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INTRODUCTION 

Waves impinging on beaches induce mean flows, such as longshore 
and rip currents.  This nearshore circulation is of fundamental impor- 
tance in the study of the transport of nearshore contaminants as well 
as littoral materials. Analytic models of this nearshore flow {see, 
e.g. 4, 9, 11, 12) have been constrained to be linear (in the governing 
equations) and simplistic in the bottom topography.  Only recently have 
numerical models been developed to examine more complex situations. 
Steady state, finite difference models (1, 14), as well as a finite 
element model (10), have been proposed.  The numerical model, developed 
by Birkemeier and Dalrymple (1), allowed for time dependency.  Yet, in 
all of these cases, the governing equations have not included the non- 
linear convective accelerations or lateral mixing terms. 

In this study, a nonlinear numerical model is presented based on 
a leapfrog finite difference scheme, which includes time dependency and 
eddy viscosity terms.  Results are shown for a planar beach showing a 
comparison with the analytical longshore current models (with and with- 
out lateral mixing) of Longuet-Higgins (11, 12).  The longshore current 
over a prismatic beach profile including an offshore bar is presented 
next, showing the effects of the bar on the velocity profile.  The 
circulation set-up by a rip channel inset into a plane beach is then 
computed.  A comparison is made to the linear model of Birkemeier and 
Dalrymple.  Finally the model is applied to the case of synchronous 
intersecting wave trains (4).  An interesting result occurs when the 
waves are of different amplitudes, which could provide an explanation 
of the formation of finger bars on a beach. 

GOVERNING EQUATIONS 

The numerical model is formulated using the usual time-averaged 
(over one wave period) and depth-averaged conservation equations of 
mass and momentum, written in terms of the mean horizontal velocities 
(U, V) and the mean free surface displacement n.  These are 
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where D = h + n, the total depth, h is the local still water depth, tj,x 
and TJ, are the bottom frictions in the x and y directions, x^ is the 
lateral shear stress due to turbulent velocity fluctuations, and p is 
the water density.  The radiation stress terms, introduced by Longuet- 
Higgins and Stewart (see 13, 15), are specified throughout the region 
of interest in terms of the local wave energy and direction, 0.  This 
information is supplied independently using a coupled wave refraction 
procedure modified from Noda et al. (14), which includes wave-current 
interaction, and wave breaking (based on a breaking index model for 
wave heights within the surf zone). 

The bottom shear stress in each direction is found by numerically 
integrating over a wave period the nonlinear stresses 
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where the vertical bars denote absolute value (to_ensure that the_shear 
stress acts counter to the total velocity vector U = (U, V)} and uw = 
(Um cos 0 i + Um sin 0 j)cos at , which is the wave orbital velocity 
vector at the bottom.  Through experimentation, 16 terms in a Simpson's 
rule integration yielded bottom stress results with sufficient accuracy. 

FINITE DIFFERENCE FORMOLATION AND SOLUTION TECHNIQUE 

In order to use a finite difference technique, the region of 
interest must first be discretized into a grid system as shown in Figure 
1, with x positive offshore and y in the longshore direction.  All the 
variables of interest except the velocities are defined at the center 
of each grid (the centers being separated by distances of Ax and Ay in 
the x and y directions).  The horizontal velocities, on the other hand, 
are defined at the grid boundaries and are positive if they enter a 
grid in the positive coordinate direction. 

To numerically solve the governing equations, they were approxi- 
mated by their finite differenced forms.  Following the methods of Lilly 
(8) and Blumberg (3), certain differencing and averaging operators are 
defined: 
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U given by linear wave theory. 
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Figure 1,    Discretization of Nearshore Region and Detail of Grid, 
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Fte^Hr = |[F(K + f,  y,   t> + F(X - f,  y,   t)] (7) 

F(x,y,t)   y   E F(x,y,t) (8) 

The first two operators are essentially central finite differences 
about the point (x,y) over one spacial grid step, or two.  Equations 
(7) and (.8) are horizontal spacial averages in the x direction first 
then in both the x and y directions.  Note that F(x,y,t) may be any 
function that varies in space and time and that similar operators exist 
for the variables y and t» 

Using these operators the governing equations can be written in 
their differenced forms as, 
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In converting these differenced equations into the i, j notation 
of Figure 1 it is important to note that the x,y coordinate is defined 
at the location where the variable of interest, to be solved for in a 
particular equation, is defined.  For example, the x-momentum equation 
is used to solve for the horizontal velocity, U, so the -x,y coordinate 
is defined to be at the grid edge where U-j- -; is defined.  Also in the 
above equations the bottom friction and lateral mixing terms were lagged 
one step in time to increase the computational stability, (3) and (6). 

