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ABSTRACT 

This paper describes a mechanism of breaking waves over sloping bot- 
toms in terms of changes in integral quantities of the waves.   Systemat- 
ic computations are made of wave profiles of shoaling waves up to the 
numerical unstable points by using the K-dV equation with variable coef- 
ficients and internal properties such as horizontal and vertical water 
particle velocities by a stream function method satisfying the conserva- 
tion laws of mass and energy.   Applicability of the numerical results 
is examined and a relation between numerical unstable points and actual 
breaker points is found.   Characteristics of the integral quantities of 
shoaling waves are investigated in relation to the existence of the ex- 
tremum of the energy of the shoaling waves and their breaking inception. 

INTRODUCTION 

A sound knowledge on breaking waves is very important for coastal 
engineering, as stated by Longuet-Higgins(1980) at the Sydney Conference. 
However, theoretical elucidation on the mechanism of breaking waves on 
sloping bottoms is not enough, although many prominent theoretical inves- 
tigations have been carried out on this problem.   A series of studies 
by Longuet-Higgins et al.(1974 & 1975) obtained the very interesting con- 
clusion that the integral quantities, such as the phase speed, momentum 
and energy increase with wave-height initially, become maxima and then 
decrease; that is, these quantities reach their extrema at a wave-height 
preceding the highest wave.   So, a great interest is now being taken in 
the relation between the existence of the extrema of the integral quanti- 
ties and breaking inception and in the derivation of the breaking incep- 
tion from the behaviour of the integral quantities which reflect the 
properties of the whole wave field, by regarding the wave breaking as an 
instability of the field. 

Because symmetrical wave formes were assumed in their calculation, 
the conclusion obtained by Longuet-Higgins et al. indicates only that the 
integral quantity of the highest wave is not usually maximum and does not 
directly show that extrema arise in the integrals of shoaling waves on 
sloping bottoms.   Therefore, it is necessary to calculate the changes in 
the integral quantities of shoaling waves in order to investigate the 
mechanism of wave breaking on a sloping bottom which is important in 
coastal engineering. 
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Here, based on the results of the authors' studies(1979 & 1982) on 
the transformation of shoaling waves over sloping bottoms, are made com- 
putations on the wave profiles of shoaling waves up to the numerically 
unstable points by using the K-dV equation with variable coefficients. 
At the same time, the internal properties such as water particle veloc- 
ities are computed for the given wave profiles at each water depth by the 
stream function method, satisfying the conservation laws of mass and en- 
ergy.   The relation between numerically unstable points and the actual 
breaker points defined by Goda(1980) are also examined, and investiga- 
tions are made of the characteristics of the integral quantities of 
shoaling waves over sloping bottoms.   It is then shown that whether the 
energy of shoaling waves has extrema or not is a function of the surf- 
similarity parameter(1974).   Finally, examinations are made of the rela- 
tion between the existence of the extrema of the energy of shoaling waves 
and breaking inception or breaker type. 

CALCULATION OF INTERNAL PROPERTIES OF SHOALING WAVES ON SLOPING BOTTOMS 

7        Waves 
1. Reduction of Basic Equation 

By considering irrotational 
wave motion over a uniformly slop- 
ing bottom and taking a Cartesian 
co-ordinate system as Shown in 
Fig.1, the governing equations are 

given as 

V2<J>=0, *  +(<( 

Fig. 1 Co-ordinate system and 
symbols used 

/2 + g(z-h) 1 ,   t=0, I lz=h,+z 

(1) 

z!   +  z1   4>     -  $   I     , , =0,   d> 
t xx z'z=hL+z' yz J, =0, 

where, the subscripts denote partial differentiation, <}> is the velocity 
potential, z' the water surface displacement from the mean water level, 
B the height of the sea bottom above the horizontal co-ordinate, h  the 
depth of mean water at the origin and g the acceleration of gravity. 
The above equations can be directly solved by a numerical method, such as 
the MAC method.   However, there arise the problems of the great effort 
necessary for the computation and the insufficient accuracy of numerical 
solutions in view of the labour expended, so that the following approach 
is adopted here. 

