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ABSTRACT

A nonlinear solution of wave profile equation divectly deviv-
ed from styveam function is submitted. In stead of expressing
by trigonometric sevies to approach the real solution, implicit
Sunction is adopted. In the eva of electvonic computer, Such an
expression will be comvenient for practical utilization.

Equations in either deep water or in finite water depth ave
worked out. They are proved morve reasonable in graphical shape
of wave profile and consistant in the continuity of wave celerity

in various depth in comparison with Stokes theory.

INTRODUCT ION
For more than 100 years, Stokes' wave theory has been applied
to various engineeving problems. However, the theory is an app-
rvoximate solution styictly. Furthermore, we all have the expe-

rience that the (n+ 1) th solution is not guavanteed to be_better
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than nth. The only merit is that the equation is expressed expl-
icitly. In the eva of electronic computer, implicit equation
can be solved promptly. It is not necessary to be stuck on expl-
icit equation. Reasonable solutions of wave profiles in deep
and intermediate water arvea ave worked out divectly from stveam
Junction in following sections. Their validity and consistancy

are examined closely.

FUNDAMENTAL EQUATIONS

(A Governing equations
Water is supposed to be incompressible and irvotational,

then the governing equations of wave motion are as follows :

VZg=0 , V=0 @Y
'Ad 02
vVZ = +
( 9xZ 3y

x . abscissa along the water su¥face, being positive towarvd
the wave divection.

y : ordinate vertical to the water surface, being positive

upward

g=¢ (x, vy, t) . stream function
6=¢(Cxr, y, t): velocity potential

t . time
B Boundary condition equations on free surface
(@) Dynamical equation

i L AP SPEN
(3t)y:7+g7)+2[(3x)+(ay) Jy=y = Q) (2

g . gravitational acceleration



WAVE MOTION EQUATION

=9 (x, t) : fluctuation of water surface elevation

with respect to x — axis

g ag @b g

= =v, —= =—u
dx dy dy Ox

w , v hovizontal and vertical velocity of water particle
Q(t) : Bernoulli's number varys with time only
(D Kinematic equation
0¢ dp 8y d¢

— y=y = — + —),= 3
(ay” at ax(ax)” ®

(C) Boundary. condition ¢:: bottom

] 2
¢ )_y:—'d:('_gb_)y:—-dzo (4)
¥ x

(55 P

d : vertical distance from x — axis to the bottom

(D) Assumptions of solution
The solutions of above mentioned Laplace equation i.e. equ-

ation (1) arve to be assumed as follows :

=]
<’/}(x’y, t) — z cn e—nlzd E enk(rﬁw)ie*nk(d*w) ] cosnk(x—(,‘t)

n=1

o
¢(x,y; t) = Z Ca gk [ ek dty) . gmnkldty) ] Siﬂflk(x—Ct)
n=1

(5)

The stream function of free suvface is .

¢(x:7:t):

So that
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I C
p(x,t)= 3 _n_e—nlzd[ e "hdtn)  gmnkdt) Y cosnk (x—ct)

w=1 €
C, . constants to be worked out
n 1 , 2 , RIEREREN
e . exponential
k : wave number, k= 2n /L
L : wave length

. wave celerity
The motion is altered to be steady flow by adding an oppo-

i3

site velocity ¢, (x—ct ) in above equations will be veplaced by

x, then

o
o(x,9) =cy— S Cpe e [ erildty) . gmmkCaty) Jcosnkx
n=1

o0
d(x, ) =cx+ 3 C,e ™ [ grktdty) 4 g nkldty) Y siynky

n=1

o Cy
S D ek [ e atn) _ gmnkatn) Y o5 phx (6)
n=1 C

p(x) =
NEW EQUATION [N DEEP WATER

In above equations , d oo, =1, we get

d(x,y) =cy—Cre*’coskx (7
C;

p(x) =— €*” coskx (8)
¢

Ymax AU Dmin ave the elevation of cvest and trough of wave

profile.

G kg (9)

Vmazx — Nyg = — €
c
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C;
Dmin = Pz = — "1 (10)
c

Invoke a pavameter w which is defined as the vatio of maxt ~
man particle velocity at the wave crest, q., to wave celerity, c,

namely

a¢
dy

w=qo J ¢ = (==Dymy, /€ (1)

w is to be 0 when wave is breaking, and will be — 1 on calm
water surface i.e.
- 1<) o 0<1+0<1
Substitute (7) to (11)

C:

(l+w)/ k=—2¢"t (12)
¢
From equation (9)
C
<1+w)/k:m:71e‘“ (13)
c(1+w)
Cr = Bt 1ta) (10
is Obtained.
Consequently
c(1+w)
o (x, ) :cy—T(—r— e*vcoskx (15)
o(Ita
_ 1 +w n A
r](x)_me COSRX (16)

From equations (9) , (10) and (13)
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et Pk BeCite)
— — an
Nz ni1 1+ ow

H denotes the wave height H= n; — ps °

Accordingly
Bellte)  p*7 1+
— = eUterg=kd /(. b)
1+w H—»,
e EH=(14aw) (1+e*) (18)

Let 6 =H /L namely the wave steepness, equation (18) is
altered to be

1+ 2% 9 0 a9
@ =—=
1+ e2%3
and
4
p(x, ¥ =€y—£-e7e"’coskx (20)
[
y(x):k —~ e*cos kx (21)
e

are oblained. Equation (21) is an implicit equation, however,
it is to be solved by Newton — Raphson's method promptly through
computer.

