
CHAPTER 144 

The Use of Array Processors for Numerical Modelling 
of Tidal Estuary Dynamics 

by D. Prandle*, E.R. Funke**, 
N.L. Crookshank*** and E. Renner**** 

1.0  INTRODUCTION 

The use of array processors for the numerical 
modelling of estuarine systems is discussed here in the con- 
text of "hybrid modelling", however, it is shown that array 
processors may be used to advantage in independent numerical 
simulations. Hybrid modelling of tidal estuaries was first 
introduced by fiolz (1977) and later by Funke and Crookshank 
(1978). In a hybrid model, tidal propagation in an estuary 
is simulated by dynamically linking an hydraulic (or physi- 
cal) scale model of part of the estuary to a numerical model 
of the remaining part in a manner such that a free inter- 
change of flow occurs at the interface(s). Typically, the 
elevation of the water surface at the boundary of the scale 
model is measured and transmitted to the numerical model. 
In return, the flow computed at the boundary of the numeri- 
cal model is fed directly into the scale model. 

This approach enables the extent of the scale 
model to be limited to the area of immediate interest (or to 
that area where flow conditions are such that they can be 
most accurately simulated by a scale model). In addition, 
since the region simulated by the numerical model can be 
extended almost indefinitely, the problems of spurious 
reflections from downstream boundaries can be eliminated. 

In normal use, numerical models are evaluated on 
the basis of computing requirements, cost and accuracy. The 
computer time required to simulate one tide cycle is, in 
itself, seldom of interest except in so far as it affects 
the above criteria. However in hybrid modelling this param- 
eter is often paramount since concurrent operation of the 
numerical and scale models requires that the former must 
keep pace with the latter. 

The earlier hybrid model of the St. Lawrence 
(Funke and Crookshank, 1978) involved a one-dimensional 
numerical model of the upstream regions of the river. How- 
ever, future applications are likely to involve extensive 
two-dimensional numerical simulation.   Consequently the 

* Visiting Scientist, **Senior Research Officer, ***sys- 
tems Hanager, Hydraulics Laboratory, national Research Coun- 
cil of Canada, Ottawa, Canada. 
**** chief Scientist, Canadian Astronautics Ltd., Ottawa, 
Canada. 

2413 



2414 COASTAL ENGINEERING-1980 

computational power required will be considerable and almost 
certainly in excess of the power of present-day mini-comput- 
ers. The use of a substantial main frame machine is compli- 
cated by both the cost and the requirement for a high prior- 
ity real time service. Thus the use of an array 
processor/mini-computer combination was examined to bridge 
this gap in computational power. 

Section 2 describes a hybrid model of the Bay of 
Fundy with the details of the numerical scheme given in sec- 
tion 3. Sections 4, 5 and 6 describe, in some detail, vari- 
ous aspects relating to the usage of the array processor. 
Finally section 7 provides a comparison of the performance 
of the array processor against that of both a mini-computer 
and two main frame machines. 

2.0  THE BAT OF FUNDY HYBBIP MODEL 

In order to subject the development project to the 
rigors of a practical application, a suitable estuary was 
selected. The Bay of Fundy offered several advantages. For 
one, there exists a proven explicit model (Greenberg, 1976) 
which covers both the Bay of Fundy and the Gulf of Maine, 
down to the Continental Shelf. Secondly, there is a consid- 
erable interest in the electric power potential of the Fundy 
tide and it was felt that the experience gained from the 
pilot model study may benefit future investigations whenever 
the Bay of Fundy tidal power development progresses to the 
engineering design stage. With these considerations in 
mind, the construction of a pilot hybrid model was initiated 
with Cumberland Basin and Shepody Bay forming the physical 
model and the remainder of the estuary down to the Continen- 
tal Shelf forming the numerical model. Fig. 1 illustrates 
the general outline of this estuary, and includes the sche- 
matization employed for the finite difference scheme. The 
small "boxed-in" area in the upper right hand corner of the 
diagram is simulated by a physical model. Fig. 2 illus- 
trates the outline of this scaled model and its relationship 
to the numerical model. The computer in this hybrid model 
serves the dual functions of being both host to the array 
processor and at the same time, being the data acquisition 
system and feedback controller for the discharge control 
pump (Funke, Crookshank and Wingham, 1980) . 