For our calculations the following four assumptions are made, 
i) Bottom slopes are gentle and the water depth changes dependently on 

X = ex in which e is a small parameter, and therefore, 
ii)the wave reflection from the sloping bottom is negligible and mass 

transport by waves is not bound by a sloping bottom.   In addition, 
according to the conclusion by Stiass nie et al. (1975) that the effect of 
wave set-down is less than about one percent of the water depth, the 
third assumption is 
iii)the effect of wave set-down is negligible.   And lastly, 
iv) the effects of nonlinearity and frequency dispersion of waves and 

bottom slope are of the same order. 
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By developing Kakutani's approach(1971) to a higher order approxima- 
tion on the basis of these assumptions/ Eq. (1) yields the following 
tractable wave equation using a new expression of wave profile, n . 

nx + 3nnf;/2c„' + c.n^j. - B*Tn/4c5 = E(-c?na£?j./15 

-3V«/2c°   " 2iiac/3c0   - 2ctnE?T/3 + B*nC5  /2 - 3n2nc 

/2cS   - nj;S!T/c»   -3nr,E/c
2   - nTT/2c„   - 5B»n2   /8c; 

jnT/2o0)   +  o(e2) (2) 

where 
= /T^B7 = /h*,   5  =  E1/2(/dx*/c0 

* = B/h, , x* = x/h, , z* = z/h, , t* 

= (h1/L,)
!<<l, ? = z« - B*, til = 

h/h, , (3) 

t*), 

= t/ 

'/h, 

Li is the wave-length at the origin and a new expression of the velocity 
potential, Q,   has the following relations 

fir - n = e(c0nEE/2 + n
2/2cg ) + o(E

2) (4) 

1 
'W 

2(   & a CC ;,e  z< Si USC •) (5) 

1  2 

4 Co 
0 (6) 

The applicability of the numerical results of Eq. (2) has already 
been examined in detail by comparing them with the results of the experi- 
ment without the restriction on mass transport by waves due to a sloping 
end wall of the wave flume and the influence of wave reflection from the 
end wall.   As a result, it was concluded by authors(1979) that the first 
order solution, which is the numerical solution of the lowest order equa- 
tion of Eq. (2) given by 

3  3      1 
nT + ^ conn;r + -3 c°n{^ 

is stable and applicable to shoaling waves over sloping bottoms.   The 
second order solution, which is the numerical solution of the second or- 
der equation of Eq.(2), however, 
because of its round-off errors 
and secular terms, is not as appli- 
cable.   In Fig.2 is shown an ex- 
ample of the comparisons between the 
numerical and experimental results 
of wave profiles of shoaling waves. 
Here, the thin, broken and solid 
lines indicate the results of the 
first and second order solutions, 
respectively, and the heavy lines 
indicate the experimental results. 
Therefore, based on the assumptions 
i), ii), iii) and iv), and as far as 
the wave profiles of shoaling waves 
as concerned, it could be said that 
the numerical solution of Eq.(6) can 
be used instead of the direct solu- 
tion of Eq.(1).   Hence, the present 
problem is reduced to finding the 
velocity potential <f> satisfying Eq, 

0-5 I   t/T      1.5 

Fig. 2  Comparison of wave profiles 
determined from numerical solu- 
tions and from experimental data 
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(1) against the water surface displacement z' derived from Eq.(6). 
mathematical formulation of <f> has already by the authors (1980) as: 

-= en + '-(   X  2 
(z*2-l) n^+ B*n } + o(e3) (7) /gh~   "•' • " l 2 

The characteristics of the horizontal water particle velocities were nu- 
merically examined through Eq.{7), and it was found that the accuracy of 
the high-order differential quotients computed numerically became lower 
with shoaling water.   So, by paying attention to the physical signifi- 
cance of Eq.(7), i.e., that the velocity potential of shoaling waves is 
mainly subject to the water surface displacement and suffers the direct 
effect of bottom slope only in the second order, the following approach 
is here adopted, where the effect of water surface displacement given by 
Eq.(6) is evaluated as accurately as possible instead of ignoring the 
direct effect of bottom slope as assessed in Eq.(7).   Therefore, in or- 
der to use the WKB method, a fifth assumption must be made: 
v) Both water surface displacement and velocity potential depend oh two 

variables, u and X, expressing the phase change and the gentle change 
in water depth, respectively: 

z'(x,t)=z'(u,X),   <t>(x,z,t)=<Hu,X,z) (8) 

where 

u=-|KK(X)dx-wt (9) 

K(X) is the wave-number dependent on the change in water depth and to, 
the angular frequency, independent from the change according to the con- 
servation law of wave-number. 

