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1. Introduction 

Numerical models for the simulation of tidal waves in estuaries have "be- 
come a standard tool of coastal engineers. Before they can he applied to 
practical problems, they have to be calibrated against nature. The basis 
for calibration is normally a representative set of tidal curves (natu- 
ral field data), which has to be reproduced by the numerical model. 
Generally, the calibration is performed by empirically tuning cer- 
tain parameters, until a fairly good agreement between measured and cal- 
culated quantities is obtained. In most cases, this is a "trial-and- 
error" process which may become very time-consuming, and which strongly 
depends on the intuition and experience of the user. 

In order to make the process of calibration more effective, and to en- 
sure that the best possible agreement between nature and numerical model 
is achieved, a calibration method has been developed to determine the 
parameters of the numerical model automatically by means of a mathema- 
tical method of optimization. The method is applied to a one-dimensional 
numerical model of the Elbe River. 

2. Numerical Model 

For the numerical river model, the common assumptions of vertically and 
horizontally averaged . velocities, and of hydrostatic pressure distri- 
bution are made. The basic equations are derived from the conservative 
principles for momentum 

iA 3t + gAT  (a+ b ' + (1  g A* V 3s (ir£ + ^fc-(«+ ^) + d-^bJ^-i„ + Ods = o    (1) 

and for mass 

(b^ + ||)ds=0 (2) 
3t   3s 

where A stands for the stream area, b for the stream width, and b for 
the top width, s is the space coordinate along the river axis, Q the 
flux in this direction, and h gives the variation of the free surface. 

2450 



TIDAL MODEL CALIBRATION 2451 

The quantity I stands for the bottom slope, I for the friction losses, 
and a is a velocity coefficient. 

These integral formulations are integrated directly. Adopting a finite 
element concept, and using linear trial functions in space and time for 
the description of the water level h and the flux Q, an implicit formul- 
ation of second order accuracy is obtained. The scheme is identical with 
that proposed by Preissmann (i960), and can alternatively be derived 
from a finite difference formulation for a finite control scheme. An 
analysis of the numerical properties of this scheme was presented by 
Evans (1977). 

The numerical model was applied to the Elbe river, covering its tide-in- 
fluenced length of 139.1 km from the North Sea (Cuxhaven) to Hamburg 
(St. Pauli) and further upstream to Geesthacht (Fig. 1). The model had 
to take into account islands and banks. For the discretization an aver- 
age element length of about 1 km was chosen. A rather high resolution of 
the topography was thus obtained. 
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Fig. 1: One-dimensional Elbe model 

For the description of bottom friction, the Taylor formulation 

r Ivlv 
Iv = h (3) 

was used, r is the friction parameter. 

3. "Trial-and-Error" Calibration 

The numerical model calculates the time-dependent variation of the free 
surface, and the water flux along the river. The calculated values depend 
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on a chosen set of friction parameters. They have to be determined from 
a calibration of the model, which aims at hindcasting some typical mea- 
sured states in nature. Normally the calibration is performed with re- 
spect to a set of tidal curves only, since data on velocities are more 
difficult to get. During the process of calibration, the friction para- 
meters are varied empirically until a fairly good agreement between cal- 
culated and measured data is obtained. So the calibration is actually 
performed in a "trial-and-error" manner. In each interative step, the 
"degree of agreement" between computed and measured data should be deter- 
mined according to some analytic criteria. This can be done efficiently 
on the computer only, unless the criteria for the calibration are strong- 
ly simplified. 

The really crucial point of any "trial-and-error" calibration, however, 
is the estimate of a new parameter set for the next iteration step. It is 
difficult to make a good guess, due to the non-linearity of the numerical 
model. The model user needs a good deal of experience and intuition. In 
order to overcome this drawback, an automatic calibration method (Janu- 
szewski, 198o) was developed, based on the theory of mathematical opti- 
mization. This method is independent of any user's "feeling" and deter- 
mines an optimal parameter set in accordance with any user-defined cri- 
teria and error bounds. 