Fig. 3 gives the timing diagram of a typical 
hybrid model. It should be noted that the "hatched" pulses 
represent the regular clock pulses which, for the Bay of 
Fundy model, occur every 0.3 seconds. Shortly after each 
pulse, a data transfer takes place which transmits the last 
calculated discharge value QT from the array processor to 
the control computer. The data acquisition phase follows 
immediately, monitoring among other variables, the water 
elevation Hj which is then transmitted back to the array 
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FIG. 2 HYBRID HODEt OF CUMBERLAND BASIN AND SHEPODY BAY 

processor. Next comes the model control phase and while the 
control computer is engaged in achieving the required dis- 
charge, the array processor must solve one time step of the 
numerical model. Since clock pulses for the -Bay of Fundy 
hybrid model occur every 300 milliseconds, the computational 
time available for one time step of the numerica.1 model must 
be somewhat smaller. In fact, sufficient time must remain 
to complete all the data acquisition and the data transfer 
between the host computer and the array processor. In addi- 
tion one wants to have some margin of safety so that the 
"ping-pong" interchange between the two machines can never 
get out of synchronism. 
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3.0  THE EXTENT OF THE MATHEMATICAL MODEL 

The estuary dynamics of the mathematical model for 
the present Bay of Fundy is based on the following equa- 
tions: 

X-motion: 3D +  3Z + f U- (U
2 + V2) '/2 

3t 

3V 

3x (D + Z) n-v = o 

12. 
ay 

V-(U2 + V2) 2\ 1/2 
y-motion:  ^ + g _ + f ^__L_|_i_ + n.D = 0 

3Z , 3 continuity: t+^ [D.(D+Z)]+^ [V(D + Z)] = 0 

where 0 and v are the velocities in the x and y direction, 
D is the depth below mean water, 
Z is the tidal elevation about the mean, 
f is the friction term, and 
S is the Coriolis parameter. 

Fiq. 4 shows  the schematization using a finite difference, 
explicit method with a staggered mesh and forward difference 
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in time.  The differential equations are thus approximated 
by the following. 
Ux,y = (Ux,y/At + g(Zx,y ' Zx-l,y)/Ax ' ^>/(VAt + F^) 

where: 

v =  (vXry + vx_lfy + vx>y+1 + vx_1(y+1 )/4 

and 

Fx = f-(0x,y2+ ^)lA/((Dx,y + Dx-l,y + Zx-l,y)/2) 

Vx,y =   (Vx,y/At + g(Zx,y "  Zx,y-1)/Ay +  •W* + V 

where: 

u =   <Dx,y + °x+l,y + Ux,y-1 + °x+l,y-l)/4 

and 

f'(«2 + Vx,y2) l/2/((Dx,y + Dx,y-1 +  Zx,y +  Zx,y-1! /2) 
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and 

Z' =      Z        /At   +    [U   , n       • (D   , n +   D +   Z +   Z    ,n       ) 
x,y        {  x,y' x+l,y       x+l.y x,y x,y x+l,y 

-U        • (D +Dn        +Z +Zn      )]/(2«Ax) 
x,y       x,y x-l,y x,y x-l,y'J/v 

+   [V        , , • (D       x,   +  D +   Z        . .,   +   Z        ) 
x,y+l       x,y+l x,y x,y+l x,y 

-  V        • (D +  D n   +   Z        ) ]/(2-Ay) 
x,y       x,y x,y-l x,y'J/ J' 

Fig. 1 shows that the area to be modelled is subdivided 
into three zones. The Gulf of Maine is represented by a 
35 x 22 grid. The Bay of Fundy area has three times the 
resolution with a 24 x 25 grid. Finally the upper reaches of 
the Bay have again three times the resolution with a 55 x 45 
grid. 

