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ABSTRACT 

The paper refers to pressure gage wave measurements . First order 
transformation of the pressure spectrum into a surface level spectrum 
leads to hitherto unexplained discrepancies with prototype simultaneous 
pressure and level measurements . Use of second order gravity wave 
theory allows to draw the following conclusions » Second order effects 
appear to give a reasonable explanation of the observed discrepancies . 
A complete check would require specially made wave measurements and 
analyses . Second order corrections do not significantly affect mean 
values, such as significant height, if the manometer depth is not un- 
duly large . 

1   INTRODUCTION 

When measurements of irregular sea waves are carried out with an im- 
mersed pressure gage, standard procedures, based on random oscillations 
theory, allow to compute an estimate of the "pressure" power spectrum . 
With the further help of linear gravity wave theory, this spectrum can 
be transformed into a first approximation of the corresponding free 
surface spectrum . 

Simultaneous measurements of pressure and surface levels have shown 
that this first approximation is not always satisfactory. For instance, 
CAVALERI (1980) found discrepancies as large as 20 % between surface 
spectra computed in this way and spectra computed from direct surface 
measurements . As a rule, wave attenuation with depth appeared to be 
larger than the theoretical value for the low frequency parts of the 
spectra and lower for the high frequency parts . 

This poor agreement was rather surprising because laboratory tests, 
made with regular waves, have consistently shown that first order wave 
theory gives a very reliable estimate of the ratio between wave pressu- 
re and wave height . Non linear corrections are only necessary for 
large wave length to depth ratios or close to breaking wave heights . 

The present paper results from an attempt to reconcile fact and theory, 
using second order wave formulae . This line of research may seem ra- 
ther doomed beforehand as second order terms have no influence on the 
pressure to height ratio of "regular" waves .  However, this proved not 
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to be the case for irregular waves and, actually, the second order 
theoretical value of these ratios may widely differ from their first 
order approximations . 

2   NOTATIONS 

The space coordinates are x,y and z . The origin is at the mean water 
level . The x and y axes are horizontal and the z axis is vertical up- 
wards »  The other notations are : 

t time g acceleration of gravity   Z surface elevation 
H water depth        p atmospheric pressure     p water pressure 
p water unit mass     Q=(p-p )/(p»g) + z 

Random spectra are discretized into I "lines" (regular unidirectional 
component waves) .  The ith line has the following parameters : 

a. amplitude  u>. angular frequency   k-  wave number  0. random phase 

ot. angle of wave direction of propagation with positive x axis 

For the theoretical outline and numerical examples, only unidirectional 
waves are considered (i.e. a. =0), moreover, spectral lines are equidis- 
tant (i.e. cu^i.dtt, k. being given by w?=g-ki .tanhEk^ .H] ) . 

Other parameters are defined to simplify the formulae in the text . 
Those relating to only one line are defined with the index "i" . Those 
relating to two lines are defined with indices "i,j" . These latter 
parameters are either what we shall call "add" type quantities, marked 
with a prime, or "subtract" type quantities, marked with a double pri- 
me . For both these quantities, the indices are not written except 
when they are different from i,j . "Add" terms exist for i=j but 
"subtract" terms are not used in this case . 

u. =k. .(x -cosa. + y .sin C6. ) - ID. .t + 6.    u' =u. + u .    u"=u . - u . 
ii       I  

J     I    l     I        IJ        ij 

c.= cos u. c'= cos u' c"= cos u" 

s.= sin u. s'= sin u' s"= sin u" 

k' = ki + k, k"= k± - k. 

to1 = to. + ID. {i)u = a) . -a). 

y"~  cos (a.-a.) 

Ci= cosh(ki.H)        C'= cosh(k'.H) C"= cosh(k".H) 

S±=   sinh(ki-H)        S'= sinh(k'.H) S"= sinh(k".H) 

CZ.= coshCk..(H+z)]   CZ' = cosh[k'.(H+z)] CZ"= cosh[k".(H+z)] 

SZ,= sinhCk..(H+z)] 
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3   OUTLINE OF SECOND ORDER RANDOM WAVE THEORY 

In this section, as mentioned above, we shall use a discretized form of 
random wave theory which allows numerical computations to be carried 
out for any spectral shape . We shall also only consider unidirectional 
waves, travelling in the direction of the positive x axis . 

