
CHAPTER 145 

PARAMETER IDENTIFICATION IN ESTUARINE MODELING 

1 2 
Wen-Sen Chu and William W-G. Yen 

INTRODUCTION 

Parameter Identification (PI) algorithm is an optimization proce- 
dure that systematically searches the parameters embedded in a mathe- 
matical model.  These parameters are not measurable from a physical 
point of view.  The optimization is based on the minimization of a 
selected norm of the differences between the solution of the mathemati- 
cal model and scattered observations collected from the system. 

Parameter identification (or inverse problem) has been studied in 
groundwater systems extensively for the past decade (15), and it has 
also drawn many researchers in the fields of open-channel flow and 
estuarine modeling since 1972 (1,2,9,17). All the past estuarine PI 
works in the literature are confined to the one-dimensional case, and 
hydrodynamics and transport equations are treated separately. 

This study deals with PI in a two-dimensional vertically-averaged 
estuarine salinity model.  The salinity transport equation is coupled 
with the hydrodynamics equations.  The coupled relationship introduces 
extra density terms in the hydrodynamics equations, which must be 
solved simultaneously with the transport equation. 

One of the most difficult problems in PI is the collection of 
needed observations from the system which is being modeled.  With 
limited exception, the currently available data from the prototype 
estuaries are not adequate for the purposes of developing a PI algo- 
rithm.  This is usually critical in quantity (the number of stations 
and/or the period of time) and in quality (noise of data).  However, if 
an operational hydraulic model is available, the data could then be 
obtained economically and accurately under an ideally controlled 
environment.  The large amount of data that can be collected from a hy- 
draulic model of an estuary will provide a sufficient number of observa- 
tions and the required initial and boundary conditions for the develop- 
ment of a PI algorithm.  The use of the estuary hydraulic model could 
provide a better source of prototype data than would be available from 
the real estuary.  It will be much easier to distinguish between the 
inadequacy of the mathematics and the inadequacy of our understanding of 
the prototype.  Thus, it will give us an idea of how well we could 
expect to mathematically model the real estuary if we had an unlimited 
amount of prototype data. Additionally, when these types of data are 
used in PI, parameters can be optimally identified and the mathematical 
model can then be used conjunctively with the hydraulic model for proto- 
type applications, provided that the mathematical model is consistently 
formulated.  How well a hydraulic model simulates the prototype estuary 
is not considered in this study. 

Assistant Professor, Department of Environmental Resources Engineering, 
Humboldt State University, Arcata, California 95521. (Formerly, Grad- 
ate Student, School of Engineering and Applied Science, University of 
California, Los Angeles, California 90024). 

2 
Professor, School of Engineering and Applied Science, University of 
California, Los Angeles, California 90024. 

2433 



2434 COASTAL ENGINEERING-1980 

A tldally averaged approach is adopted to furnish the mathemat- 
ical model solutions for the purpose of PI.  This particular approach 
solves the dynamic steady-state conditions of the variables as repre- 
sented by their time-averaged values.  The mathematical model of this 
type is a boundary-value problem, and it is solved by an implicit- 
explicit iterative scheme (3,4).  The rationale of using a tidally 
averaged model in PI is based upon the assumption that the parameters 
to be identified are time-invariant, i.e., the parameters have the 
same values in the transient and dynamic steady-state conditions. 

The Error Function Method (1,4) is used with minlmax criterion 
in the optimization. Error function is linearized so that when it is 
used with the minimax criterion, the optimization problem can be 
transformed into a Linear Programming (LP) problem. 

