
CHAPTER 178 

STATISTICAL PROPERTIES OF RANDOM WAVE GROUPS 

AKIRA KIMURA 

ABSTRACT 

This study deals with the statistical properties of the group forma- 
tion of random waves determined by the zero-up-cross method. Probability 
distributions about 
(1) the run of high waves 
(2) the total run 
(3) the run of resonant wave period 
are derived theoretically providing that the time series of wave height 
and wave period form the Markov chain. Transition probabilities are given 
by the 2-dimensional Rayleigh distribution for the wave height train and 
the 2-dimensional Weibull distribution for the wave period train. And 
very good agreements between data and the theoretical distributions have 
been obtained. Then the paper discusses those parameters which affect the 
statistical properties of the runs and shows that the spectrum peakedness 
parameter for the. run of wave height and the spectrum width parameter 
for the run of wave period are the most predominant. 

INTRODUCTION 

It is often observed in the field observations that a large wave 
makes a group with another large waves. This characteristic of sea waves 
makes significant effects on several coastal engineering problems such as 
slow drift oscillation of vessel, stability of rubble mound, drainage of 
overtopping discharge and some other problems. 

Arranging order of random waves is usually analized with a concept 
of the run. There have been two kinds of theoretical studies on the run 
of random sea waves. One is done by Goda(I) and the other is done by 
Ewing(2) and Nolte-Hsu(3). Goda derived the probability distribution 
providing the randomness of waves. On the other hand Ewing, Nolte-Hsu 
derived the probability distributions providing the narrow band spectrum. 
As the result of this assumption, succeeding several waves correlate each 
other. However several authors pointed that consecutive wave heights 
correlate each other, but the correlation of alternative wave heights 
diminishes nealy zero.(4),(5), (6) Then random wave height train seems to 
have a intermediate characteristics between these two theoretical assump- 
tions . 

Sawhny(7) examined the time series of crest-to-trough wave height 
by means of the Markov chain and found that consecutive three half waves 
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correlate each other. Recently the author(S) showed that time series of 
zero-up-crossing wave height and wave period have properties very close 
to those of the Markov chain and that their transition probabilities may 
well be approximated with the 2-dimensional Rayleigh distribution and the 
2-diraensional Weibull distribution respectively. 

RUN OF WAVE HEIGHT 

Transition equation of the Markov chain is given as: 

Pn=P0P
n (1) 

where p. is a initial distribution, p is a distribution after n time 

transitions and P is a transition probability matrix. If wave height train 
h. (j=l,2,3, ...) are classified into the following states with reference 

to the standard wave height hft: 

State 1 :      0 < h. < h* 

State 2 :     hA < h. < 2\ 1(2) 

State i :  (i-l)h* < h. < ihA 

 • 01,2,3, ... ), 
then transition probability matrix is given by the following equations. 

P = (3) 

V 
where 

ih,. Cjhj. rih. 
p..-    I pCh.hJdhdh   /    I     "        Q/h ) dh    (4) 
^       J(j-i)h    J,i-i)h,        X     2       1   2       Hi-UK      l       1 

in whicA 
(i,j=l,2,3,   ....  )     , 

4hih2           r -1    (hi+ h2)
1  T  r -^V_l      (5) -i^-r exp  r z J  I„[  5~^J       W ^^ =^PV expw^rj v ^x 

2h h* 
Q(hJ  —^expt—|-] (6) 

h      h r       r 
h is the rms wave height, pthe correlation parameter, I the modified 

Bessel function of the 0-th order. Eq.(5) is the 2-dimensional Rayleigh 
distribution and eq.(6) the Rayleigh distribution. Correlation coeffi- 
cient of consecutive wave height h and h is: 
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Y _ E(2p) - l/2(l-4p2)K(2p) - TT/4 (7) 

h 1 - TT/4 

in which K and E are the complete elliptic integrals of the first and 
second kind respectively. In fig.l the curve(n=2) shows the relation 
between y and p. It follows that p.. in eq.(3) can be determined from 

the correlation coefficient of consecutive wave heights by using eqs.(4), 
(5), (6) and (7). 