The curve is to be depicted for a cvitical case i.e. 6 = 0.142
and comparved with Rayleigh's solution.

Wave celerity ¢ is worked out by following procedure.

In steady flow, ( 3¢ /3t ) vanishes and Q(t) becomes cons-
tant @ in dynamic boundary condition of free surface. Subslitute
the new wave profile equation (21) to equation (2)

c?6?
eZﬂ

4 1 0 Q
~——e*Mcoskxrt+—{c?2—2¢2— et coskxt e } =—=1}
ke 2g e’ g
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Wave profile in deep water

20 . .
Put e®¥1 =1+ 2ky = 1+—-e*7coskx, this equation becomes
e

c207 20 ., C70%
(et — )+7 (%—c‘ +;—5—) e*7coskx = Q (22)

Q is a constant, the coefficient of variable term e*"coskx

must be zervo. So we can get

g 0 ., & 274 Az d =
G e e () )

(23)

According to this equation, wave celerity incveases with
wave steepmess exponentially in stead of linearly with the square

of wave steepness in Rayleigh's theory, however, while 6 is

small
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g 2né 4n0d
(cz)a_,o:;{ 1+<———1+e‘2’”’ )2/ exp (-——-—1+e_2” )}
g H
==1{1 k2 (—)?
o {1+ ( > )%} (24)

Wave celerity calculated by the two theories are almost
identical.
Following diagram shows the compavison of the wave celeyit-

tes calculated by these two theories.
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Comparison of wave celerity in deep water

The mean level of wave profile is wovked out by the following

equation
1 L
= d
: LL 7ds
g
Let p=——(1+ky) coskx
ke
Acoskx 7]

7T “Akcoskx T ket
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Substiiute this expression to the integration

1 1

=yl V)
276

1+ e27°

[V 02/e2” j_—[exl)( 470 )] (25)

1+e7272

While the steepness is small i.e. 6 —0

_Ax%8? =zH?

28 L
coinciding to Rayleigh's theory.
To check the relative ervor, substitute the value of ¢ i.e.
equation (23) to the following equation to calculate the differ-
ence of total water head due to adopting 1+ 2kn in stead of %7

1 e%p2

Ah=—
Zg e20

(e? —1—2kyp) (26)

The result is shown in following figure, the velative error

of total water head in the case of extreme heigh wave is about
10 % «

k

1.0 8k

os-Ah/h 4/\L

osf

o4l - -

o‘zr. l L=2=x Z:O.HZ h = 0.6647 —| Ak Ah/h

0.0 - A . R
- -? (o} g m

Relative accuracy in deep water wave
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ENW EQUATION IN FINITE
WATER DEPTH

Set n=1 in equations of numbeyr (6)

P(x,y)=cy—~Cre™® (eF 9ty g4 H9) Jeoshy 27
C
7 (x) :-Z-i ek [ ghCdtn) _ gkt Y ooshy (28)
C: ., BCdty ) —kCd+ny)
771:77muz:7€ l: e — e j (29)

P2 = Dmin :‘TCI gk Eek(d+72) LT P ) (30)

Parameter o is also invoked

1+w:C_CI ek L p (T D €1,
0<1+0<1
From equation (29)
kCd+y, ) —kCd+n ;) CI -
(1+w) / k(e Tte )= e
:771/|:ek(¢bh;1)__e—k(d+v1)]
1+w=*Fkypscoth (d+9;) (32)

is abtained.
From the following velationship and equation (31)
»1 1 (1+w)+ky;
k +d)=tanh™! (—— ) =—In ———"> 33
2 ) (l—l—m 2 (14+e)—Fky; (33)

1+w+ &y, \/1+w—k771
l+w—Fn; l+w+kyp,;

(14+w)c/k=Cie*¢ E/

C; is found to be

2_k2 2
CI:%WV( 1+'”2) 7 (30)
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From equation (32)

1—(Ck292) /( 1+w)2=1—tanh®’k (d+n; ) =seeh?k (d+7; )

‘/(1+w)2—k27712:(1+w)sechlz(d+>71) (35)

Conseqently

sinhk (d+Y)
L y)=cy— PRI AL k
$(x,9)=cy—coy: Sk Cd coskx (36)
_ sinhk (d+7)
n(x) = 9; Sk Cda o0 cos kx (37

n; should be expressed by wave height, length and water
depth., From equations (30) (34) and (35)

v ( 1+02)22—~Je2,7)12[ ek(d+n1‘H)_e—k(d+qI—H) 3

+5,) —&k{d+n,)
(14w) MR R EPL 1
= % sechk (d+ —
2k Cdnd (5om 2 )