This assumption can be sufficiently justified because the expression, 

:' U ,T )=z' U- cdx ) (10} 
2ec 3z, 4ci 

can be derived by considering that the water surface displacement, z1- 
(h]_/e)n, is a solution of Eq. (6) , and then 

£-jcdi: = -w—{jK(X)dx-o)t} (11) 

can be obtained. 

Application of the assumptions of i) and v) to Eq.(1) yields the 
following equation, where the effect of the water depth change rate is 
explicitly expressed by the small parameter, e. 

K2 *  + 4>  +e (KJ + 2K$ „ ) 
uu  zz     Xu     uX 

-w*    +±.(K2<]>2+tt>2 

U     2 U 2 

*XX 
= 0 

at       z = h!+ z 

-wz   +K2*    z   -4>    +e(K<|>    z    +K<|>   z')+e2*    z   =0at       z = h1+z' u uuz AU UA AX 

'(12) 

.•    =0 
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Here, a final assumption is made concerning the velocity potential^: 
vi) The velocity potential <j) can be expanded as a power series with re- 

spect to the small parameter e as: 

<Hu,X,z)=4>0(u,X,z)+e4>1(u,X,z)+---. (13) 

Moreover, by exchanging u for a new variable 6 and defining the 
stream function i>,   respectively, as: 

h'Kh   •   nr*=K2^     .   ?=x-c<x)t , d4) 

V*e~c '  *e = -*z  ' (15) 

the following equation, expressed with the stream function, is derived in 
the lowest order 0(1) from Eq. (12). 

1 '1 -z(i>*+i>2 )+gz =--c2     at  z=hj+z 
eL D   Z eL 

^ ^ ^ o    at  2 = h1+z' , 

<\> = 0 at  z = B  , 

>(16) 

where fyQ  is a constant denoting the total volume rate of flow underneath 
the steady wave per unit length in a direction normal to the x plane. 

As mentioned above, the water depth change rate is of the order e 
and from the assumption i) the value of e could be considered small 
enough that the velocity potential <j> can be sufficiently evaluated by the 
lowest order term <j>0, that is, the stream function defined in Eq. (14) . 
Thus, under assumptions i)-v), although i>   is an explicit function of 0 
and z alone because all terms dependent on the change of water depth, 
such as bottom slope, are neglected, and although TJJ is indirectly affect- 
ed by water depth change through the conservation laws, the mathematical 
formulation satisfying both Eq.(15) and the conservation laws against the 
water surface displacement z' given numerically from Eq. (6) is synonymous 
with Eq. (1) . 

2. Examination on Conservation Laws 

The effect of wave set-down is ignored by the assumption iii), so 
that the conservation laws to be satisfied become those of mass and en- 
ergy alone.   They can be expressed in a two-dimensional wave field of 
steady state, shown in Fig.l, as: 

f  [h,+z  , , . -{   '   pudz}=0 (17) 
X   J D 

;r-[ fhl+Puti(u2+w2)+E + q(Z-h1 )>dz]+pgnsf-{[h,+Zudz>=0       (18) ClXjD        <L P UXJ 

where the bar — indicates averaging over one period, and n_ is wave set- 
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down.   It is found from Eq. (18) that the uniformity of energy flux by 
waves is satisfied independently from the evaluation of wave set-down 
when the conservation law of mass is satisfied.   Substitution of Eq.(15) 
into Eq.(17) yields 

"dX  L  K*«udz > + o(e2) = 0 (19) ( jB  K*oudz } + o(e2) = 0 

The conservation law of mass is satisfied unconditionally in the same 
order 0(1) as in Eq.(16), so that it can be considered in the order of e. 
Hence, the law is expressed as 

I = £|h,+zU   +c)dz = E{*0+c(h,-B) )=const . (20) 
jB 

where  I  is  the mass flux by waves. 