ESTIMATION OF THE SUCCEEDING WAVE HEIGHT 

The problem to estimate the succeeding wave height h from the 
present wave height h is treated as follows: 

If the present wave height h falls in the State i, p is given as: 

Pn = (0,0,   ,1, ...) . (8) 
12     i  ... 

Substituting eq.(8) into eq.(l), distribution p. becomes 

Pl=(Pil>Pi2>        >• • 
Element p.. (j=l,2, ... ) is given by eq.(4). If h* in eq.(4) is suffi- 

ciently small, expectation of h is: 

h2 = f \  Pth2l V ^2 
2h2      -fh2+ h2)  h2     4hh,p 
^^[i^^iy-M-i]^   do) 

'o (l-4p2)h2   (l-4p2)h2  h2    (l-4p )hr 

where p(h |h ) is the conditional Rayleigh distribution. Fig.2 shows the 
relation of h„/h andh,/h . It shows that according to the increase of _      2 r    1 r __ 
Y,, h approaches h . But when y    equals 0, h /h is always /2"/2. 

RUN OF HIGH WAVES 

The run of high waves which exceed the standard wave height hA is 
one of our greatest concern. In this problem, time series of wave height: 

 hi-l> V hi+l> 
hi+2'   

(a) 

are classified into two states. One is h < hA and the other is h > h^. 
If these states are distinguished with suffixes 1 and 2 respectively, 
eq.(3) is reduced to: 

P = fPl1 ?12^ (11) 

\P2l P22 
where        fh^  (h^ fh 

j  p(hi; h2) dhxdh2 / j  Qfh^ dh1 
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rh* fh* ]        p(hlt   h2)   dh^   /   ]        Q(hx) 
•00     ^h 

l dh. 

P21  =  f0
h4£   P0V   V   ^^   7  £   Q(V   dh! 

p(h1( h2) dl^dh., /  (     Q(hx) dhx 

(12) 

in which p(h , h ) and Q(h ) are given by eqs.(5) and (6). 

The run of high waves starts when a wave height exceeds hft initially. 
Suppose h.  < hA and h, > hj ,    in the wave height train (a). The 

run starts from h.. The initial distribution p is (0,1). Substitution of 

p and eq.(11) into eq.(1) gives: 

Pi  =   CP21»  P22) 2 •'   (n=1) 

P2  =   (P2lPll+ P22P21'  P21P12
+ ^        ••   (n=2> 

p  is the probability that h. > h* and h   < h*. Then the first element 

of p gives the probability that the length of run is 1. But the first 

element of p does not give the probability that the length of run is 2. 

That is, since V-,-,1?-,-,  is the probability that h. > h*, h.  < hA and 

h   < hjj, only P--P,, gives the probability that the length of run is 2. 

The elements which give the transition probability from State 1 should 
be precluded since they have no relation to the run of high waves. Finally 
transition probability matrix becomes: 

'0   0 
P = I        I (13) 

By substituting initial distribution and eq.(13) into eq.(1), 

Pi = (P21> P22
} 

P2 
= (p

22P2l> 
p22

} 

(14) 

Pt  = (P 
U-i), 
22 

J
2i> ^22 P,J 

By simple induction, probability distribution of the run of high waves is 
represented by: 

pxm (-t-i)n    -i 
P22    ^-P22

) (15) 



2960 COASTAL ENGINEERING-1980 

where I  is the length of the run. Mean length of the run is defined as: 
1 = 1/CI-P22

) (16) 

Fig.3 (a), (b) and (c) show the probability distribution of the run 
of high waves for (a) h* = hm  , (b) h* = h   and (c) hA = h   respec- 

tively. Wheny equals 0 in each figure, the theoretical distribution cor- 

responds to the Goda's theory. 
By analogy, the probability distribution of the run of low waves 

which fall below hft consecutively can be given as: 
t i 

where £ is the length of the run of low waves, p  is given by eq.(12). 
Fig.4 shows the mean length of the run of low waves for h* = h ° a . *   mean 

(solid line), hA = h   (dotted line) and hft = h    (chain line). Mean 
duration in which high waves do not take place can be estimated from this 
figure. 