k.   Optimized Calibration 

The strategy for an automatic and optimal determination of friction para- 
meters leads to a closed optimization system which is shown in Fig. 2. 
The numericl model is the basic element of this system. In the later app- 
lication on the Elbe river, a numerical model will be used , for which 
the initial and boundary conditions z and z_ must be prescribed. 

efficiency criterion 

objective function 
4- 
optimization strategy 

f 
numerical model^ 

*R 

—O 

field data p 

calculated state F 
variables 

initial conditions £ 

boundary conditions p_ 

varied parameters 

performance index 

accuracy bounds 

starting parameters 

Fig. 2: Strategy for Optimized Calibration 
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z_  is the vector of state variables, which are the free surface and the 
fluxes or velocities at any cross-section. These quantities are either 
computed by the numerical model, giving the vector _z., or measured in the 
field, and then giving the vector z . The computed vector z_.   depends on 
the parameter vector £ which contains the friction parameters. 

In the closed calibration loop an initial parameter set p has to' be 
chosen as input for the numerical model, which calculates the vector z_.. 
This vector has to be compared with the corresponding field data set in 
z . For the Elbe model, this comparison was made for the water levels, 
as theywerethe only available field data. The analytic criterion, in 
accordance to which the comparison is being made, and the definition of 
which is open to the model user, is called the objective function. The 
comparison between calculated and measured state variables results in a 
scalar quantity, the performance index F. This is a measure for the agree- 
ment achieved between measured and calculated values. 

The performance index is now the input for the optimization strategy, 
which generates a new set of parameters. This new parameter vector p_ is 
the output of the optimization strategy and in turn the input for a second 
cycle of the closed optimization system. 

The iteration stops following a convergency test which is made during 
each cycle just before a new parameter set is calculated. For this test, 
the model user has to define the wanted accuracy bound p, according to 
which three tests are made: 

a comparison of the actual values and those of the preceding iter- 
ation step, for all elements of the parameter vector p_ 

£v ' Ev_! £ e CO 

a test on the achieved improvement of the performance index F 

lFv- Vll lr>1 (5) 

and a test on the performance index itself 

F < n2 (6) 

Calibration is completely automized in the outlined closed loop. The mo- 
del user influences the calibration run only by specifying the error 
bounds, and by defining the objective function. So he is still control- 
ling the physics of the calibration, but has got rid of a lot of manual 
work. 

U.1 Objective Function 

The objective function describes the error between calculated and mea- 
sured data. It should define a scalar non-negative quantity, the perform- 
ance index F, which depends on the parameter set p_. The optimal parameter 
set p_ is obtained when the error between computed and measured data is 
minimized. The obtained minimum should be a global one. 

For the application to the Elbe model, the objective function was defined 
as the sum of the squares of the differences between measured and cal- 
culated state values taken at all time steps for the tidal period and at 
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all locations, for which field data were given. 
M 

F
(E)=  l^M  - ^ (t.pj^tz^tt) - z£ (t,p_)) at (T) 

t 
o 

The advantage of this formulation lies in the fact that the differences 
over the total time of the tidal period are equally weighted, i.e. the 
differences are minimized with respect to phase and amplitude. 

In order to find the optimal parameter vector p_, the objective function 
has to he differentiated with respect to all components of the vector p_. 

3F(£) 

3p. 
t J 

T,-„»
dt = °» 1 < J £ n ' (8) £-£.* 

A minimum for F(p_), at least in a local sense is obtained, when the deri- 
vative is equal to zero. The parameter vector p_* corresponds to min F(p). 
This condition is fulfilled in three cases. 

1) The derivative of computed state values 

Bpf 
is independent of the friction parameters, which means that the prob- 
lem is not correctly posed. 

2) The product 

(Z  -   Z. )      7T— 
—s  —l  3p. 

3z. 
is equal to zero, which means that both functions (z - z_.) and „ 
are orthogonal, and thus independent of each other. *j 

This result is meaningless. 

3) The deviation (z - z_.) is equal to zero. This is exactly the desired 
result for a perfect calibration. 

The first derivative, however, does only give a necessary condition for a 
local minimum. A global minimum is obtained, if the second derivative is 
positive - semi-definite. This can be shown for each iteration step, as 
long as the objective function is based on an error-squared formulation. 