——7]2:H—7)1:

(38)
Substitute (33) to (38)

AN 1+0)?—kp?  N(1+e)+ky,
= 2k N G E T TS
M ANl +we)—kyr
_\/(1+w)+kr)1
1 (1+w)(1—e?* Y+ ky; (1+e?*)

:ﬁ'[ Y

H—19,;

)

1
= Cknicosh bl —( 1+w) sinh kH )

From equation (32)

kH=ky; ((1+coshkH) —cothk (d+x ) sinh kH ) (39

oy
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H
5:3:’-75’ (14 cosh2nd)—cothk(d+y; ) sink 275 ) C40)
91 Can also be computed by Newton — Raphson's method, then
the stveam function and wave profile are to be worked oul, The
curve of the mew theovy is shown in following figure, it is

much veasonable in comparison with Stokes 3rd approximate

curve.
7
H
0.8,
oz}l 7
L=2x —=0.142
osl L
dv
o5k Z— 0.166149
0.4[
03
o.zf
ot _r
2
.
° -
=0.1
ot P
-0.2f /. ~
-o3p~-"

Wave profile in finite water depth

The wave celerily can be calculated by adopting the same

method in deep water. Substitute equation (37) to the dymamic

boundary condition of free surface,

coshk (d+n)

1
coskx+—{¢2—2¢%kp; ——————— CcOSkX
* Zg{ 2 71 sinh b (d+95;)

nisinhk (d+7)
sinh kb (d+751)
inh?k (d + + 2k

si ( y ) +coskzx :Q_:h 4D

sinh?k (d + 91 ) g

+ cZkzvl 2
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Put the coefficient of variable term to be zero, the wave
celerity is worked out to be
g sinh® kd
¢Z =—tlanh kd 1—k2pf ————— 42
% /1 ”’sm;ﬁk(dw;,)} (42
For theovetical consistancy, wave celerity formulas in deep

and shallow watey must be contimwous. Sel d—oo in equation

(42)
(c2 >_w:§[ 1— ( k2y,2 /ety )

Substitute equations (13) and (19) to lhis equation

270

(e daw=L 01~ re )1 (43)

¢ ( 4o
x -t
p 1 + e*ZiKﬁ

The reality shows that the new theory is superiov to the
Rayleigh's and Stokes.

The wave celerities in various relative depth are shown in
following figure.

In this figuve we also see lhat the new theovy is better
than Stokes which is unrcasonable thal the wave celerities incre-
ase more vapidly in shallow water avea.

The relative accuracy of watey head is estimated as follows.

coshk (d+n)—coshkd
sinh b (d+7n;)

sinh? kb (d+n)—sinh’kd—kysinh 2kd+cos?kx

sinh® k (d+n;)

sinhk (d+n) —sinh kd
sinh b (d+75:)

1
Ah:;g’{*2czk7]] COSkx+C2k27]12°

}

cos ky (44)
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/ = 0.05(Stokes) v = [% tanhkd

%: 0.15(Stokes)

~
~
IS

= 0.20(Stokes)

2 0.50 (Rayleigh)

= 0. 25(Stokes)

~N
N\
SRR

1%
o
@
S
=
F
&€
-

= 0.25(New)

S ES ES N

= 0.20(New)

d
7= 0. 15(New)

H
L

| L
O.12 0.142

L L
0.08 .10

Comparison of wave celerity in finite water depth
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The vesult of calculation is depicted in the following diag-

ram, for very high waves, the relative evvors are up to 20 % .

H a -
1 h L=2x = 0.142 r: 0.166149 4 = 0.6029

Relative accuracy in finite water depth

The mean level in the waves in this case is to be calcul-

ated as follows.

E_lj"“ d_2j‘%d
L), TYrTTTL), e

Equation (37) can be expressed approximately by :

_mgsinhk (d-+7)
 sinh b (d4y1)

. nmasinkkde*?

coskx

coskx =B ( 1+kn ) coskx

T sinkk (d-tp)
. Beoskx B= n1 Sinh kd
7771~Bkcoskx _sinhk(d-i-m)
2 (2 Beoskx 1 1
= ——dx = [ | 45
¢ Ljo 1—-Bkcoskx k[\ll—szZ ) (45

It can be proved thad while d oo, B=A=60/ke’
Finally the significant vange of this theory is shown in the

next figuve.
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Significant range of the new wave theory

CONCLUSION
The new wave profile equation descvibes the wave motion by
an implicit function, can be seid to be an exact solution
because no approximation approach is adopted.
In the procedure of calculating wave celerity, some approxim-
ate expressions are used, so that some ervovs will be acknow-
ledged in total water head calculation. However, the wave
celevity equation has been proved to be continuous, such a
fact shows the new theory is supevior to the Rayleigh's and

Stoke's.
The velationship between wave celevity and relative depth d /L

in Stokes theory 1S unveasonable. It is morve consistant and
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will coincide with the reality in the new theory.

. In the eva of electvonic computer, the new wave profile equat-

ion is Suggested to be adopted in practical use after some

complement such as the exact position of x — axis is made.
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