reasonable, hence the use of a special development of the conjugate 
gradient method (iteration through alternating direction operator with 
coordinator) described in [5j. 

The iteration procedure permits the use of high Courant numbers 
(20 and more) without loss of accuracy even when simulating channels 
angled at 45° to the coordinate axes. It should be stressed that with 
efficient programming one iteration needs less computer time than 
resolution of the propagation step by the explicit method. 

4.   ORTHOGONAL CURVILINEAR GRID GENERATION 

The generation of curvilinear computational grid is semi-automatic 
in the CYTHERE ES 1 system at the preprocessor level (see Fig. 1). The 
details of the. method, developed by Sogreah, are given elsewhere [2j, 
only the main features are followed here. 

The mathematical tool used to generate the orthogonal curvilinear 
grid is the conformal transformation. It is assumed that for a given 
domain D, D being a coastal zone or an estuary for example, which 
satisfies a number of conditions, there is a conformal transformation f 
which associates a rectilinear domain D' to D (a rectilinear domain is 
defined as a domain bounded by straight lines intersecting at right 
angles). 
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Fig. Simplified domain D 
for the English Channel 

Fig. 2b A priori shape 
of domain D' 

Fig. 3a Final shape 
of D' with 
cartesian grid 

Fig. 3b Orthogonal Curvilinear 
grid in D 
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Using complex notations, to any point Z = x + iy in D, f 
associates a point T= f(Z) =a+  i/S in D'. The function f is analytic, 
hence a and /i form a conjugate harmonic pair Aa= 0, A/5= 0 and they 
satisfy the Cauchy-Riemann equations: 

M = M §2 = _ il <13> 
dx dy dy dx 

which implies that lines of constant <x  are orthogonal to lines of 
constant /5 . These conditions must hold true on the boundaries which 
are formed of segments on which either a or ft  is constant. 

This method is applied to jagged coastlines or estuaries. In a 
first approach, the real topography of the domain is approximated by a 
simplified contour which represents only the most characteristic 
features. The size of the features to be taken into account for the 
model depends, of course, on the scale of the phenomenon to be 
modelled. The physical domain is thereby schematised into a simplified 
domain D (e.g. Fig. 2a). 

The domain D must satisfy a number of conditions. It must be 

simply connected in the (x,y) plane, i.e. its boundary is a continuous 

line and D does not contain holes. Next, its boundary T  has to be 

composed of an even number of curved segments F, intersecting at right 

angles, T = UT.. Hence, the transformed domain D' will be delimited by 

a contour F' = UT'., T1. being the image of T ., so that all straight 

segments T ' . and F ' , intersect at right angles, since the conformal 

transformation keeps the values of angles. Using this property, the 

contour F' can be drawn a priori, simply by turning at the end of each 

r1, of an angle equal to the angle between T.   and F   . 

Thus, the domain D' is defined in a (a, /5) plane where the a-  axis 
is parallel to horizontal segments and the/J- axis parallel to vertical 
ones. The direction of axes is chosen according to the contour 
orientation (see Fig. 2b). 

The conformal mapping f is then computed numerically, with the 
help of a finite element method by solving a Laplacian equation with a 
Neumann boundary condition given on the contour T, and the final shape 
of D', i.e. the length of each T1.   is determined, as explained in 

hape 

[2]- 

In the second stage a Cartesian grid is built inside the 
transformed rectilinear domain D' parallel to the a and /J axes, the 
spacing between vertical and horizontal lines need not to b£ constant 
(Fig. 3a) . Using the inverse conformal transformation f  , this 
Cartesian grid will be mapped into an orthogonal curvilinear grid 
inside D (see Fig. 3b) since the property of orthogonality is 
conserved. 
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Numerical computation of f  uses the same finite element program 
as for f, for the simultanous resolution of four Laplacian equations 
with Dirichlet boundary conditions. Finally projection parameters and 
metric coefficients e , e„ of Eq. (5) are computed automatically. 