TOTAL RUN1-'-1 

From eqs.(15) and (17) the probability distribution of the total 
run can be introduced. 

where I   is the length of the total run. Mean length oil   is.: 

I0  = 1/(1 -Pll) + l/(l-p22) , (19) 
in which p  and p  are given by eq.(12). Fig.S(a) and (b) show the 

probability distribution of the total run for (a) hA = h   and (b) 

h* = hl/3" 

Equations (15) to (19) are determined from Y, or p with eqs (5), (6) 

and (12). Figs.6 and 7 show the theoretical relations of p  -v Y, and of 

p  'o Y, respectively, providing that hA = h   (real line), hA = ii.,, 

(broken line) and h* = h   (chain line). 

VERIFICATION OF THE THEORETICAL PROBABILITY DISTRIBUTIONS 

It is very difficult to obtain random sea waves which are long 
enough and statistically stationary to examine the properties of run. 
Therefore some numerical simulation techniques (9) have been used to 
generate random wave trains. Fig.8 shows the target spectra of five cases 
used in the numerical simulations. Slope of the spectrum changes from 
minus 4th to 8th power of frequency in the high frequency region. 5000 
waves have been generated in each case. 

Figs.9 (a) ^ (e) show the comparison between data and the theoreti- 
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cal distribution of the run of high waves. The thick lines are the distri- 
butions from the theory developed here and the thin lines are those from 
the Goda's theory for hA = h   (solid line)and h,, = h  (dotted line). It 

can be seen that the plotted data agree very well with eq.(IS). Figs.10 
(a) "v (e) show the comparison of data and the theoretical distribution 
of the total run providing h* = h   . The solid curve shows eq.(18) and 

dotted curve is the theoretical distribution from Goda's theory. Good 
agreements between data and eq.(18) have been obtained. Tables 1 and 2 
show the comparisons of the mean length of the run of high waves and the 
total run between data and theories. With the increase of the correlation 
coefficient Yh > mean length of data becomes longer while the Goda's 
theory gives the constant value which is considerably small. And the 
theory by Nolte-Hsu gives also small values compared with data. Estimations 
with the theory presented here give reasonable values in each case. 

RUN OP WAVE PERIOD 

Time series of random wave period determined by the zero-up-cross 
method forms the Markov chain approximately(X). Then almost same analysis 
is available for the run of wave period with that of wave height. However 
in such a problem as a resonant oscillation of structure, it is more use- 
ful to analize the run of wave periods which fall in the specified wave 
period band consecutively. For this purpose time series of wave period 

Vi- V Vi- w          (b) 

may well be classified into these three states: 

State 1 :      t. < ttl 

State 2 :  t^ < t. < t*2 (20) 

State 3 :      t. < tft *2 
0=1,2,3, .... ), 

in which t„. and tA are the low and high limit of the resonant period 

band of the oscillation system. The transition probability matrix reduces 
to the matrix of order 3'. (p. .) (i,j=l,2,3). With the same discussion, 

the first and third row of the matrix,p ., p . (j=l,2,3) should be pre- 

eluded to introduce the run of resonant wave period. Finally P becomes 

/0   0   0 

P= P21 P22 P„| (21) 

\0   0   0 / . 

The run starts when a wave period falls in State 2 first; then initial 
distribution is (0,1,0) and the Ith  transition distribution is given as: 

P,7   P71 and x>      '   p  are probability that consecutive I waves fall 

in State 2, but £+lth wave falls in State 1 or 3 respectively. Then the 
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Table-1 Mean length of the run of high waves 