The numerical model is integrated for discrete steps in the time domain, 
and thus the objective function too has to be formulated in a discrete 
manner. 

max ^ 

F(fi) = I.  (£g - 2i k(E)) A(^-^k(£)) (9) 
k=1       ' ' 

To this formulation, a symmetric matrix A is added, which allows for an 
arbitrary weighting of different elements of the error vector (z - z.). 

Depending on the model user's experience and on the application he has in mind, 
it is also possible to use other objective functions. For the Elbe model 
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computations, the correlation coefficient r.  . was alternatively intro- 
duced: ' 

Hs) 
N 

-I   d 
j = 1 

r.  •) a,si 
do) 

which is based on an error-squared formulation, too. Other statistical 
measures can also "be used. 

The error computation must refer to all the tidal curves, as in the case 
of the Elbe model. It can he extended to include the velocities, too, or 
it can he restricted to tidal high and low water alone. The choice of the 
objective function is open to the user, and this means that automatic 
calibration does not become a black-box system. 

H.2 Optimization Strategy 

Optimization strategy is a mathematical procedure for finding the minimum 
value of the performance index. Due to the non-linearity of the St. Venant 
equations (1,2), it is impossible to find the minimum p_* of the objective 
function, i.e. p* = minF(p), in an explicit way. So the second method of 
Powell (196U), which is a method taken from the scope of non-linear pro- 
gramming, is applied for finding the minimum by a sequential search stra- 
tegy. It is based on a direct searching technique which avoids the com- 
putation of derivatives for the objective function F(p), which in turn 
depends on the non-linear St. Venant equations, and is rather complicated. 

The principle of the searching strategy is explained by figure 3. 

•P, 

Fig. 3: Second Method of Powell 
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It is assumed that the objective function F(.p_) is a convex function. In 
a three-dimensional representation which is chosen for reasons of simpli- 
city of the graphical sketch, the objective function F(p_) = const, de- 
fines isolines in the p., - p domain. Starting from an initial estimate 
p , two linear independent searching directions are defined. The minimum 
of F(p_) is determined subsequently and independently in each direction. 
This leads to a new parameter vector TO   .  This procedure is repeated iter- 
atively. To make the searching process efficient, a test is performed 
after each iteration step to find out whether the search directions 
should be the same for the next step, or whether they should be varied. 
A criterion on this is given by the determinant of the search directions. 
It will attain its maximum for orthogonal, and thus linear independent 
searching directions. So for each iteration step a new direction, which 
is defined from the starting value F(p_) to the computed value F(p_) at the 
end of the step, is introduced and tested. If the direction determinant, 
computed by omitting the first search direction and including the new one, 
is bigger than it was in the step before, the new direction is accepted. 

The search for the minimum for F(p_) in each independent direction is ef- 
fected by means of the method of quadratic interpolation, which avoids 
the computation of derivatives. An example for this strategy is given by 
figure h. 

F J, 

Ap 2Ap 4Ap 8Ap 

4Ap 

Fig. it: Quadratic Interpolation 

Starting with a value F(p_), neighbouring values 

F(p_ + ApJ, F(E + 3AE), F(p_ + 7Ap_), F(p_ +...) 

are computed, until the last value Is bigger than the preceding one. An 
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additional value ia computed in the center of the last interval, and then 
the minimum is. determined by quadratic interpolation. This procedure is 
rather efficient, as. it "basically corresponds to a binary searching stra- 
tegy. 

5. Results 

The suggested method for optimized automatic calibration was applied to 
the section from Grauerort   Geesthacht of the described Elbe river mo- 
del (Fig. 1). This section, which is also given in figure 6, has a length 
of 7^.6 km. The one-dimensional model for this part of the river was di- 
vided into 17 branches to include the islands and the highly branched 
Hamburg harbour (St. Pauli). Measured data were available at 5 locations 
along the river, which are marked by dots in figures 1 and 6. The model 
was run with constant inflow prescribed at Geesthacht, and a tidal curve 
given at Grauerort. 

