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by 
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ABSTRACT 

As already stated in the previous conference, the fresh-water flow 
which passes through a river mouth horizontally into the sea, exhibits 
a special characteristic due to the effect of buoyancy.  Its dynamics 
belongs, essentially to the same category with the transonic flow in 
aerodynamics.  The interfacial Froude number plays a dominant role in 
this case, as well as the Mach number does in the transonic gas flow. 
The supercritical zone, in which the interfacial Froude number exceeds 
unity, occupies the sea surface with some area, in response to a 
degree of the discharge amount of the fresh water.  This zone begins at 
the river mouth and stretches in the offshore directions over the sea, 
accompanied with a lateral growth. 

As is well known, on the other hand, supersonic zones are sometimes 
formed partially along an airfoil, or in a tube with a varying cross- 
section, if they are placed in a subsonic gas flow.  Those two 
different phenomena have been proved to be identical dynamically with 
each other [KASHIWAMURA and YOSHIDA 1978], [KASHIWAMURA 1979].  There 
have been a great number of researches in order to obtain an analyti- 
cal solution of the transonic flow, in the past several decades, but 
there seem still many difficulties to attain a complete solution, 
except some particular cases such as a stream-lined approximation of 
immersed bodies being possible. 

Considering such circumstances, it may also be difficult for the 
present problem to be solved completely, although it Has not been 
decided yet to be impossible.  The present author describes the 
process of his efforts for obtaining an analytical solution and its 
results, from a view point of the inspection on an applicability of 
the hodograph method, and its modification to this problem.  In spite 
of incompleteness, they provide us several findings which are useful 
to understand the dynamics of the outflow of the fresh water.  In 
addition to those, a few examples of field data concerning the 
horizontal distribution of the interfacial Froude number around a 
river mouth, and some experimental results are presented. 
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INTRODUCTION 

Not only a river water, which flows into the sea, but also other types 
of flow, such as a thermal discharge of cooling water from a power 
plant, a drainage of waste water from human lives, etc. are dynamical- 
ly in the same category of the density current.  Studies on those 
topics seem to have been extensively carried on, all over the world, 
nowadays, based on an enhancement of the environmental assessment.  A 
vast quantity of papers have been issued concerning those problems 
every year.  However, in the opinion of the present author, studies 
related to the mixing mechanism have been too much highly weighted, 
judging from the trend of issued papers, compared with the buoyancy 
effect which is the essential origin of the density current. 

The inertia of a fluid mass accelerated by the buoyant force, some- 
times, causes unstable circumstances along the interface, which 
frequently lead to the occurrence of internal waves, interfacial 
unstable vortices, and their breaking and finally mixing.  Although 
studies on mixing are surely very important from a view point of the 
dilution of water temperature and waste water, the essential solution 
of those problems seems not to be possible, unless the basic buoyancy 
effects are evaluated correctly. 

Based on this conception, the present author started a series of 
theoretical studies on an idealized density current without mixing. 
Such a situation corresponds to the treatment of the transonic gas 
flow without viscosity effects and thermodynamical changes accompani- 
ed with a heat loss.  The first thing to be dealt with, along this 
line, was an inspection of the fundamental equations related to the 
idealized two-layered flow.  As a result, a certain type of equation 
was derived, with regard to.the velocity potential, under the assump- 
tion of a steady, irrotational, inviscid and immiscible flow.  This 
equation coincides in form with that of the transonic gas flow, except 
one point that the Mach number is replaced by the interfacial Froude 
number [KASHIWAMURA and YOSHIDA 1978]. 

Such a coincidence implies that the river water has a flow pattern 
which is dynamically similar to the transonic, flow.  As is well known, 
supersonic zones are sometimes formed in part around an airfoil which 
is placed in a uniform subsonic flow.  The same trend can also1 be 
seen in a pipe flow with a varying cross-section.  Those instances 
predict the existence of a supercritical zone in which the interfacial 
Froude number exceeds unity, over the sea surface, around a river 
mouth.  The prediction was proved quite right from field observations 
which were already shown in the previous conference. 

Since the above-mentioned equation is a mixed type of a partial dif- 
ferential equation of the second order, it is difficult to obtain an 
analytical solution with usual methods.  The author shows developed 
processes of an analytical approach in this problem mainly with the 
hodograph method, although .they are incomplete yet. 