Fig. 5 shows that five finite grid elements form the 
boundary with the scaled model. It is anticipated that each 
of these five elements could control an appropriate inter- 
face pump. However, for the pilot model now under construc- 
tion, only one elevation, Zj, is measured and the numerical 
model supplies the average discharge through the boundary by 
means of the averaging formula given in Fig. 5. 

4.0  A BRIEF DESCRIPTION OF ABRAY PROCESSOR HARDWARE 

An array processor (AP) is a digital data proc- 
essor which is specifically and optimally designed to proc- 
ess long data vectors. Typically, one can say that the 
longer the data vector or vectors, the more advantageous is 
the array processor as a "number cruncher". 

Array processors are peripheral to so-called host 
computers. Their advantage must, of course, be measured 
relative to their host computer. For this reason, it is 
quite common now to find array processors interfaced to 
mini-computers rather than to larger main frame machines. 
The list of references suggests some papers which offer more 
technical information on various array processors. 

Fig. 6 shows the major components of a typical 
array processor "Floating Point Systems Inc. AP120B", i.e. 
the machine used for this particular study. From this dia- 
gram several pertinent features can be recognized: 
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FIG. 5 INTERFACE DETAILS BETWEEN NUHEKICAL AND SCALED MODEL 

(a) The AP has separate and independent memory components 
for data, program store and table constants. This per- 
mits not only some parallel processing but also an 
optimum choice of word length for instructions and data 
respectively. For example, the AP120B has a 64 bit 
instruction word which may control up to ten different 
operations more or less at the same time. On the other 
hand, the data word is 3 8 bits long with 28 bits used 
as mantissa and 10 bits as exponent. This is a worth- 
while improvement over the usual 32 bit data formats 
especially for the type of problem described by this 
paper. 

(b) The AP has parallel arithmetic processors which may 
operate on data concurrently. 

(c) Data processing may take place in a "pipeline" fashion 
so that data words move progressively through succes- 
sive stages.  Each stage may require in the order of 
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167 nanoseconds. Once the "pipeline" is filled, 
solutions are returned back to the data memory at the 
same 167 nanosecond rate. It is both the parallel 
processing and the "pipelining" which gives these proc- 
essors their phenomenal speed. 

(d) The interface between the host computer and the AP is 
of particular importance in appreciating the operation 
of the machine in relation to its host. In the usual 
configuration depicted by Fig. 6, all AP-programs and 
data cone from the host and results are returned to the 
host. An executive program in the host keeps track of 
the programs which are required in the AP program store 
and if a particular program which is being called is 
not, at that time, resident in the AP, it must be 
transferred there into whatever free area is available. 
If the program store is filled to capacity, then the 
last program in will be the first program to be over- 
laid, and hence destroyed. 

Data transfer to and from the AP is usually costly in 
time. Consequently an awareness of these operational 
and hardware features can affect the manner in which an 
AP program is written for best performance. 
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5.0      ARRAY   PROCESSOR   APPLICATION  TO   BAY   OF   FOND?   MODEL 

Fig.  7    illustrates    the  particular    computer    and 
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FIG. 7 THE ARRAY PROCESSOR CONFIGURATION AS FOR B OF F MODEL 

array processor configuration which is being used for the 
Bay of Fundy pilot hybrid model. It may be noted that the 
host computer is a Hewlett-Packard HP-1000 model U5, while 
the data acquisition and on-line, digital control computer 
is the HP-21MXE computer. Although the configuration of 
Fiq. 6 could have served the requirements of the hybrid 
model, the configuration of Figi 7 was selected in order to 
qet a better overall system utilization. This is of partic- 
ular importance since the hybrid model is not the only real 
time activity which is being supported concurrently by this 
H.P. computer system (Funke, Crookshank and Bingham, 1980). 