It was assumed that for this river section the friction parameters may be 
independently varied within k  areas as shown in figure 6. At least one 
measured data set has to be available within each area, as otherwise no 
performance index can be determined for this area, and consequently the 
problem would not have a unique solution. 

Figure 5 shows a comparison between "trial-and-error", or jnanual, and the 
optimized automatic calibration for the location Seemannshoft. 

The calibration was performed for the first 12.5 hours of the tidal cur- 
ves shown in figure 5, which correspond to the first tide on August 22,' 
1975. 

The objective function for the manual calibration was the difference bet- 
ween measured and calculated values at tidal high and low water only. In 
the manually-performed calibration, friction parameters which depend on 
the flow direction were used. The obtained calibration is nearly perfect 
at high and low water, 'but not so good for the gradient at falling water. 

For the automatic calibration, the friction parameters were assumed to be 
constant over the tidal period. Moreover, as a time-step of 1o minutes 
was used in the numerical model, the error was also minimized at about 
75 points per tidal period, and per location, for which measured data 
were given. So amplitude and phase error equally weighted and in more de- 
tail were taken into account by this strategy. The phase error reduction 
leads to a much better agreement of the tidal curves. This will probably 
result in a much better representation of the velocities, the wave height, 
however, is too small. 

The automatic calibration was performed to an accuracy of less than 
o.oo5 m per location and time-step. The obtained friction parameters are 
given in the table of figure 6. 

The variation of the parameters is explained from the typical cross sec- 
tion shapes of the river, which are approximately trapezoidal in area I, 
and much more complicated in areas III and IV. Moreover, the system is 
highly branched in the areas II to IV, and especially In the harbour 
area II simplifications with respect to the discretization have been made. 

The given results were obtained by using the sum of the squares of the 
differences between measured and computed values as objective function. 
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SEEMANNSHOEFT MANUAL CALIBRATIC 
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Fig. 5: Comparison Manual to Automatic Calibration 
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FRICTION TERM I, 
r | v] v 

CALIBRATION 

FRICTION 
AREA 

MANUAL 

flood  ebb 

AUTOMATIC 

I 0.007 0.012 0.00164 

II 0.005 0.03 0.01829 

III 0.004 0.004 0.00478 

IV 0.005 0.004 0.00432 

Fig. 6: Friction Parameters after Calibration 

Alternatively, a calibration .was performed, using the correlation coeffi- 
cient (1o) as objective function. For the same error bounds, a correla- 
tion coefficient of 0.99965 was obtained. The correlation as well as the 
relation of computed versus measured data is given in figure 7. The com- 
putation time for the calibration was reduced by about 2o %  in comparison 
with the error-squared function. 

SEEMANNSHOEFT 
AUTOMATIC CALIBRATION 

Fig. 7: Calibration using Correlation Coefficient 
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During calibration it was found that the numerical model was very sensi- 
tive to all parameter changes. Small increments on the optimal parameter 
set increased the value of the objective function considerably. This might 
easily lead to many poor estimates on new parameter sets in the "trial- 
and-error" calibration. It is confirmed by a comparison of the internal 
statistics, which was made over the number of computer runs for manual 
and automatic calibration. The optimization strategy required 33 runs for 
the given bounds, whereas about 6o variations of the parameter were ne- 
cessary for the manual calibration. The manual calibration demanded for 
a careful and time-consuming data analysis, and repeated plotting. A 
trained engineer was kept busy by this job for weeks. The automatic ca- 
libration was performed within one computer run in one night. The ob- 
tained results cannot be improved, unless the error bounds are reduced. 
Moreover, the actual bound up to which the calibration was performed, is 
a useful information for the model user 's prognostic applications of the 
model. 

6. Conclusion 

A method from the field of mathematical optimization was applied for the 
calibration of a one-dimensional river model. The model starts from the 
St. Venant equations which are solved numerically. The optimization leads 
to a closed system, so that the calibration can be performed automatically 
within one computer run. This leads to considerable savings in manpower 
and computer time. The physical transparency for the hydraulic engineer 
is maintained. The engineer still defines the criteria according to which 
the calibration is performed. The parameter set finally obtained is the 
best and only combination of parameters which is obtainable within a 
given err^or bound. 
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