By  similar examination on the  conservation law of  energy,   the law 
can be written in the  order  of  e   independently  from wave   set-down as: 

W=e   h'+ZP(4<   +c){i(^   +c)2+i*2
+H + g(z-hI)}dz 

z d     z <L   y   p 

-rpc{(3c+u)l-cu(hl-B)-2gz 
2}=const. (21) 

where W is the energy flux by waves. 

3. Calculation of the Stream Function of Shoaling Waves 

By considering the theoretical result(1980) that mass transport ve- 
locity u is given in Eulerian co-ordinate due to a nonlinear effect when 
the phase of z1 is assumed to agree with that of $, a generalized mathe- 
matical formulation of the stream function is assumed as 

N-l sinh(n-2) TTX  . x. 
} C    +       Z h/gTi = -lX(1)X(2)-/gIi
J       n = 4j6cosh(n-2),X(2) 

[X(n)cos{(n-2)1tX}+X(n + i)sin{ (n-2)TrX}] (22) 

where £=(z-B)/h, x=(x-ct)/L, X(n) is the n-th coefficient, especially 
X (j\ ='lVg/h, X(2)~h/L, X(3\=tp0/h gh and T wave-period.   The dynamic 
boundary condition at free surface shown in Eq.(16) can be rewritten with 
respect u as: 

-^u2+(u-c)u+-(u2+w2)-cu+gz' = 0     at  z = h1+z' (23) 
2      w      2  w        w 

where u  and w are the periodic component of the horizontal and vertical 
water particle velocities respectively.   They are in the following rela- 
tion with the stream function. 

* =-W        i|; =u +u -c (24) 
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Hence,   uw and w are  expressed by Eq.(22)   and   (24),   respectively,   as: 

N-l    (n-2)    X cosh{(n-2)uX,     .?} 

u   =      £      {-$j ^V-^ i — {xi    ,cos(n-2)7tX « .   c coshUn-2 )irX > (n) 

(n + 1 )sin(n-2) TI x J 

N-l    (n-2)isinh(n-2)iX.    .; r125' 
w=    -Z        —  —<x, ,cos(n-2)i)i 

cosh   n-2   iX., (n+1) 
n = 4 , 6 (2) 

_X(n)sin'n~2)"X) 

Moreover,   the mathematical  formulation of water  surface  displace- 
ment using  the  stream function  is  derived  through  the kinematic boundary 
condition at  free   surface: 

i_l-(u//ih)X(1)X(2)    X(3)"n = 4,6 coshHn-2)iX(2)} 

{X..cos{n-2)Trxi + X(.sin(n-2)nx.}]-l (26) 

Hence, as long as the above expression is used, the conditions to be 

satisfied by Eq.(22) become a binding condition, i.e., the wave profile 
expressed by Eq. (26) must agree with both the numerical solution given by 
Eq. (6) and the conservation laws mentioned above.   Although these condi- 

tions determine the coefficients X /nj .uniquely, some of them are subject 
to nonlinear equations with respect to X (n).   So, the determination of 
the stream function satisfying the above conditions is carried out by a 

method similar to that used by Rienecker et al.(1981).   The unknown co- 

efficients to be determined are X(2)z x(3)*,,x(nw their total number 
being N-l quantities. 