2782 COASTAL ENGINEERING-1980 

FUNDAMENTAL EQUATIONS AND THEIR TRANSFORMATION 

Extremely idealized equations of motion will be followed, in regard to 
the two-layered flow, under the assumption of steadiness, inviscidity 
and immiscibility.  Since it means that there is no entrainment from 
the sea water below, the fresh water maintains its density to be 
unchanged, and the lower sea water should be stagnant.  Therefore, 
only the fresh-water flow may be taken into consideration, as follows. 

3u    3u ,    3h  . ... 
U 51 + Y 3y + Eg 3x " ° (1) 

3v    3v ,    3h ... 
u 37- + v 37, + £S 37; = ° (2) 3x    3y   6 3y 

3x 3y 
^ ( hu ) + ^ ( hv ) = 0 (3) 

Eqs. (1) and (2) are equations of motion, and Eq. (3) is a continuity 
equation.  All symbols employed here, are listed in the last section. 

As the fresh water is considered to have a uniform velocity at a 
distance sufficiently upstream from the river mouth, the flow may be 
regarded to be irrotational everywhere.  Then, 

3v _ 3u 
3x  3y 

and this is satisfied by 

(4) 

u = |i    v = |4 (5) 
3x ,      3y 

Thus, the velocity potential $ exists. Combination of Eqs. (1), (2) 
and (3) produces the following equation, which was already presented 
in the previous conference. 

(  1   u2  32(|>    uv _s5>      i,^.  ,M 
(1"ein:i3x2-2ein3x^

+(1-rin)3?2-0   (6) 

Eq. (6) is of much significance, because of its mathematical form, 
showing that the fresh-water flow is dynamically the same with .the 
transonic gas flow. 

If the term /egh is replaced by the local sound velocity, Eq. (6) 
coincides with a two-dimensional equation of the transonic flow with 
a velocity potential.  But this type of equation is extremely 
difficult to obtain a solution due to not only its non-linear form but 
also its mixed type with elliptic, parabolic and hyperbolic characters 
in response to numerical values of the dominant parameter, such as 
the Mach number, or the interfacial Froude number. 

In the subsonic flow, however, immersed bodies are usually thin and 
stream-lined in shape, that some approximations have been adoptable 
to obtain a practically useful solution.  On the other hand, in the 
present case, any river extends its width discontinuously from finite 
to infinite at its mouth, and the surrounding boundary cannot be 
changed into any convenient shape which is regarded as stream-lined. 
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Considering such a difference of both circumstances, the fresh-water 
flow seems to be more difficult than the transonic flow, in order to 
obtain a solution around a river mouth.  Nevertheless, it will not be 
meaningless, to try to solve it, even with those methods already 
adopted in the transonic flow, since it may bring us something useful 
to understand this phenomenon deeply. 

First, an attempt to transform the fundamental equations will be 
described.  The stream function of some kind can be defined from Eq. 
(4), as follows. 

(7) hu = §* hv = 3x 

Thus, Eqs. (1) and (2) are transformed into, 

3u 
u — + V 

3x 
3v   , 
r- - v( 
3x 

3v  3u .     3h 
3x  3y ;   ES3x 

0 

3u 
U - h V 

3y 
3v ,  , 
3^ + u( 

3v  3u .     3h 
3x  3y '       eg3y 

0 

(8) 

(9) 

Those equations are rearranged by substituting Eq. (7), as follows. 

_2 ( iq2 + Egh ) + r 34 = 0 (10) 

A  ( iq2 + Egh > + r | . 0 (n) 

where, 

3x  3y    ^x1- h 3x ;   dyK  h 3y n uz; 

Therefore, the following form is derivable. 

|q2 + egh + /£ ch|> = C (13) 

where C is an integral constant.  Differentiation of Eq. (13) with 
regard to I|J, leads to, 

1 ,_3. 1 3* •) , _3/ 1 3J xi = dH .  . 
h l3xk h 3x '        7syK  h 3y "       dij) (l:U 

where H = q2/2 + egh, which is a modified Bernoulli's term. 

When the flow is assumed to be irrotational, Eqs. (4) and (5) can be 
employed, and Eq. (15) is divided into two parts. 

1 , 
H = -q-i + egh = const. (16) 

_2( i 21 > + _2( i M ) . o d7) 
3xv h 3x '        3yv h 3y ; K±" 



3ij) 1   3i|i 

3x h  3y 
3<(> 1   3* 
3y h  3x 
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Eq. (17) is another expression of Eq. (4). 