The DMA interface to the host computer in Fig. 7 
is the usual channel for transmission of AP-programs and for 
initial model constants. The entire Bay of Fundy numerical 
model, as described in section 3.0, is doiin-loaded in this 
way prior to commencement of actual model operation. Once 
in operation, data related to the tidal elevation is trans- 
mitted from the data acquisition computer to the AP via the 
input/output processor box (IOP) and the resultant discharge 
data travels on the same channel in the opposite direction. 
In this manner, the array processor is an autonomous, dedi- 
cated numerical model, completely freeing the host computer 
for other activity. 
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A suitable "logical" switch was provided to run 
the numerical model of the Bay of Fundy either as a hybrid 
model or as a completely independent numerical model. In 
the former case a boundary exists at the entrance to the 
Cumberland and Shepody Basins and boundary information is 
transmitted via the IOP. In the latter case, this boundary 
does not exist as the two basins are included in the numeri- 
cal model. 

In order to monitor the progress of tidal propaga- 
tion through the numerical model, the solutions for tidal 
elevation at each grid point are also transmitted to the 
data acguisition and control computer at each control step. 
In this manner one may treat the data in a similar fashion 
to other data which were acquired through instrumentation on 
the physical model. 

6.0 PROGRAMING   ARRAY   PROCESSORS 

Hhereas the array processors offer substantial 
improvements in processing speed, the effort reguired to 
exploit their power may still be substantial. For this rea- 
son it is a definite advantage to have the help of an expert 
consultant who can quickly solve the usual "teething" prob- 
lems and who can pilot the project around the various pit- 
falls.* However, there is a significant and promising devel- 
opment in progress which may overcome many obstacles. 

There are four different ways by which the Float- 
ing Point Systems Inc. AP120B may be programmed. Each of 
these offers certain advantages or disadvantages which must 
be traded off. 

6.1 FORTRAN Calls to Existing Library subprograms 

Fig. 8 gives a typical example of a program task 
which requires various vector and matrix operations. The 
first portion in Fig. 8 describes this task as a conven- 
tional FORTRAN code. Following this, one may recognize 
calls to various subroutines which serve 

(a) to initialize the AP, 
(b) to transfer data from the host to the AP, and 
(c) to cause a wait until the transfer of data is complete. 

It is worth noting that the data memory in 
the AP is addressed here in terms of absolute addresses and 
these must be  generated before the data  transfer calls can 

Canadian Astronautics Ltd. 
1024 Morrison Dr., Ottawa, K2H 8K7 Canada. 
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C******* POTENTIAL CALCULATION ************************************** 
C 

C     ORIGINAL FORTRAN 
C 
C SUBROUTINE EX2 
C COMMON /B/PHIB(100,10),HB(100,10),PKB(100),DS12 
C DO 1 J=l,9 
C DO 1 1=1,100 
C 1 PHIS(I,J+1)=PHIB(I,J)+DS12*PKB(I)*(HB(I,J+1)+HB(I,J) 
C RETURN 
C END 

C 
SUBROUTINE EX2 
COMMON /B/PHIB(100,10),HB(100,10),PK(100),DS12 

C AP MEMORY LAYOUT 
IDS12=0 
IPKB=1 
IHB=IPKB+100 
IPHIB=IBH+1000 

C INITIALIZE THE AP 
CALL APINIT (0,0,STATUS) 
IP (STATUS.LT.O) CALL ERROR 

C PUT OUT THE DATA TO AP 
CALL APPUT(PHIB,IPHIB,1000,2) 
CALL APPUT(HB,IHB,1000,2) 
CALL APPUT(PKB,IPKB,100,2) 
CALL APPUT(DS12,IDS12,1,2) 
CALL APWD 

C 
C DO THE COMPUTATION 
C 
C      AP COMPUTATION TIME IS 2.3 MS FOR 167 NS MEMORY, 3.7 MS FOR 
C      333NS MEMORY, EXCLUSIVE OF HOST SYSTEM OVERHEAD 
C 