Surface elevation Z1 of such a discretized first order random wave is 
given by 

Z1 = la. .c, 
.11 
l 

This means that we have replaced the continuous power spectrum by a 
line spectrum . We shall also assume that the spectrum lines are equi- 
distant along the frequency axis . If the frequency step dw tends to 
zero, with a proportional increase in the number of lines and decrease 
of the line intensities (a2), the resulting motion tends to a truly 
random one with a spectrum density S(w) such that 

S(iO =  a?./(2 .dto) 
i    l 

For each set of values given to the random phases 6. we have different 
"realizations" of the random function Z1 but our real interest will be 
in the mean values, over the entire population of these realizations . 

Wave elevation to the second order of approximation is given by 

Z = I a. «c. + I  I  a. «a . *B' .c' + I  I    a. -a . .B" .c" 
i11ijlj       ij  X J 

B' and B" are rather  complex,  therefore,  their value is given in the 
appendix together with similar coefficients in the pressure formulae . 

At any point (x,z),Z will be a sum of sine functions having frequencies 
of the form n.d^ . Each of these sine functions will itself be a sum 
of the nth first order term (a *c ) and of a number of second order 
components which will have one or the two following forms 

al-an-i-Bi,n-i-ci,n-l     ("add" terms) 

("subtract" terms) 

Because of the random phase lags in these components, the average in- 
tensity A* of the nth line, in the second order power spectrum of Z, 
will be the sum of the squares of the components amplitudes 

At I  (ai'an-i-Bi,n-i>2 + I  (ai'ai-n-Bi,i-n)2 

Thus,starting from a "first order" power spectrum with line intensities 
a^ , we can compute a second order spectrum with line intensities A* 
for the wave elevation Z . 

We can do the same for the pressure variation at a depth -z . However, 
rather than the pressure p, we shall, use the difference between p and 
the static pressure, divided by p.g, i.e. expressed in height of water. 
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We shall call this quantity Q . We have a similar formula 

.E" . 

where q. = a.»(CZ./C.) 

Q = 7 q.»c. + I T a.»a .E'^c' + V V e 
.11..   il        . .  i  1 

i J     J        i J    J 

CCZ|/Cj) is the classical first order ratio between pressure and sur- 
face elevation for regular waves „ As shown above for Z, these second 

order formulae allow us to compute the average intensity Q* of the nth 
line in the second order power spectrum of Q . 

Finally, the apparent pressure reduction,for the frequency i»dw,will be 

Q ./A instead of    q  /a    =  CZ  /C 
ii 1111 

Following CAVALERI's example, we shall use the ratio a of these two 
ratios 

a = (Qi/Ai)/(CZ./Ci) 

to show the numerical results in a simple way . 

4   NUMERICAL EXAMPLES 

The numerical examples concern an unidirectional storm wave having a 
JOMSWAP type first order spectrum . The peak period is 4 seconds, the 

peak enhancement coefficient is 5 and the significant height is 2*3 m . 
This spectrum is approximated by nineteen lines defined as follows 

f(Hertz) a2 (m2 ) f(Hertz) a2 (m2 

0.025 0 0.275 0.217 

0.05 0 0.3 0.05 

0.075 0 0.325 0.0286 

0.1 0 0.35 0.0221 

0.125 1.i 38 E-08 0.375 0.0169 

0.15 0 .00014 0.4 0.0129 

0.175 0 .0051 0.425 0.0099 
0.2 0 .0237 0.45 0.0077 

0.225 0 .083 0.475 0.006 

0.25 0 .235 

The water depth H is 12 meters for all examples . 

Figure 1 shows the computed values of a for a manometer resting on the 

bottom . These values are very close to unity throughout the frequency 

range of the strong spectrum lines but they drop very steeply at the 
low frequency end » In such a case, there seems to be practically no 

significant error due to the neglect of second order terms . 

The above spectrum was then slightly modified to incorporate some low 
frequency agitation such as may be due to surf beats or distant storms. 

For this purpose,  the three first lines of the spectrum were given the 



MANOMETER WAVE MEASUREMENT 133 

value 0.02 instead of zero . The effect on the values of a were quite 
significant as shown in figure 2 (thick lines) . This result was much 
more similar to CAVALERI's observations which are shown in thin lines 
on the same figure, as published in his paper, for manometer depth of 
the same order of magnitude . Values of a computed for manometer depth 
of 6 and 4 meters are shown on figures 3 and 4 together with CAVALERI's 
results for these depth ranges . 