The conditions to be satisfied by them can be expressed as follows: 

Firstly, as to the wave profile conditions, the numerical solutions of 
Eq.(6) and z^ must agree with the expression shown in Eq.(26), so the 

conditions written as 

fi - zci/li - Yi = 0,   i = 1, 2, - • -, N-3 (27) 

must be satisfied.   Here, i indicates the i-th phase during one period 
divided impartially by N-3.   Secondly, the conservation laws of mass 

and energy expressed in the order of e are, respectively, 

f
N_2 = 

£(I-I» ' . fN-l = E(W-W° ] <28> 

where the subscript o denotes the quantity in deep water and I is written 
by the expression shown in Eq.(22) as: 

N-l 

I - uh + h/gH" £  tanh{(n-2)7rX   }{X. , cos(n-2) TTX. 
n-4,6 (2)   (n) Ai 

+ X(n+l)sin(n_2)7rxi} t29) 

Here, the subscript i denotes the pahse giving Yj_ = 0.   The N-l numbers 

of equations shown above are solved by Newton-Raphson's method so that 
the internal properties of shoaling waves can be calculated under the 

six assumptions mentioned above. 
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4. Examination of the applicability of Numerical Solutions 

An examination by Iwagaki et al.(1974) has already been made of the 
applicability of Dean's stream function method(1965) to the waves on 
sloping bottoms.   Water surface displacement was given by experimental 
results at each water depth with normal wave flumes, and its applicabil- 
ity was determined for shoaling waves with deformed wave profiles. 
Their conclusion was that the stream function method can be applied to 
waves with asymmetrical wave profiles on sloping bottoms as long as the 
wave profiles can be accurately calculated, although the method should 
be primarily developed for uniform waves with symmetrical profiles. 
Hence, it is thought to be possible to apply the present approach, as 
well as the calculation by Iwagaki et al.(1974).   However, the present 
approach is different in that the satisfying of the conservation laws, 
is not required in the usual methods.   So, an examination is here made 
of the applicability of the horizontal water particle velocity computed 
by the present approach. 
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Fig. 3  Comparison between numerical solution and experiment by 
Iwagaki et al. of vertical distributions of horizontal water particl 
particle velocities 

Fig.3 shows the comparisons 
between the numerical results 
obtained by the present approach 
where the measured wave profile 
at h/LQ = 0.069 was given as 
initial value and experimental 
results by Iwagaki et al. of ver- 
tical distribution of horizontal 
water particle velocities of 
shoaling waves.   And Fig.4 shows 
comparisons of their corresponding 
wave profiles up to the breaker 
point noted by h/LQ = 0.028 in the 
figure.   Here, the solid line shows 
the numerical results determined by 

t/T 

Fig. 2  Comparison of wave 
profiles determined from 
numerical solutions and from 
experimental data 
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the present approach and both of circles and broken lines show the ex- 
perimental results.   It might be said from the figures that the present 
approach is applicable for the calculation of the internal properties of 
shoaling waves up to a breaker point, although the examination was made 
only of the water particle velocities and wave profiles and although 
their numerical results seem to give larger values at the breaker point 
than the experimental ones which probably suffered from the effect of 
back currents from the end wall of wave flume. 

CALCULATION OF INTEGRAL QUANTITIES OF SHOALING WAVES 

1. Definition of Integral Quantities 

The method used by Longuet-Higgins(1975) can be applied to the pres- 
ent approach, and the expression of the various integrals can be derived 
as in the following, if the integrals are evaluated in the same order, 
0(1), as the terms in the equations mentioned above.   The potential en- 
ergy Ep at arbitrary water depth is defined as: 

Ep =-£- pgz'
2 (30) 

and the kinetic energy E^ is defined as: 
rhl+z' 

Ek= 3B   T p{(*z " c)2  + ^ >dx <31> 
By applying the expression defined by Longuet-Higgins, Eq.(32) can 

be rewritten as: 

Ek = -1 p{c
2h - (u + c)I} (32) 

In the same way, the radiation stress S can be expressed as: 

+z* x 
(p + pu*)dz - -^ pgh2 

= 2cl - 3Ep (33) 

Then, the energy flux W shown in Eq.(29) can be expressed as: 

W = — pC {(3c + u)l - uch - 4E } (34) 2 P 

Therefore, the integral quantities of shoaling waves can easily be 
calculated within the limits of 0(1), as long as the values of the wave 
celerity, the potential energy and the mass transport velocity can be 
given at an arbitrary water depth. 