CALL VSMUL(IPKB,1,IDS12,IPKB,1,100) 
CALL VADD(IHB+100,1,IHB,1,IHB,1,900) 
JHB=IHB 
DO 1 J=l,9 
CALL VMUL(IPKB,1,JHB,1,JHB,1,100) 

1      JHB=JHB+100 
CALL VADD(IPHIB,1,IHB,1,IPHIB+100,1,900) 
CALL APWR 

C GET THE RESULTS FROM AP 
CALL APGET(PHIB(1,2),IPHIB+100,900,2) 
CALL APWD 
APRLSE 
RETURN 
END 

FIG. 8   EXAMPLE AP PROGRAM FOR CALLS ON AP-MATHEMATICAL LIBRARY 
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be made. other arguments specify typically how many ele- 
ments are to be transferred and what format conversion is to 
take place. 

The subsequent calls deal with the actual 
solution of the problem. One may recognize vector multiply 
and vector addition operation which make reference to the 
various arrays in terms of their addresses in AP memory. In 
order to make these routines as general as possible, they 
have been designed to permit operation either on consecutive 
elements (i.e. arguments No. 2, No. 4 and No. 6 are set to 
1) or on alternate or arbitrarily spaced arguments. It is 
typical for the list of arguments to be organized as 
"S00BCE1", "SO0ECE2" and "DESTINATION". For each of these 
the order is always "WHEBE". "HOW MANY" and "NOHBEB OF SKIPS 
- 1". Prior to the data transfer from AP to host a "WAIT 
FOE AP BEADY" must also be invoked. 

It should be noted that the DO-loop and the 
calculation of the "JHB" parameter are executed in the host 
computer and for each pass through the DO-loop a transfer of 
subroutine arguments to the AP will be implemented. This is 
not the fastest way of running the solution but it does 
offer a relative simplicity in implementation. 

The disadvantages of this approach are: 

(a) Programming is limited to existing algorithms in the 
various libraries supplied by the manufacturer, 

(b) Special requirements, such as conditional branches, 
require FOETEAN coding in the host computer with the 
consequent loss of speed due to repeated interchange of 
information between the host and the AP, 

(c) Addressing of variables and arrays in the AP must be 
implemented in terms of absolute addresses with a sub- 
sequent loss of the convenience and power of a mnemonic 
address structure which is inherent to FOETEAN and 

(d) Althouqh each AP subprogram has been coded in an opti- 
mum fashion, any special requirements, which could ben- 
efit from some of the various hardware features of the 
AP, cannot be accommodated. 

6-2 Programming with the Vector Function Chainer Language 

The Vector Function Chainer is an AP programming 
language of a somewhat higher power than the simple calling 
of precoded library subprograms. This language allows not 
only the creation of new AP library subprograms, but it also 
permits some simple, FORTEAN-like statements for execution 
in the array processor rather than the host computer. 
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Fig.   9    gives  an    example  of    a    subprogram  for    a 

******** MVADD = MATRIX/VECTOR ADD ********************************** 

II      DEFINE MVADD(A,I,B,J,C,K,NRC,NCC) 

"      ADD VECTOR B TO EVERY ROW OF MATRIX A, PUTTING THE RESULT IN C 

"      A - ADDRESS OF MATRIX A 
"      I - INCREMENT BETWEEN ELEMENTS OF A 
"      B - ADDRESS OF VECTOR B 
"      J - INCREMENT BETWEEN ELEMENTS OF B 
"      C - ADDRESS OF DESTINATION MATRIX C 

K - INCREMENT BETWEEN ELEMENTS OF C 
"      NRC - NUMBER OF ROWS IN C (AND A) 

NCC - NUMBER OF COLUMNS IN C (AND A) 

"THE MATRICES ARE STORED IN COLUMN ORDER. THUS I AND K ARE INCREMENTS 
"BETWEEN ELEMENTS IN A COLUMN. WE MUST COMPUTE THE INCREMENT BETWEEN 
"ELEMENTS IN A ROW. 