TIDALLY AVERAGED APPROACH 

In order to formulate the two-dimensional vertically averaged 
mathematical model (See Figure 1) that approximates the prototype 
conditions as represented by the fixed-bed hydraulic model, the follow- 
ing transient equations ara used (11,12): 

2 2 1/2 
3u   " 3u ,   3u ,   3E   „.   , . u(u +v r/z ,. 
3l + U3l + Vi? + 8S + S^x + S ~-^  = ° (1) 

8vx      3v   .       3v   ,       3E ,.        ,       v(u2+v2)1/'2 ,,. 
it + u ii + v ¥7 + 8 5? + S1y   8 ~C2H ° (2) 

II + 3iM + ma. o o) 
3t 3x 3y 

8(Hs) . 3 (Hua) , 3 (Hvs) J_ /   3_s\ _1 (m    3s\ . 0 
3t      3x     3y   3x \x  3xj 3y \    y 3y/   ' 

(4) 

in which u, v are the velocities in x, y directions: 5 is a tidal 
elevation with respect to mean sea level h; H = % +h; s is salinity; 
C is the Chezy's coefficient; D and D are the dispersion coeffi- 
cients; g is gravitational acceleration; and <i>x and <i>y are the 
density slope terms induced by salinity. The density terms can be 
represented in English unit system by (12, 14): 

1.94 + 1.94 x 10 „ 

3      3at 

3~      3x  2 
Ki>    •   1-94x10    —-^.1 (5) 

y 
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in which o"t is the oceanographical sigma-tee function whose values 
depend upon salinity and temperature. 

Coriolis force and wind stress are not included in Eqs. (1) and 
(2) to conform with the hydraulic model conditions. 

For the purpose of this study, the following equation is used 
for Chezy's C: 

= >/2g/f (7) 

in which f  is the Darcy's roughness coefficient, which can be 
assumed to be time-invariant (5). 

Using previous findings (8,10,11), the dispersion coeffi- 
cients can be written as: 

D = DCX • H • |u| • g1'2 • C_1 (8) 

D = DCY • H • |v| • g1/2 • C_1 , (9) 

in which DCX and DCY are assumed to be constants representing the 
characteristics of the particular estuary; and-|u|, [v|  are the 
velocities in x and y directions. 

When the boundary conditions of the transient model can be 
assumed to be periodic, all transient variables will reach a dynamic 
steady-state after a long period of time.  These dynamic steady-state 
variables are constant over time when they are averaged over the 
period.  They are defined as tidally averaged variables when the 
period used is a tidal cycle. 

When Eqs. (1) to (9) are tidally averaged, they can be written 
as (3,4): 

3U , „ 3U .  3?^  -  ,   U(U +V )1/2 
"3 H1 , H g sr2- + g<l>  + g — 7. '  = 0    (10) ox    3y °  ox  °  x       „2- 

2 2 1/2 
„ 3V x „ 3V ±  !E±  -  ,  V(U +V )   = 0   (11) 
U il + V 3^ + 8 i£ + g<1>y + 8  1^  C H 

3 (HP)  3(HV) ... 
3x     3y   U K±  ' 

^- (Bus) + ^ (flvs) -^- (m  f^l - ^-(iffi —•) = o, (13) 
3x       3y       3x \ x 3x /  3y\ y 3y/ 

and, 

1.94 x 10~3 

1.94 + 1.94 x 10 a 
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1.94xl(f3 3    - H 
X1>y i.94+1.94xltf35 3y    fc 2 

CL  • T- (15) 

C = v1 2 g/f (16) 

D = DCX • H • |u| • g1/2 • C"1 (17) 

D  = DCY • H • |V| • g1/2 • a"* (18) 

in which U, V, i,   S, <i> are the tidally averaged values of u, v, £> 
s, <i>; and H is equal to h + B,.     The detailed mathematics of this 
approach are given by Chu and Yeh (3) and Chu (4) which will not be 
included here.  The key assumption for the averaging process is that 
all the transient variables have small amplitudes in time.  The concept 
of the averaging process is similar to the one that was used in verti- 
cal averaging by Leendentse (11). 

The parameters to be identified in the above tidally averaged 
model are the Darcy's roughness coefficient f, and the two dispersion 
constants DCX and DCY.  The parameters, by the previous assumptions, 
will have the same values in both the transient and the tidally 
averaged models. 