Before the problem can be solved numerically, initial and boundary 
conditions must be specified.  In all applications of the model the 
initial conditions were assumed to be the state of rest.  The mean 
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velocity and mean free surface displacement fields were set to zero, a 
still water depth matrix was specified, and the wave characteristics 
were determined using the procedures of Noda et al.  The boundary 
conditions are as follows:  at the first dry grid row and at the off- 
shore grid row, M, no flow conditions were imposed by setting the 
velocity components equal to zero-  This choice of boundary condition 
essentially simulates a wall at the onshore and offshore extremities 
of the area of interest.  The onshore condition provides that there is 
no flow into the beach while the offshore condition is valid if, as the 
model approaches a steady state, the circulation due to longshore and 
offshore flows is negligible at row M-l.  In the y-direction periodic 
boundary conditions were invoked.  Referring again to Figure 1 
periodicity requires that, for a quantity Q, 

Q(i,l> = Q(i,N) 

Q((i,2) = Q(i,N+l) } (12) 

Q(i,3) = Q(i,N+2) 

and so forth.  Periodicity in the longshore direction was chosen because 
circulation patterns in nature are oftentimes periodic.  Also if a 
particular stretch of beach, lacking periodicity, is being investigated, 
the boundaries in the model may be placed far enough away from this area 
of interest so that it does not affect the flow in this region, making 
the choice of periodic boundary conditions valid. 

The differenced equations, (.9). through (11), were derived using a 
central difference in time, for the time dependent terms, in which case 
they can be written as 

(13) 
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where A and B are functions of depth alone, Fj, F2 and F3 are functions 
of all the variables in the problem, and n-fl, n-1, and n denote time 
levels.  These equations represent the leapfrog technique used to solve 
the problem in which updated values of n, U, and V are calculated using 
quantities defined at the previous two time levels.  Everytime updated 
values of these three variables are computed, they are used to solve 
for the wave parameters at the same time level.  In order to initiate 
the leapfrog scheme a forward difference in time using the initial 
conditions was implemented to establish variables defined at time levels 
2 and 1.  The leapfrog procedure was used for the duration of the com- 
putational steps.  However, as the model approached a steady state, 
the solution diverged into two disjoint solutions, one following the 
even times steps and the other the odd.  In order to correct this time- 
splitting problem, an Euler backward correction scheme (7) was- used 
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every tenth iteration to "tie" the solutions back together.  The fol- 

lowing two equations describe the backward corrector, 

h* - h"•1 + 2AtG (.16) 

hn+1 - hn + AtG* C17) 

Equation (.16) is essentially any one of Equations (.9) through (11) 

where "*" denotes the updated value of the variable of interest whether 

it be ri, U or V.  The function G is then computed using the new variable 

values and the new value at this time n+1, is computed.  Equation (17) 

is a backward difference to the time step n from n+1.  This correction 

scheme was chosen because it selectively damps the artificial compu- 

tational mode of the solution, which can occur, while leaving the 

physical mode relatively unaffected.  With the usage of this correction 

scheme the solution proceeded to reach a steady state with no further 

instability. 

Due to the nonlinearities of the problem, an exact stability 

criterion for the choice of the time step, At, could not be established. 

Therefore, in applications of the model the time step was chosen to be 

significantly lower than the two-dimensional Courant stability criterion 

given by 

At 1 <   /(Ax)2 + (Ay)2 

/gh~ 

Prismatic Beaches—The model was first applied to the case of a 
single progressive wave train approaching a planar beach (slope of 0.025) 

at some angle to the beach normal.  The following input data was used. 

The deep water wave characteristics were:  (1) a period of 8.0 seconds; 

(2) an angle of 30.0 degrees; and (3) a height of 2,0 meters built up 

over 200 (At =0.5 second) iterations to avoid "shock" loading the 

system.  The region of interest was broken into a 6 x 30 grid mesh with 

spacings of 10.0 and 15.0 meters in the x and y directions, respectively. 

The bottom friction factor, f, was chosen to be 0.08 and the mixing 

coefficients N and ey were chosen to be 0.01 and 0.5 meters
2/sec.  The 

model was run for 1200 iterations which was nearly steady state. 

The steady longshore current distributions both with and without 

mixing included are shown in Figure 2 along with the analytical results 

of Longuet-Higgins for the same input data.  The major differences 

between the two profiles that exclude mixing are the sharpness of the 

discontinuity at the breaker line, and the difference in peak velocities. 