HODOGRAPH METHOD 

It seems so difficult to eliminate h from both equations (16)and (17), 
that a derivation of the equation concerning iji only may be hopeless. 
Then it is necessary to seek another approach.  In such a case, the 
hodograph method has been sometimes effective, as is well known of 
some examples in aerodynamics.  The following set arises from Eqs. (5) 
and (7). 

^ J.      1  Cl,l. 

(18) 

(19) 

The existence of h makes it impossible to apply the conformal repre- 
sentation, since the Cauchy-Riemann's equation is not realized, though 
there is a little resemblance, in form, between them. 

From both equations, the followings are derived. 

d<f = udx + vdy (20) 

id* = - vdx + udy (21) 
h 

Combining those two, with the latter being multiplied by the imaginary 
unit i, the complex equation can be formed as follows. 

dc|> + i i di|i = ( u - iv )(dx + idy ) = q e~l8dz   (22) 

(23) 

(24) 

are obtained.  Differentiating the upper with respect to 9 and the 
lower q, and putting them to be equal, two equations are obtainable 
from the real part and the imaginary part respectively, as follows. 

U • o 4 (£} IS (25) 

£4 = 3 14 (of,-) 
30  h 3q ' 

Now, the transformation is made in the following manner. 

t = / - dq (27) 
>   q 

Eqs. (25) and (26) are rearranged with respect to t and 6, by taking 
Eq. (16), which represents a conservation of the modified Bernoulli's 
term, into consideration, as follows. 

Therefore , 
3z 
3q q 

-l ie 
e 

3<1> 

3q 
+ i 

1 
hq 

ie 
e 

3I(J 

3q 

3z 
38 q 

-l ie 
e 

36 
+ i 

1 
hq 

ie 
e 3i|> 

36 
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M _ _ A a (28) 

(29) 

at 
3j> _ ajj 
ae  at 

where A is defined by, 

A = h   ( X - iS } " 12 < ! " Fi2 > <30> 
Eliminating $ from Eqs. (28) and (29), the following equation is 
obtained. 

atl + A 5ef = ° (31) 

Since the symbol A includes Fj_ in itself, this equation shouldn't be 
linear in a strict sense, but if A can be replaced by any adequate 
function with respect to t and 6, this equation is regarded as a 
linear one, and there may be a possibility of obtaining an approximate 
solution. 

The parameter A changes from positive to negative, while F^ grows 
from a value smaller than unity to a value which exceeds unity.  This 
means that Eq. (31) is also a partial differential equation of the 
mixed type.  Therefore, it is the most important, in this case, to 
find a function which has a good agreement to the characteristic of A. 
Such a situation has already been experienced else, in the past, with 
several proposals of functional forms in the field of the two-dimens- 
ional transonic flow. 

ANOTHER APPROACH 

A great interest is centered on a knowledge of the interfacial Froude 
number, in particular, how it to distribute horizontally over the sea 
off a river mouth.  It may be effective for this purpose, to employ 
the interfacial Froude number F-j_, as an independent variable in the 
governing equation of the fresh-water flow.  It may be considered 
also as one of the modified hodograph methods.  Let F be a newly 
defined variable, as F = Fi2, that is, 

F = Fi2 = q2/egh (32) 

If Eq. (16), that is, (l/2)q2 4- egh = C, is employed simultaneously, 
the followings are obtainable. 

h = 2C / eg ( F + 2 ) (33) 

q / 2CF / ( F + 2 ) (34) 

By the use of those two relationships, Eqs. (25) and (26) can be 
transformed into, 



2786 COASTAL ENGINEERING-1980 

2C 
3F  egF(F+2)2 36 
i* =   2CF  3ji 
38  eg(F-l)  3F 

(35) 

(36) 

Cross-differentiation of both equations with respect to F and 
to, 

leads 

dz<l> 3F+2  3$  
3F2  F(F+2) 3F  F2(F+2)2 382 
^2A     I    ^ 

1-F 
?TF+2 
1-F 

3F2  F(l-F) 3F  F2(F+2)2 362 

= 0 

= 0 

(37) 

(38) 

Those are both linear partial differential equations of the second 
order, and it may be possible to obtain each solution, although there 
is a difficulty in transforming boundary conditions from the physical 
plane to the hodograph plane. 