The distinct advantage of using the tidally averaged approach, 
despite the above-mentioned assumptions, is the saving of computing 
cost.  If a transient model is used for PI, long term integration is 
likely to be required to generate solutions that are commensurate with 
observations.  Since most of the identification schemes require an 
iterative search process, such long term integration can easily dis- 
courage the modelers' desire for PI, let alone their concerns over the 
accumulated errors generated by such extended runs. 

Equations (10) through (18) are solved by an implicit-explicit, 
alternating direction, iterative finite difference scheme developed by 
Chu and Yeh (3).  The method is conceptually similar to the multi- 
operational, implicit-explicit scheme by Leendentse for the transient 
problem (11).  Instead of integrating in time, an acceleration param- 
eter is used for each iteration.  The convergence of the proposed 
scheme is fairly rapid for hydrodynamics and slow for salinity trans- 
port.  Since its development, the algorithm has been numerically 
verified through a series of test problems (3,4).  These test problems 
include various initial and boundary conditions.  The results showed 
that the numerical model is applicable to any two-dimensional estuarine 
problem.  Detailed computational aspects Of the scheme are given in 
Chu and Yeh (3) and Chu (4) and they will not be covered here. 
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PARAMETER IDENTIFICATION ALGORITHM 

The selected norm for this study is the minimax criterion, which 
minimizes the absolute value of the maximum error among all observation 
stations in the domain. Mathematically, it is to 

L 
min  max   J \a±k  e±k|, (19) 

D  l<i<K k=1 

in which D represents the parameter vector in the model; and e^ is the 
error at station i of the kth variable which is collected as observa- 
tion. Equation (19) implies that all k variables are observed at the 
same stations, i = 1,...,M. Wjjj in Equation (19) is a weighting factor. 
These weighting factors are necessary to reflect widely differing 
numerical values and units. 

If tidal elevations and salinities are available at stations 
i = 1,...M, we can rewrite Equation (19) as: 

T Ki|M K • eJ + 1*12 Vl (20) 
A    A* 

ei = h ~ h (21> 

\ m  Si - Si*' (22) 

in which £* and S* are the observations. 
In this study, e^ and n. are assumed to be functions of the param- 

eters only; i.e., it is assumed that the differences between the model 
solutions and the observations are due to incorrect quantification of 
the model parameters.  Given this assumption, error function can be 
written in vector notation as: 

e(D) = (e^D) eM(D))- (23) 

n(D) = (T^ (D) ^(D)) (24) 

The parameter vector D can be written as D = (f,DCX,DCY), in which 
DCX and DCY are assumed to be pure constants. 

By Taylor's theorem, Equations (23) and (24) can be expanded at 
some initially estimated parameters D° as 

^(D1) = ?°(D°) + J(S°,D°)©1-D0) + H.O.T, (25) 

nW) = t)°(D°) + J^.D^a1-?") + H.O.T., (26) 
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in which the superscript 1 represents the new estimates; H.O.T. are the 
higher order terms; and J ( , ) is the Jacobian matrix. 

When H.O.T. are dropped, Equations (25) and (26) become linear 
with the Jacobian being approximated by finite difference.  The finite 
difference version of the Jacobian is referred to by Becker and Yeh (1) 
as the Influence Coefficient Matrix. 

After transforming Equation (20) to a linear objective function, 
the optimization problem becomes a linear programming problem. 
Physical constraints representing parameter lower and upper bounds can 
be imposed for optimization to ensure realistic solutions. 

The solutions of the LP will provide the minimized error and a set 
of new parameters D . These new parameters then become the initial 
estimates for the next iteration. The algorithm continues until the 
convergence criteria are satisfied. Two types,of convergence criteria 
are proposed in this method; they are 1) stop when }jK|<6-i , and 2) stop 
when |JK+1 - jK|<52, in which J

K is the objective value of the LP 
solution at the Kth iteration, and 6^ and 62 are two arbitrarily 
selected small constants. 