The numerical model shows less of a discontinuity in the breaker zone 

due to the fact that velocities just outside the surf zone are calculated 

using those from within the surf zone in the differenced form of the 

y-momentum equation, which results in a numerical "mixing".  Also due 

to the use of a discrete grid size in the x-direction the exact location 
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Figure 2a. Analytical Models of Longshore Current, With and Without 
Mixing [Longuet-Higgins (11, 12)J. 
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Figure 2b.  Numerical Model Results for Longshore Current, With and 
Without Mixing. 
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of the breaker line is not adequately determined, resulting in a breaker 
line smoothing.  As the grid size is decreased the location of the 
breaker line becomes better defined, making the discontinuity sharper 
as well as increasing the peak velocity.  It must be noted that the peak 
velocities predicted by the model should not equal those resulting from 
Longuet-Higgins' theory due to the bottom friction formulation used in 
the model which was shown by Liu and Dalrymple (9) to decrease the 
analytical result by about 20% for the breaker angle and bottom slope 
found in this case. 

In reality this strong discontinuity doesn't exist, and longshore 
current distributions tend to exhibit the properties shown by both the 
model and Longuet-Higgins results including mixing.  These properties 
include:  (1) a slight increase in velocities in the inner one-half of 
the surf zone; (2) a shift of the peak velocity from the breaker line 
shoreward; and (3) a slow decrease in the current to zero some distance 
beyond the breaker line. 

Since in nature beach topographies often include longshore bars, 
the model was run on a bottom with an infinitely long longshore bar 
whose cross section is shown in  Figure 3 in relation to a plane beach 
with slope 0.025.  The remaining input into the model was identical 
to that used in the plane beach runs.  The results for the model not 
including mixing are also shown in Figure 3,  Notice the two distinct 
regions where a longshore current distribution exists.  The velocity 
"spike" offshore' is due to the waves breaking on the bar.  As the ,wave 
height decreases, as a result of breaking, an onshore-offshore gradient 
of y-momentum flux is created which drives a longshore current.  In the 
trough, however, the wave height starts to reform (no more breaking) 
resulting in the absence of a longshore current in this region.  In 
reality a longshore current does exist in the~trough, Allender et al. 
(1), due to the mechanisms of turbulent dissipation during breaking 
within a bore, lateral mixing which has been included in the model, and 
a set-up of water within the trough, Dalrymple (5).  Figure 3b shows the 
velocity profile for the run including mixing.  Note the reduction in 
current amplitude of the offshore "spike" and the smoothing of dis- 
continuities resulting in.the existence of a longshore current in the 
bar trough.  Had the turbulent energy dissipation mechanism been included 
in the model the results would probably have approached those found in 
nature. 

Periodic Bottom Topography Application—The model was next applied 
to the periodic bottom topography developed by Noda et al, (14). which is 
essentially a channel at some angle to the beach normal.  The formulation 
for this bottom configuration is given in Appendix A.  The model, in- 
cluding the effects of mixing, was compared to the linear model of 
Birkemeier and Dalrymple.  The following wave characteristics were used 
in both instances;  (1) deep water wave height of 1.0 meters; (2) wave 
period of 4.0 seconds; and (3) a deep water wave angle of 30.0 degrees 
to the beach normal.  The bottom friction factor, f, was chosen to be 
0.08, and the mixing coefficients, N and e , were chosen to be 0.005 
and 0.5 meters /sec, respectively.  In both runs the wave height was 
built up to its deep water value over 100 seconds. 
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Figure 3^,  Beach Profile for Planar and Barred Beach, 
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Figure 3b«  Longshore Current Profiles on Barred Beaches, With and 
Without Mixing, 
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Both models were run until they reached approximately a steady 
state, about 500 seconds.  The wave-current interaction process was 
halted in the linear model after 150 seconds because the offshore 
velocity components grew too large for the refraction routines to 
handle (i.e. wave breaking occurred in the rip channel).  In the non- 
linear model, however, the wave-current interaction process was included 
for the duration of the run time.  The circulation patterns after 500 
seconds are shown in Figure 4 and 5. 

Note the strength of the rip and its offshore extent in the 
linear model compared to the nonlinear model.  The peak velocity in 
the linear model run is about 3.0 meters per second whereas in the 
nonlinear model it is about 0.8 meters per second.  This large dis- 
crepancy is due to the inclusion of mixing in the nonlinear model. 
The mixing tends to spread the rip out and decrease its offshore 
velocity components thus causing the rip to turn more in the longshore 
direction as shown in Figure 5.  The effects of the convective accel- 
eration terms are not clearly visible because it seems as though the 
form of the rip itself is governed primarily by horizontal mixing in 
this case.  It is reasonable to expect, however, that in nature the 
lateral mixing in the rip current is far less than used here. 