2. Definition of Breaker Point 

In order to carry out the computation of the integral quantities of 
shoaling waves up to the breaker point, the breaker points must be rea- 
sonably and accurately defined and the computation of the stream func- 
tion with sufficient accuracy must be possible.   The former must be in- 
vestigated here because the definition of breaker points has not yet 
been established theoretically, although the latter is satisfied by com- 
parison with experiments including the actual breaker points.   So, some 
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examinations must be made of the breaker points to be used here. 

Table 1 Conditions of 
wave parameters computed 

Although the theoretical breaker point is thought to be defined by 

the singular point of Eq.(6) in the lowest order, the equation has not 

been yet analytically solved, so the condition for the singularity can- 
not be obtained theoretically.   Therefore, the breaker point is conjee' 

tured from the behaviour of the results computed numerically under the 

conditions of the wave steepness H0/L0 and bottom slope B^  described in 
Table 1, where the values of the well-known 
surf-similarity parameter y = Bx/ /HQ/L0 are 
also shown.   The computations start from 

the point of h/L0 = 0.08 and the values of 
L/L0 and H/HQ at the point are computed by 

the energy flux method(1977). 

Fig.5 depicts the changes in wave- 
heights of shoaling waves computed from Eq. 

(6) as a function of the surf-similarity 

parameter.   Here, the solid circles indi- 
cate the breaker points defined by Goda and 

expressed as 

H, 

Ho/LD 
Bx y 

0.004 1/10 1.58 
0.008 1/10 1.12 
0.01 1/10 1.00 
0.004 1/20 0.79 
0.008 1/20 0.55 
0.01 1/20 0.50 
0.01 1/50 0.20 
0.Q2 1/50 0.14 
0.04 1/100 0.05 

= 0.17Ll-exP{-1.5Ti (-7—) 

( 1 + 15 
>   /3 

)}. 135) 

It can be found from the figure that 

the extrema always exist in the 

changes in wave-height.  The occur- 
ence of the extrema is conjectured 

to be caused by a kind of instabil- 

ity in the numerical solutions, 
which can be attributed to the ex- 

cessive value of the curvature of 
the wave profile at crest.   So, the 
relation between the existence of 
the extremum noted in the figure and 
the upper limit of a curvature of 
water surface displacement at crest 

of the numerical solution of Eq.(6) 

were examined to discover the reason 
for such an extremum.   In Fig.6 

white circles shows the values of 

the curvatures at the point of max- 
imum wave-height of the numerical 
solution, and the points defined 

by Goda's breaking inception are 
indicated by solid circles for 

every value of the surf-similarity 
parameter.   It can be noticed that 
the upper limit of the curvature 
exists in the vicinity of the val- 
ues of 10  for every value of the 
parameter, and the maximum value 
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Fig. 5 Changes in wave-height 

of shoaling waves as a func- 
tion of the surf-similarity 

parameter 
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for wave-height computed by Eq.(6) depends on the upper limit of the cur- 
vature of the numerical solution.   Therefore, it is assumed that the 
theoretical breaker point in the numerical simulation generated by Eq.(6) 
is given by the upper limit. 

Fig.7 shows the relation between the theoretical breaker indices, 
i.e., the ratio of wave-height to water depth at the breaker points, H^/ 
hh, and the actual indices defined by Eq.(35).   Here, the solid lines 
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Fig. 6 Curvatures of the heighest 
waves and the surf-similarity 
parameter 
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Fig. 7  Comparison between the 
theoretical breaker indices and 
the actual ones defined by Goda's 
breaking inception 

describe the breaker indices 
given by Eq.(35), and circles 
indicate the theoretical 
indices for all bottom slope 
conditions.   It could be 
considered from the results 
shown in the figure that most 
of the theoretical breaker 
indices exceed the actual 
ones and that the numerical 
solutions are stable and con- 
tinue to maintain sufficient 
accuracy in the shallower 
water beyond the actual break- 
er points.   And, it is found 
that the dependency of the 
theoretical breaker indices 
on bottom slopes reasonably 
corresponds to that of the 
actual breaker indices, al- 
though there are a few dif- 
ference with regard to the 

h/U 

Fig. 8 Changes in the ratio 
shoaling waves with the surf- 
ity parameter 

uc/c of 
similar- 
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absolute values between them.   Thus, the definition of the breaker 
points as being dependent on the upper limit of the courvature is regard- 
ed as reasonable.   So, an investigation is made on the relation between 
the theoretical breaker point and Rankine-Stokes' condition of greatest 

wave-height. 