The most important merit of the proposed method is that it is 
independent of the mathematical model, and it can be implemented and 
solved efficiently in any modern computer facility where packaged 
routines are available for linear programming problems. 

NUMERICAL EXAMPLE 

Suisun Bay in California was selected for this study (see Figure 
2).  Tidal elevations and salinities were obtained in the Suisun Bay 
portion of the San Francisco Bay - Delta Hydraulic Model in Sausalito, 
California (13).  The finite difference schematization of Suisun Bay 
is shown along with the installed observation stations in Figure 3. 
Bathymetric schematization was obtained according the actual blue- 
prints for the construction of the model (13). 

The first PI attempt assumes that all the unknown parameters are 
constant valued in the domain.  The physical bounds set for the param- 
eters are:1) 0.01 £ f £ 0.1 (which corresponds to the Chezy's C values 
between 25 ft i'^/sec and 80 ft 1/2/sec),   2) 1000 <_ DCX ±  7000, and 
3) 1000 <  DCY <_  5000. These physical bounds are determined not only by 
the physical laws but also by computational experience through sensi- 
tivity analyses of the parameter values.  For example, through various 
test runs, it was determined that the dispersion constants DCX and DCY 
would have to enlarged in order to "reflect" the boundary salinities 
toward the interior of the domain. 

The PI algorithm started with a set of initial "wtlifteB of: 
1) f° = 0.05, 2) DCX° = 3500, and 3) DCY° = 3000.  The computed solu- 
tions using the estimated parameters are compared with the observa- 
tions in Table 1.  The convergence property of this run is shown in 
Table 2. 

The second attempt of the PI is much more refined.  The roughness 
coefficient is assumed to be spatially distributed in Suisun Bay.  The 
dispersion constants remain constant valued because of their insensi- 
tiyity in the model simulations. 
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TABLE I.- Summary of Computational Results 
4 

(Lumped Parameter Case ) 

Station No. Obs. f1 Comp. 
Al r Obs. S3 Comp. S3 2 

e 
2 

n 

1 0.27 0.17 11.09 9.29 

2 0.32 0.19 7.99 6.92 

3 0.23 0.20 8.45 6.40 

4 0.41 0.21 5.40 7.05 0.19 1.74 

'5 0.29 0.25 5.0 3.56 

6 0.40 0.27 3.2 3.15 

1 £ is net tide in ft. 

2 Minimized maximum errors 

3 S is tidally averaged salinity in ppt 
1/2 

4 Optimal parameters: f = 0.06  (C = 32 ft   /sec) 

DCX = 7000. 

DCY = 5000. 

Boundary conditions used for parameter identification (calibration): 
A 

Ocean boundary; £ « 0.12 ft 

S = 13.71 ppt 

Fresh Water Inflows: 0 (Sacramento River) = -0.34 ft/sec 

S (Sacramento River) = 2.5 ppt 

V (Montezuma Slough) = -0.1 ft/sec 

S (Montezuma Slough) =5.68 ppt 
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TABLE 2. - Summary of Successive Approximation's 

(Lumped Parameter Case) 

Iteration f_ DCX 
(xHT3) 

DCY 
(xlCT3) 

J 

0 0.05 3.5 3.0 4.85 

1 0.07 7.0 4.5 2.00 

2 0.10 5.3 5.0 1.95 

3 0.06 7.0 5.0 1.94 

27.50  27.00   28.50 

!?:§B 

27.00 26.5026.00 25.50 

Figure  4.     Spatial Distribution of   Chezy's C. 
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Given the above proposed distributed parameter assumption, the PI 
algorithm would have to identify roughness coefficient at all nodal 
points.  This is such a large task that it is almost impossible to 
accomplish with the fastest computer available. Furthermore, param- 
eter values between the nodes show discontinuities which do not have 
any physical meaning.  This difficulty has been resolved with the help 
of the finite element concept by Yeh and Yoon (16) and Yoon and Yeh 
(18) in PI problems of groundwater flow. 