The spacing between Cartesian grid lines in D1 has been chosen to 
suit the desired spacing in the curvilinear grid, however the packing 
of the curvilinear grid lines obtained may be slightly different from 
that expected. It is not possible to add lines after the resolution of 
the second stage computations unless the process is reiterated from a 
new Cartesian grid inside D1. On the other hand, some of the lines can 
be eliminated provided that the new spacing satisfies a regular 
increase or decrease acceptable by the finite difference program. 
According to user's choice, one final program "erases" lines of the 
curvilinear grid, checks the regularity of the spacing and establishes 
a correspondence between the lines that have been kept and integer 
numbering of the finite difference grid (1= 1, 2,... ; J - 1, 2,...). 
The example of the orthogonal grid generated by the preprocessor shown 
in Fig. 3b illustrates the method. All points are determined by the 
intersection of two orthogonal lines, but since they are joined on the 
drawing by straight segments which do not exactly coincide with the 
lines, some drafted angles are different from 90°, as in the top-right 
corner. 

5.   EXAMPLE OF AN APPLICATION TO AN ENGINEERING STUDY 

The CYTHERE ES 1 modelling system has recently been used by 
Sogreah for a complex engineering study of development in South Korea: 
Kwang Yang Bay. The project consists of reclaiming a vast area in the 
bay located on river delta soils, and of dredging from a nearby area. A 
steel mill will be built on the reclaimed site together with a harbour 
for raw materials and finished products, for up to 250,000 dwt ships. 
The study involved: 

in-situ measurements; 

two-dimensional mathematical modelling of tidal currents in the 
bay with the projected steel mill, two options of river discharge: 
average or flood, and three tide conditions; 

one-dimensional mathematical modelling of the tide influenced 
section of the major river flowing into the bay; 

mathematical modelling of large ship navigation in the entrance 
channel in the bay, based on currents predicted for the new 
conditions (reclaimed and dredged area); 
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Fig. 4 Map of Kwang Yang Bay 
(islands in dark) 
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scale model tests (1:25), in a specially equipped lake, of ship 
manoeuvres in the harbour, conducted by ship's pilots. The lake 
dimensions are 255 m by 190 m and the test crafts were scaled to 
represent up to 250,000 dwt ships; 

sediment transport evaluation. 

Figure 4 shows a map of the bay, which has five open boundaries; 
two rivers to the north with given constant discharge, and three 
boundaries with time dependent water conditions obtained from in-situ 
measurements: the southern boundary directly connected to the Eastern 
China Sea, the Nam Hae Do Strait to the north east and Yeosu Strait to 
the south west, both connected to adjacent bays. 

The grid was cartesian with irregular intervals in the x and y 
directions, and varying Strickler friction coefficients were used to 
account for sea weed culture on the tidal flats. 

A most important feature of the model was its rapidly varying 
bathymetry: within a distance of less than 600 meters (three 
computational points) the bottom depth goes from a positive value (above 
lowest low water datum) to -20 meters. The original tidal flat 
computation procedure used in the propagation step (see [l]) and its 
link with deep water computation proved to be the critical point of the 
simulation. 

Once the calibration of the model was completed, computed levels 
and currents compared very well with measured values (fig. 5). The 
current phase agreement was quite remarkable, and of particular 
importance as currents computed with the proposed facilities were to be 
analysed to define the time period of ship entry into the harbour. 
Current fields were drawn at different times during the tidal cycles. 
Figure 6 shows the currents in the vicinity of the steel mill, they are 
parts of the current charts drawn for spring tide at high water and at 
4 hours before high water. 

6.   CONCLUSION 

The original mathematical method used in the CYTHERE ES 1 method 
enables very good accuracy to be obtained at a reasonable computer 
cost. It has been applied to many engineering studies including 
modelling of the thermal impact of 30 coastal nuclear power plants in 
France by the LNH [7], investigation of ocean eroding action (river 
Canche estuary, France, LNH), a pollution study (bay of Saint-Brieuc, 
France, Sogreah),  ... New developments include modelling of 
wind-induced currents and this is being applied to the study of a lake. 
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Fig. 6 Current fields for spring tide with simulated 
reclaimed and dredged areas 
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