5   PHYSICAL EXPLANATION 

A physical explanation can be briefly outlined here . We saw, in sec- 
tion 3, that there were two types of second order terms which we called 
"add" and "subtract" types . The first are chiefly higher frequency 
terms, because their frequency is the sum of two component frequencies. 
The corresponding pressure terms decrease less rapidly with depth than 
first order terms of the same frequency . This explains why decrease 
with depth is less for the higher frequencies . The reverse is true 
for the lower frequencies where subtract type terms decrease faster 
than their first order counterparts . 

6   CONCLUSIONS 

Second order theory of random waves appears to offer an explanation of 
observed discrepancies between attenuation of pressure fluctuations 
with depth and first order theory . More accurate checks would require 
to extend spectral analysis of wave records down to very low frequen- 
cies .  Unfortunately, this raises difficult instrumentation problems . 

Some computations were made with multi-directional waves, however, the 
results were not significantly different from those reported here . It 
would therefore seem that further investigations may be carried out 
with relatively "simple" unidirectional waves . 

The second order formulae may be used to deduce the first order spec- 
trum from the measured spectrum, neglecting terms of an order higher 
than two . Incidentally, this raises an interesting philosophical 
question : in which of the two surface spectra are we more interested, 
the first or the second order one ? 

With moderate manometer depths, it would seem that, for most enginee- 
ring purposes, second order corrections are not necessary because sig- 
nificant heights are practically unaffected . However, mean frequency 
of the first order spectrum may be over-estimated, chiefly when there 
is a sizable amount of low frequency agitation . 
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APPENDIX  GENERAL SECOND ORDER THREE DIMENSIONAL FORMULAE 

In sections 2 and 3,we restricted ourselves to unidirectional waves and 
to discretization with equidistant lines, but the formulae remain valid 
for multidirectional waves and for any other spectrum discretization . 

Thus, each line may represent a component wave having an amplitude, a 
random phase, a frequency and a direction of propagation independently 

defined, the sole restriction being that no two lines may have both the 

same frequency and the same direction . To write out the formulae, we 

still assume that the lines are identified by a single index varying 

from 1 to I . 

The only information that is needed to use the formulae is the value of 
the second order coefficients, B1 and B" for the water .level Z , E' and 
E" for the pressure Q . We shall also define F' and F" for the velocity 
potential 

9 = I F. .CZ. *s. +11  a. .a..F1-CZ*-s' + £ £ a. .a. .F".CZ" 
.  i  i  i   . .     l  j 

where F. = a. .u). /(k. -S. ) 
i j - J i j 1 J 

The formulae given for F' and F" are taken from BIESEL (1966), with a 

few changes in notation . Formulae for B',B",E' and E" may be deduced 

from the latter in a classical way . 

F' = [^.S./Sj^+U)3.-Sj^/S.+2.^.0) .11)'.(C1.C1 •T-Sj^.S.ll/D' 

where D'= 2.S. .S. .(o>'a .C'-g-k' .S1) 

F" = |V. .S./S.-u)3. •S1/S.+2.u .u. .^".(a.C, •Y+S1«S,)]/D" 

where D" = 2.S1.S. -(ID"
2
 .C"-g.k".S") 

B'=F'.k'.S'/ui' + [k. .u. .C,/S +k, .u) .C /S, + (k .ui -a, /S.+k, .10 -a /a. ).T]/2W 
-*--t-J--LJJJJ     -!'JJJJ-I--L-1- 

B"=F".k".S"/u)"+[k, .0) .C./S.-k..u .C./S. + (k -co .C. /S.-k. M. -C. /S. ).7]/2<»" 

E'=F' .ID' .CZ'/g-i". •">. .(CZ^CZ. .7-SZ1.SZ.)/(2.g.Si-S.) 

E"=F" .a)" .CZ" /g-uK .0). . (CZ± .CZ . -T+SZj^ .SZ . ) / (2 .g ^ -S ) 

Note : In the double sums, the terms having indices i and j are equal 

to those having indices j and i . The above coefficients are doubled 
so that each pair of values i and j must be taken into account only 

once and, for "add" terms, when i=j, these coefficients must be divided 
by two . 