Let Eq. (37) only be treated with here, 
to be in the form of 

1>  =   f(F,n) 
in8 dn 

The solution is assumed 

(39) 

By substituting Eq. (39) into Eq. (37), an ordinary differential 
equation of the second order, with respect to the new function f, 
obtained, as follows. 

3F+2 df dff  
dF2 x F(F+2) dF 

1-F 
F2(F+2)2 f = 0 (40) 

This is the equation of the Fuchs' type, in which three regular 
singular points exist, at F = 0, F = -2 and F = •*>.  From the indicial 
equation at each point, two roots, viz., the exponents can be obtained 
as follows, respectively. 

X1  = 

Wl = 

vx = 

X, = - for F = 0 

i(-l+/l+3n2), u2 = i(-l-/l+3n2) for F 

2, v2 for F = 

(41) 

(42) 

(43) 

Therefore, the function f can be determined with the Riemann's 
P-function, as shown in the followings. 

0 

n -l+/l+3n2 

-l-/l+3n2 
0 

(44) 

Since the P-function is not concrete in a mathematical form, for a 
practical application, it is possible to transform the expression 
into a hypergeometric series with regard to the regular singular 
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points, if necessary.  Thus, anyhow, the general solution of Eq. (37) 
can be obtained in the form; 

* = C(n) P 
n -l+/l+3n 2 
2     2  
n -l-/l+3n 2 

(45) 

where C(n) denotes a function of n, which must be determined by the 
boundary conditions. 

On this stage, the determination of a functional form of C(n) comes up 
to be a troublesome task in order to satisfy the boundary conditions. 
At the present, it prevents a further development for obtaining a 
satisfactory solution which is applicable for practical use. 
Although, unfortunately unsuccessful yet it is, those two kinds of 
mathematical approach strongly impress us again, that the outflow 
dynamics of the fresh-water flow belongs to a category which is quite 
the same with that of the transonic flow, from both dynamical and 
mathematical view points. 

Numerical computations are in progress, in parallel with such 
analytical approaches, but they need a little more time to overcome 
the singularity which appears at a river mouth, where the equation 
changes its characteristic from elliptic to hyperbolic. 

The present author has continued a series of studies on the density 
current which appears in the neighborhood of a river mouth, for more 
than twenty years, and has, just recently, reached a finding of this 
interesting problem.  Since he has little knowledge about the progress 
at the present situation in aerodynamics, he desires earnestly to 
receive any advices and comments, kindly offered by those who have 
much experience in the field of the two-dimensional transonic flow. 

FIELD EXAMPLES AND DISCUSSIONS 

A supercritical zone, in which the interfacial Froude number Fj_ 
exceeds unity, extends over the sea surface, from a river mouth into 
offshore directions, as well as a supersonic zone in which the Mach 
number M exceeds unity, is formed partially along an airfoil which is 
placed in a subsonic flow.  It has already become a common under- 
standing that the interfacial Froude number must be unity at the 
river mouth, if a salt wedge lies along the river bed, beneath the 
fresh water.  This condition is very important, in particular, to 
calculate a shape of the salt wedge.  It is also widely accepted 
that the interfacial Froude number decreases its numerical value 
smaller and smaller with the distance upstream from the mouth. 
Outside the mouth, in contrast with it, the number gr6ws larger than 
unity, as has been revealed in the field measurements made by the 
author and his collaborators [KASHIWAMURA and YOSHIDA 1978], 
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The trend of such a longitudinal change of the interfacial Froude 
number was, hitherto, sometimes treated by some researchers but 
usually only one-dimensionally, along the stream line.  According to 
the present author, however, it must be considered horizontally. 
This paper neglects mixing from the fundamental equations intentional- 
ly, because of an attempt to put emphasis on the buoyancy character- 
istic of the fresh-water flow.  However, needless to say, this type 
of flow is always accompanied with mixing, and therefore, some 
differences between theoretical and practical are expected at some 
points, for instance, a figure and a size of the supercritical zone, 
or a spatial distribution of the interfacial Froude number. 

It is well known that the mixing grows intensively with an increase 
of the numerical value of the interfacial Froude number.  Accordingly, 
the upper fresh water and the lower sea water must be mixed violently 
with each other, within the supercritical zone.  This fact has also 
been examined in field measurements, in which salinity concentration 
in the fresh water abruptly grows in this zone.  The mixing mechanism 
of this kind has been studied with a very careful observation in 
laboratory experiments, by Dr. Yoshida [YOSHIDA 1980]. 