h* = f 
mean K = V3 

Case Yh data Eq.(16) Goda Nolte-Hsu data Eq.(16) Goda Nolte-Hsu 

1 0.19 2.20 2.08. 1.84 1.33 1.28 1.33 1.15 1.12 

2 0.23 2.29 2.15 " 1.47 1.29 1.37 " 1.19 

3 0.29 2.34 2.28 " 1.64 1.29 1.44 " 1.28 

4 0.33 2.42 2.37 " 1.78 1.37 1.50 tt 1.36 

5 0.38 2.45 2.46 " 1.92 1.53 1.57 " 1.44 

Table-2 Mean length of the total run 

lu = h K         mean 
h* = hl/3 

Case \ data Eq.(19) Goda data Eq.(19) Goda 

1 0.19 4.66 4.55 4.03 9.33 9.87 8.61 

2 0.23 4.67 4.67 " 9.47 10.12 " 
3 0,29 4.94 4.90 " 10.00 10.63 " 
4 0.33 5.17 5.10 " 9.95 11.07 11 

5 0.38 5.36 5.32 " 10.71 11.57 tl 



RANDOM WAVE GROUPS 2969 

probability that the lenj 
these probabilities. 

gth of the run becomes -t is given by the sum of 

P4U)=P<2
£
-
I: 

'*«• 
U 

P22 
-1) 

P23 
a- 

= P22 
1,(1-P225 , (23) 

I= 1/(1-p22
) (24) 

Transition probability of the time series of wave period 
approximated with the 2-dimensional Weibull distribution 
P22 is given by: 

may well be 
,(10).  Then 

z*l    *1 

f(tr •V dt dt. : R(tx) < 3tl (25) 

where             2 

1  2   4A 

n t»": 

R(V = *- 
2* t£ 

tV2: 
t2n 

r 
1 

exp[ - 

exp[- 
2A 

2* tn  ' 
r 

tn 

r 

2 ] y- 
a CVJn/2 

 — ] , 
A   tn 

r  (26) 

(27) 

A        j.2   2 A = <f> - a , * = ̂  
r(H±2) -j-n/2 

in which f(t , t ) is the 2-dimensional Weibull distribution and R(t ) 

the Weibull distribution, a the correlation parameter, n the shape para- 
meter, t the rms wave period, r the Gamma function. Correlation coeffi- 

cient of consecutive wave period t and t is: 

[r(?±i)]2{F[-i -i; l; (ff]  -1} 
(28) 

in which F is the hypergeometric function. It follows that p  can be 

determined from the correlation coefficient of consecutive wave period 
and the shape parameter with equations (25) to (28). But both parameters 
are closely correlated with each other as shown in Fig.11. Plotted data 
are obtained from the numerical simulations. Then p  can be determined 

by either of these parameters using the average relation between them. 
Fig.12 shows the relation between p  and v for t*, = 0.4t   , t4„ = " F22     t     "1      mean' *2 
0.6t   (solid line), t», = 0.9t   , t*„ = l.lt   (dotted line) and t., mean '  *1      mean'  *2      mean *1 
= 1.4t    , t4_ = 1.6t   (chain line) for example, mean   w

2      mean 
Fig.13 shows the theoretical distribution of the resonant wave 

period providing t*, = 0.7t   and t4„ = 1.2t   . This is the period 
° Kl      mean    *2      mean 

band in which dynamic response of a spring is greater than twice the 
static loading providing that the resonant period of the spring equals 
t   . Figs.14 (a) ^ (e) show the comparison of data and the theoretical 

distribution. The agreement of data and the distribution is very well. 
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ESTIMATION OF PARAMETERS 

Statistical properties of the run of wave height can be determined 
from the correlation coefficient of consecutive wave height y .  But y 

changes with the width of the power spectrum. Fig.15 shows the relation 
between y   and wave peakedness parameter Q proposed by Goda(7). Plotted 

data are obtained from the numerical simulations. It is known from this 
figure that since y   can be approximated from   Q , statistical proper- 

ties of the run of wave height can be estimated from Q . 

On the other hand in determining the run of wave period, n and y 

are needed. But since both parameters are mutually correlated, statisti- 
cal properties of the run can be determined by knowing either of them. 
Fig.16 shows the relation between y    and the spectrum width parameter e. 

Y has close correlation with e. 

From Figs.IS,16 it can be concluded that if the power spectrum of 
random waves is known, statistical properties of the run of wave height 
and wave period can be estimated. 
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