It appears that roughness parameter space in Suisun Bay can be 
adequately represented by the four corner nodes with bilinear basis 
functions (4,16). Mathematically, it is 

it 

f(x,y) - £ f. *.(x,y), (27) 
1=1 x 

in which f-j^'s are the corner nodal values; and ^j's are the bilinear 
basis functions.  With Equation (27), the parameter values in any grid 
point of Suisun Bay could be calculated given nodal values of fj's. 
The algorithm is then to identify the four nodal values (fi's) instead 
of searching through all the grid points. 

The physical bounds and the initial estimates for the parameters 
remained the same in this run.  The algorithm converged in eight itera- 
tions.  The optimally estimated roughness parameters vary from 0.07 
to 0.1, which correspond to the Chezy's values of 25 ft -^'^/sec to 
30 ft 1/2/sec.  The distributed values as estimated by the PI algorithm 
are shown in Figure 4.  The optimal dispersion constants converged 
to be at 7000 and 1000.  The computed solutions using the optimal param- 
eters are compared with the observations in Table 3.  The convergence 
property of this run is shown in Table 4. 

To validate the results of calibration, the optimized parameters 
were used as input data along with a different set of boundary condi- 
tions, which were consistent with the experimental set up, in the 
tidally averaged numerical model to produce solutions. These solu- 
tions were compared with the experimental data taken from the San 
Francisco Bay-Delta Hydraulic Model.  The boundary conditions (fresh 
water inflow and tide) used in the verification and the corresponding 
experiment were different from the boundary conditions used in >the 
calibration. 

Since there is no significant difference in results between the 
lumped parameter and distributed parameter approach (see Tables 1 and 
3), the lumped parameters were used for verification.  The verifica- 
tion run started with a set of initial conditions (identical to the 
ones used in calibration), boundary conditions, and the optimized 
parameters which are:  1) f = 0.06 ,   2) DCX = 7000, and 3) DCY = 
5000 (see Table 1).  The verification results and the boundary condi-i 
tions used are presented in Table 5. 

DISCUSSION AND CONCLUSION 

Although the tidally averaged numerical model can save a signifi- 



ESTUARINE MODELING 2445 

Table 3.     Summary of Computational Results 

(Distributed Parameter Case  ) 

Station Obs.i1 Comp.% Obs.S3 
3 

Comp.S 

1 0.27 0.17 11.09 9.71 

2 0.32 0.19 7.99 7.37 

3 0.23 0.20 8.45 6.95 

4 0.41 0.23 5.40 7.35 

5 0.29 0.27 5.00 3.86 

6 0.40 0.30 3.20 3.33 

7 - - 5.49 6.33 

8 _ - 4.39 3.66 

0.18 1.45 

1 K  is net tide in ft. 

2 Minimized maximum errors 

3 S is tidally averaged salinity in ppt. 

4 Optimum parameters: 

f in nodal values 

fx = 0.07 

f„ = 0.10 

f3-0.10 

f. = 0.10 
4 

C = 30 ft 1/2/sec 

C = 25 ft 1/,2/sec 

C = 25 ft 1/2/sec 

C. = 25 ft l/2/sec 4 

DCX = 7000. 