Figs. 1, 2 and 3 show three field examples of the supercritical zone 
and a horizontal distribution of the interfacial Froude number, in 
the vicinity of the mouth of the Ishikari River, which flows by 
Sapporo City.  The amount of the river discharge, in Eig. 1, is the 
greatest among three cases, and in Fig. 3, smallest.  In every case, 
the salt wedge stretched inward, beneath the fresh water along the 
river, though its length differed.   Judging from those figures, the 
area occupied by the supercritical zone seems to depend on the 
amount of the river discharge.  From a theoretical view point, the 
numerical value of the interfacial Froude number at the front of the 
salt wedge should be a dominant parameter for determining the whole 
area occupied by the supercritical zone. 

We can find a small zone in which Fi>3, in Fig. 1, but on the other 
hand, the maximum of F^ doesn't reach 2, in Fig. 3.  Thus, the area 
of the supercritical zone is also dependent on the maximum value of 
F±  itself within it.  The inshore end of the zone is always located 
approximately at the river mouth in each case, and it must correspond 
to the control condition which has been believed to hold true that 
F±=l  at the river mouth.  Another small supercritical zone is found 
locally at the end of the left sand spit in Figs. 2 and 3.  It may 
perhaps be caused by a rapid flow based on a potential flow. 

Fig. 4 shows a longitudinal change of the interfacial Froude number 
F±  along the main stream of the fresh-water flow, where Fi grows 
rapidly in the vicinity of the river mouth and exceeds unity.  In this 
figure, since the distance is limited within 600 m offshore, the 
further trend of F^ cannot be seen, but it decays down again at some 
point beyond 600 m, undoubtedly, as shown in Fig. 3.  The symbol E 
denotes a coefficient of entrainment which takes place from the lower 
sea water into the upper fresh water.  Numerical values of E are 
obtainable from an equation which has been proposed, as Eq. (5), in 
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0.5 1.0 1.5 km   JUL.25. 1967. 

Fig. 1 The supercritical zone formed in the neighborhood 
of the mouth of the Ishikari River. 

0.5 1.0 1.5 km    AUG. 2. 1969. 

Fig. 2 Another example of the supercritical zone at the 
Ishikari River 
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0.5 15 km      Aug. 4 1970 

Fig. 3 The third example of the supercritical zone at 
the Ishikari River. 

• 200 
RIVER MOUTH 

20 0     4 0 0     6 0 0m 
— seaward 

Fig. 4 Longitudinal change of the interfacial Froude number 

~F±  and the entrainment coefficient E. 
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the previous proceedings.  The entrainment coefficient E grows rapidly 
with an increase of F^, but it is interesting that E decays soon much 
earlier than F±.     The relationship ,between E and Fj_ should be a theme 
which is necessary to reveal in the near future. 

Figs. 5 and 6 show another field examples which have been obtained in 
the neighborhood of the mouth of the Teshio River, which is situated 
on the north-western district of Hokkaido.  Since the observed points 
are much less than the previous examples at the Ishikari River, the 
extension of the supercritical zone cannot be determined in shape 
exactly, but the zone evidently exists just from the river mouth to 
offshore directions, as well as in each case of the Ishikari River. 
In both cases, in Figs. 5 and 6, the salt wedge was formed over a 
distance more than 10 km along the river bed.  The longitudinal change 
of F^ is also shown in Fig. 7, whose data are based on the observation 
shown in Fig. 5.  The trend resembles that of the Ishikari River, but 
it shows that there is a decaying stage after the distance of 200 m 
off the mouth.  The symbol u^ is a velocity of the fresh-water flow, 
and its highest value is found at a little distance off from the mouth. 
This phenomenon has usually been believed to be peculiar to the two- 
layered flow at a river mouth, as has already been published by the 
present author [KASHIWAMURA 1972].  In this manner, the field examples 
have confirmed an existence of the supercritical zone, as already 
predicted by the theory. 

If the discharge amount of the river water grows up beyond a certain 
limit, the salt wedge is pushed out from the river mouth into the sea, 
as is frequently experienced in a flood season.  In such a case, as 
the interfacial Froude number F^ exceeds unity even inside the river, 
the dynamical situation is similar to a   flow around an airfoil which 
is placed in a supersonic flow, and then, the supercritical zone may 
occupy a much larger area over the sea. A thermal discharge of cool- 
ing water from a power plant is also belonging tp  the same category 
with those cases. 