Synchronous Intersecting Waves—The final application of the model 
was to the case of intersecting wave trains of a common frequency on a 
plane beach which Dalrymple (4) showed could generate rip currents.  The 
purpose here was to show the effect of the convective acceleration terms 
in the model.  Certain changes were made to the model, namely:  (1) the 
refraction routines of Noda et a 1_. were replaced with those using Snells' 
law without wave-current interaction; (2) lateral mixing was excluded; 
(3) the "exact" bottom friction formulation was made to include two 
waves; (4) the radiation stresses due to both intersecting wave trains 
were calculated analytically for use in the momentum equations. 

The waves were of equal heights (0.25 meters) and of equal deep 
water angles on either side of the beach normal (30,0 degrees).  The 
period was chosen to be 7.1594 seconds which resulted in periodic rip 
currents with a spacing of 80.0 meters.  The plane beach (slope 0.025) 
was broken into a planform area of 25 grids in the x-direction with a 
Ax spacing of 5.0 meters, and 21 grids in the y-direction with a Ay 
spacing of 4.0 meters.  The time step was chosen to be 0.2 seconds and 
the wave was built up for 500 of the 1500 iterations run.  The friction 
factor, f, was selected as 0.12 to allow the system to reach steady state 
faster and to decrease the magnitude of the resultant currents. 

The total free surface described by these two wave trains is in 
essence a normally incident wave with a periodically modulated height. 
This is the driving mechanism which produces the rip currents shown in 
Figure 6.  Note the constricted width of the rip current in relation to 
the width of the inflow region.  This is a result of the convective 
acceleration terms.  Also note the weak rip head where the currents 
diverge from the rip axis and return towards shore. 

When one wave is of greater height than the other, all other 
variables remain the same, then a longshore current is superimposed 
over the cellular circulation, Figure 7. 



2720 COASTAL ENGINEERING-1980 

N* W** 

1 B 

£ i £ 3 3 3 

Figure 4,  Current Vector plot for the Model of Birkemeter and Dalrymple 
Run on the Periodic Bottom Topography, 
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Figure 5.  Current Vector plot for the Present Model Including Mixing 
Run on the Periodic Bottom Topography.  The Arbitrary Longshore 
Mixing Coefficient Probably Chosen as Too Large, 



2722 COASTAL ENGINEERING-1980 

/ 

/   /   » 

- - - \ t i 

* - ~ \ J / 

< ' - \ t f - 

' ' ' 1 t f • 
,   . • « f | t ' 

-    * * « 1 t t * 
/   « » ' f t t » 

t /       /       \        \       * »   t 
» ' • s ' t T t « 

» » i i / / • * - t \ 

\\ I    I    <S~'   N     f f 
i 1 U 1 \ - - / t f 

/   | \   \  \ Si-*~~*y / f 
1     \ \    \   %-»-*-* 

1    ' 
•     \    / 

| 1 - > • \ v i i i 

f f - * \ i \ \ \ I 
\   \   ,  N -N.N   \   I   1 

11 \ » - / W i 1 

/»/ f \ '^*—f—«—*—^ -- /  i 

».-• j »^«—«- 

x   x   w 
Q     Q     O 

iil 

m   A   A 

tit S § 3 

Figure 6, Current Vector Plot for a Rip Current Perpendicular to the 
Shoreline, 
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Figure 7,  Current Vector Plot for the Meandering Circulation Pattern. 
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CONCLUSIONS 

A model that can accurately predict currents and wave transfor- 
mations in the nearshore zone is a necessary step in attempting to 
predict actual changes to our coastlines.  From the results shown here 
it appears that the inclusion of the convective acceleration terms and 
lateral mixing terms in the horizontal momentum equations have important 
effects which must be included in models used to predict nearshore 
circulation.  The terms become especially significant in attempts to 
model circulation over irregular bottom topographies which include 
bars and channels. 

APPENDIX A - PERIODIC BOTTOM TOPOGRAPHY 

The periodic bottom profile used in the model was developed 
by Noda e_t al. (14) .  The depths are given by 

h = mx{l+ A exp[-3(^}1/3]sin10 f(y-x tan 6) } 

where m = beach slope = .025. 
x,y are the coordinates of the depth location. 
X = length of periodic beach = 80 meters. 
A = amplitude of bottom variation - 20. 
$ - angle of rip channel to beach normal = 30 degrees. 

The grid spacing was chosen to be 5.0 and 4.0 meters in the x and 
y directions/ respectively.  There were 25 and 21 grids in the x and y 
directions.  The last grid row and the "dry" grid rows were made planar 
with the slope being .025. 
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