DCY = 1000. 
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TABLE 4. - Summary of Successive Approximation 

(Distributed Parameter Case) 

Iteration fl f2 f3 f4 
DCX 

(xio~3> 
DCY 

Cxio"3) 
J 

0 0.05 0.05 0.05 0.05 3.5 3.0 4.85 

1 0.05 0.01 0.10 0.08 7.0 5.0 2.02 

2 0.06 0.10 0.10 0.10 7.0 5.0 1.73 

3 0.07 0.01 0.10 0.01 7.0 5.0 1.90 

4 0.07 0.10 0.10 0.10 7.0 1.0 1.52 

Table 5. Results of Steady-State Model Verification 

Station No. Obs.C1 Corop.l Obs. S2 
2 

Comp, S 

1 0.09 0.04 16,89 14.81 

2 0.06 0.04 13.95 12.41 

3 0.10 0.06 14.81 11.86 

4 0.26 0.08 11.77 10.62 

5 0.15 0.11 11.60 9.28 

6 0.28 0.13 9.39 8.99 

Boundary conditions used for verification: 

Ocean boundary:  £ = - 0.01 ft 

S =  19.31 ppt 

Fresh water inflows: U (Sacramento River) = - 0.33 ft/sec 

S (Sacramento River) =  8.34 ppt 

V (Montezuma Slough) = - 0.01 ft/sec 

S (Montezuma Slough) = 12.19 ppt 

1 net tide in feet 

2 tidally average salinity in ppt. 
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cant amount of computing time in PI, the convergence of the solution 
scheme is still slow; especially when the transport equation is coupled 
with the hydrodynamics.  The solutions of hydrodynamics alone will 
usually converge within 200 iterations with variable acceleration para- 
meters (3,4).  Nevertheless, when salinity transport equation is calcu- 
lated with hydrodynamics, the algorithm will typically require 400 
iterations to converge.  The convergence of salinity values depends on 
the corresponding hydrodynamics. When the magnitudes of hydrodynamics 
(velocities and tides) are small, the convergence property of salinities 
is also influenced by the initial conditions of salinity (3,4). This 
particular computational problem is solved by a series of semi-heuristic 
rules that are determined from the computational experience (4). 

When the transient numerical model is simulated, the outputs of the 
model are generally insensitive to different values of dispersion con- 
stants (DCX, DCY).  In one particular simulation for example, two sets 
of dispersion constants which differed in value as great as 100 times 
produced only 1 to 5% changes in salinities in ten tidal cycles.  Never- 
theless, when tidally averaged numerical model is simulated with the 
true boundary values collected from the hydraulic model, it was found 
that the dispersion constants would have to be enlarged in order to 
"reflect" the ocean boundary salinities toward the interior of the do- 
main. One of the conceivable reasons for this phenomenon is the strong 
net outflow from the delta to the ocean. This limited increase of the 
internal salinity values in the domain in tidally averaged numerical 
model is due to the inherent nature of the boundary value problems 
(Eqs. 10 to 14).  Other factors that may cause the inflation of the 
dispersion constants include:  the finite difference schematization, the 
vertical averaging, the tidal averaging, and the various model approxi- 
mations. 

The proposed PI algorithm is independent of the numerical model by 
virtue of the error function approach.  By the definition of error 
function and the problem formulations, the identification algorithm can 
be programmed separately from the numerical model.  In other words, the 
method can be easily implemented with any numerical model for PI pur- 
poses, provided that enough data are available. 

The calibration and verification of the tidally averaged numerical 
model have been successfully performed.  In both attempts, the maximum 
deviations between the model results and field observations came from 
the particular station in Grizzly Bay.  In the schematization of the 
entire study area, the inflow from Suisun Slough which is next to Monte- 
zuma Slough was ignored.  The performance of the mathematical model 
depends not only on its parameter values, but also on the schematiza- 
tions.  Other important factors that could contribute the discrepancies 
include noises in observations and errors in data processing of boundary 
conditions and observations (4). 

In each iteration of PI, the numerical model has to be solved once 
for each parameter in order to generate the influence coefficient 
matrix.  In the lumped parameter approach, (three constant parameters 
for the entire domain) , it took three iterations for the PI scheme to 
converge.  (The numerical models had been solved by 3 x 3 + 3 = 12 
times.)  This lumped parameter PI case used 20 minutes of IBM 360/91 
computing time at a cost of $150 dollars. 
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