As is well known, shock waves and thermodynamical changes are accom- 
panying to the formation of the supersonic zone in aerodynamics.  In 
our cases, the mixing between the fresh water and the sea water may 
correspond to those phenomena.  Studies on a fine mechanism of the 
mixing seem to be very important from this view point. 

Finally, an example in model experiments is shown in Fig. 8.  This is 
one of the recent works which have been done by Mr. Nishida, graduate 
student of our laboratory.  This shows a horizontal distribution of 
Fi and the supercritical zone which extends from the outlet of the 
channel into offshore directions, and it gives approximately the same 
trend with the field examples.  Thus, the laboratory experiment and 
the field measurements have proved together, the existence of the 
supercritical zone, as the present author predicted from the theore- 
tical consideration. 
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TESHIO RIVER 

Aug.26   1974 

0.5 
J 
1.0 km 

JAPAN SEA 

Fig. 5 The supercritical zone formed over the sea, in the 
neighborhood of the mouth of the Teshio River. 

F> = 1 

TESHIO RIVER 

Aug.27 1974 

JAPAN SEA 

0.5 1.0 km 

Fig. 6 Another example of the supercritical zone at the 

Teshio River. 
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Hi   F, 

1.5   3.0 

1.0    2.0 - 

0       0 

Aui. 26,1974 !   TESHIO   RIVER 

_1 '''•' L_l I I I I I I 1 1 I 1 1 L. 

100 

RIVER   MOUTH 

200 300 

-> seaward 

Fig. 7 Longitudinal change of F^ and the surface velocity uj. 

u 
Q=16.6cc/s 

6=0.003 

Fig. 8 The supercritical zone formed in the laboratory 
experiment.  [After Mr. Nishida]. 
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CONCLUSION 

First, the equation of motion was treated, with regard to the fresh- 
water flow, which flows out from a river mouth, horizontally into the 
sea.  Emphasis was placed on the buoyancy only, and then viscosity 
and mixing were neglected.  As the result, the dominant equation 
agreed, in form, with the equation of a transonic gas flow.  The 
interfacial Froude number plays a dominant part, in the place of the 
Mach number, which is dominant in the transonic flow. 

Next, the governing equation was studied, with the hodograph method 
and its modification, in order to obtain a solution.  Although 
unsuccessful yet they were, the coincidence between the fresh-water 
flow and the transonic flow, was still more confirmed, in dynamical 
and mathematical meanings. As the present author had predicted an 
existence of the supercritical zone outside a river mouth, by analogy 
of the existence of a supersonic zone in the transonic flow, several 
examples of the field observation were illustrated, in order to prove 
that the prediction was correct.  Mixing takes place intensively in 
the supercritical zone, since the interfacial Froude number exceeds 
unity there. 

Throughout the description, the author has put emphasis on the 
importance of the buoyancy effect of the fresh-water flow, so as to 
attract attentions to the singular characteristic of the two-layered 
density current, which resembles the transonic flow, and also to a 
significant role of the interfacial Froude number which dominates the 
entire flow characteristics even including the mixing between the 
fresh water and the salt water. 

The author expresses his sincere thanks to all the collaborators in 
his laboratory for their helps of many kinds, in particular, to Mr. 
Nishida, who kindly offered an unpublished experimental result, for 
the present paper. 

NOTATIONS 

x, y: Longitudinal and lateral coordinates. 
u, v: Velocity components referred to x and y. 
q: Absolute value of velocity, q = /u2 + v2. 
<(>: Velocity potential. 
i|>: Modified stream function.   
F-L: Interfacial Froude number, Fi = q//egh. 
F: F = Fi2. 
e: Parameter of density difference, e = 1 - (p!/p2). 
Pl, P2? Densities of fresh water and salt water. 
g: Gravitational acceleration. 
h: Depth of fresh water. 
M: Mach number. 
z: Complex number, z = x +iy. 
6: Argument of velocity vector. 
r: T = (3v/3x) - (3u/3y). 
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H: Modified Bernoulli's term, H = (l/2)qz + egh. 
t: t = J"(h/q)dq 
A: A =   (l-Fi2)/h2. 
n: Arbitrary variable defined within - °° < n < <*>. 
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