Fig.8 shows the change in the ratio of the horizontal water parti- 

cle velocity at crest, uc, to the wave-celerity, c, of the shoaling waves 
computed by the -present approach up to the theoretical breaker points. 

It is noticed that all the values of the maximum ratio uc/c do not exceed 

1, although the ratios at the breaker points approach one as the value of 

the surf-similarity parameter increases.   This result means that shoal- 
ing waves on sloping bottoms become unstable and begin to break down be- 

fore Rankine-Stokes1 condition is satisfied and that the breaking incep- 
tion of shoaling waves is controlled by another condition besides 

Rankine-Stokes' condition. 

Fig.9 shows the change in 
the small parameter o with the 
ratio uc/c definded by Longuet- 

Higgins(1975) as: 

__1   -   (uc -c)2 (ut -c)' 

Goda's breaking inception 

(36) 

It is found that the parameter 
0 has a tendency similar to the 

ratio uc/c and that any given 
value of a  does not exceed 1 
because of the similarity of 
the parameter 0 to the ratio 

u /c, although the value 0 of 
the highest wave becomes 1 in 

the calculations by Longuet- 

Higgins et al. . 
Therefore, it is to be expected 

that results considerably dif- 

ferent from his will be obtain- 
ed from the changes in the in- 
tegral quantities of shoaling 

waves computed by the present 
approach. 

rr/U 

Fig. 9 Changes in the ratio 

shoaling waves with the surf 
larity parameter 

to' 

uc/c of 

-simi- 

CHANGES IN INTEGRAL QUNATITIES WITH SHOALING WATER 

Fig.10 shows the changes in the potential energy of shoaling waves 
with the surf-similarity parameter up to the theoretical breaker point 
computed by the present approach.   It is found that the extrema of 

potential energy always exist before both the breaker points are attain- 
ed and that the integral quantities of the highest wave are not always 

maxima.   This agrees with the result shown by Longuet-Higgins et al.( 
1974), although the effect of the surf-similarity parameter is not taken 
into account in their calculation.   It is thought that the existence of 
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Fig. 10 Changes in the potential 
energy of shoaling waves with the 
surf-similarity parameter 

Fig. 11  Changes in the kinetic 
energy of shoaling waves with 
the surf-similarity parameter 

such extrema is due to the sharpening of the wave crest caused by the 
tendency of the competition between the nonlinear effect and the disper- 
sive effect to deform the wave profile which is strengthened with shoal- 
ing water. 

Pig.11 shows the change in the kinetic energy of shoaling waves 
obtained by the same computation continued to the breaker points.   It 
is found that the extrema of kinetic energy do not always exist before 
the breaker points are attained, in contrast to the case of potential 
energy and that the existence of the extrema depends on the value of the 
surf-similarity parameter.   This is very different from the results of 
Longuet-Higgins(1975) which state that these extrema are always found in 
both the potential and the kinetic energies.   This result indicates 
that there is a difference in the existence of the extrema of kinetic 
energy between shoaling waves with asymmetrical wave profiles on a sloping 
bottom and uniform waves with symmetrical wave profiles on a flat bottom. 
Therefore, it could be said that there is a difference in the internal 
properties, such as water particle velocities, between these wave types 
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and that the conclusion obtained for one cannot be directly applied to 
the explanation of the wave breaking for the other. 

Fig.12 shows the change in the 
total energy E^ of the same 
shoaling waves.   Several mat- 
ters are clear from this figure. 
The existence of the extremum 
of total energy depends on the 
value of the surf-similarity 
parameter just as that of the 
kinetic energy does.   The ex- 
trema arise with the value of 
the parameter y under 1.12 be- 
fore the theoretical breaker 
points are attained and under 
0.79 before the actual breaker 
points are attained.   The 
critical value of the parameter 
controlling the existence of the 
extremum seems to be between 1. 
12 and 1.58 where the theoreti- 
cal breaker points are applied 
and between 0.79 and 1 where the 
actual breaker points are appli- 
ed.   It is well-known from the 
experiments by Galvin(1969) that 
the breaker type depends on the 
value of the surf-similarity 
parameter and that a spilling 
breaker occurs when the value of 
the parameter is less than 0.5. 
Hence, it could be judged that 
the existence of the extremum closely 
relates to the breaker type and that a 
spilling breaker occurs due to the in- 
stability of the transfer of wave en- 
ergy when the value of the parameter y 
is less than the critical value men- 
tioned above.   The extremum exists 
because the conservation law of en- 
ergy is satisfied in the present ap- 
proach, the decreasing of the total 
energy with shoaling water requiring 
the increasing of the energy transport 
velocity of shoaling waves. 

Fig.13 describes the change in 
the ratio of the energy transport 
velocity to the wave-celerity, c /c, 
of shoaling waves continued to the 
theoretical breaker point.   It can 
be noticed that there is a tendency 

Fig. 12 Changes in the total 
energy of shoaling waves with 
the surf-similarity parameter 

h/Lo 

Fig. 13 Changes in the ratio 
Cg/c of shoaling waves with 
the surf-similarity parameter 
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points to decrease away from 1 as the value of the surf-similarity param- 
eter increases, although the computed results scatter considerably of 
numerical errors in the computed value of wave-celerity.   As it is 
judged that the energy transport velocity cannot physically exceed wave- 
celerity, instability with regard to energy transfer is considered to 
occur when the ratio c„/c exceeds 1.   Accordingly, this instability of 
energy transfer occurs dependently on the parameter and becomes liable 
to occur as the value of the ratio approaches 1.   This instability could 
be conjectured to be closely related to the mechanism of wave breaking, 
and, in particular, to the mechanism of the occurence of a spilling 
breaker, where excess energy not transported by stable waves is exhaust- 
ed by partial wave breaking.   The approach of the ratio to 1 depends on 
the parameter, as mentioned above, and the instability of energy trans- 
fer occurs dependently on the value of the parameter, becoming liable to 
arise with the approach of the ratio to 1.   Thus, it might be said that 
the instability of energy transfer is closely related to the spilling 
breaker and that the beginning of the instability is the breaking incep- 
tion of a spilling breaker. 

CONCLUSION 

Integral quantities of shoaling waves have been calculated by using 
the K-dV equation with variable coefficients and the stream function 
method satisfying the conservation laws of mass and energy, and some in- 
vestigations have been made on their characteristics.   The most signif- 
icant conclusions of this paper are summarized as follows. 

The maximum wave-height of shoaling waves computed by the K-dV equa- 
tion is controlled by the upper limit of the curvature of wave profiles, 
where numerical instability arises.   Thus, the theoretical breaker point 
is defined by the limit, and it corresponds reasonably to the actual 
breaker point defined by Goda's breaking inception.   However, Rankine- 
Stokes1 condition of greatest wave-height is not satisfied at the theo- 
retical breaker point of the computed shoaling waves and the wave break- 
ing of shoaling waves seems to occur independently from the condition. 

Although the extrema are always found in the potential energy of 
shoaling waves before the theoretical and actual breaker points are at- 
tained and the potential energy of the highest waves is not maximum just 
as in the results  shown by Longuet-Higgins et al., the extrema of the 
kinetic and total energies are not always found in the shoaling waves 
with asymmetrical wave profiles before both the breaker points are at- 
tained, in contrast to the case of potential energy.   In addition, the 
existence of the extrema depends on the value of the surf-similarity 
parameter and the extrema occur in the value of the parameter under the 
critical value controlling the existence.   It is found by comparison 
with the experimental results of Galvin and his examination of the change 
in the ratio of energy transport velocity to wave-celerity that the ex- 
istence of the extrema of total energy closely relates to the breaking 
inception and breaker type, especially to those of the spilling breaker, 
because it causes the instability of energy transfer of shoaling waves 
which is conjectured to be the cause of the wave breaking of the spill- 
ing type. 
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