LOCAL AR,CR 

AR = I * NRC "COMPUTE 'A' ROW INCREMENT 
CR = K * NRC "COMPUTE 'C ROW INCREMENT 

LOOP:  CALL VADD (A, AR,B, J,C,CR,NCC) "ADD TO A ROW 
A = A + I "ADVANCE 'A' POINTER 
C = C + K "ADVANCE 'C POINTER 
NRC = NRC - 1 "DECREMENT ROW COUNTER 
IF NRC < 0 GOTO LOOP "GO BACK IF NOT DONE 
END 

FIG. 9 EXAMPLE AP PEOGBAH USING VECTOE FUNCTION CHAINEE 

matrix/vector addition which was created using the vector 
function chainer. This example illustrates some of the fea- 
tures of this language such as the calling of other existing 
subprograms, the creation of absolute addresses by arithme- 
tic statements and the use of the logical IF-statement. 

Fig. 10 shows the procedure by which a vector 
function chainer program is implemented. The source code of 
the program is first processed by the vector function 
chainer and the resultant output is a "second stage" source 
code in the AP assembler language. This assembler must also 
process the code which is then fed through the AP linking 
loader which serves to satisfy calls to the AP-library. The 
result of these operations leads to a third-stage source 
code which is in the host FORTBAN language. However, this 
code is quite unreadable as it consists of no more than a 
subroutine definition and termination statements and a long 
list of DATA statements with integer values. Each integer 
word is a quarter of a 6« bit instruction word which forms 
part of the desired AP program. 
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FIG. 10 USE OF VECTOR FUNCTION CHAINER 

This third stage source program now represents the 
newly created member of an AP subprogram library. Before 
execution it must be compiled together with its calling FOR- 
TRAN program by the host FORTRAN compiler and then loaded in 
the usual fashion. 

The vector function chainer offers greater pro- 
gramming power than the approach described under section 
3.1. It is egually cumbersome in the management of absolute 
addresses but since addresses and additional branches 
defined by the vector function chainer language are commuted 
within the AP, the repeated information transfer between the 
host computer and the AP is eliminated and a considerable 
speed-up of the solution times is achievable. The explict 
model of the Bay of Fundy was coded in this manner. 

6.3  programming by Using the AP-FORTRAN Compiler 

A more recent addition to the bag of tricks for 
programming is a FORTRAN compiler for the array processor. 
It offers potentially many significant advantages over any 
other approach and promises to make the array processor a 
truly general purpose computer which can bring low cost, 
high speed computation into the reach of anyone who has a 
need for it. 
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In order to code a task in AP FORTRAN, it is nec- 
essary to define that portion of a program which is to run 
on the array procesor as distinct from the host computer. 
This portion must be coded as a standard FORTRAN subprogram. 
If all of the task is to run on the AP, it is still neces- 
sary to have a host program that simply states: 

READ ARG1,ARG2 
CALL NAHE(ARG1,ARG2, ... ARGN) 
WRITE ARGN 
END 

The subroutine NAME must be processed by the AP FORTRAN com- 
piler which will take care of all data transfers to and from 
the AP and the associated wait-calls. It can handle any 
type of linear or non-linear functional relationships and 
any multi-dimensional array configuration. However, the 
usual data input/output function via the host computer's 
peripherals must be looked after by the host computer. 

Fig. 11 shows the procedure for implementing an AP pro- 

HOST FORTRAN 
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HOST  FORTRAN 
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AP FORTRAN 
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HOST   OBJ ECT 
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LINKING   LOADER 

FORTRAN 
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FIG. 11 USE OF AP FORTRAN COMPILER 

gram by the AP FORTRAN compiler. The source code of the 
subroutine 'NAME* is first processed by the AP FORTRAN com- 
piler. This must be done on a larger 32 bit computer as the 
compiler is not, at present, operational on 16 bit comput- 
ers. However, its output may be run on 16 bit host comput- 
ers which provide, after linking-loading, a secondary source 
code in host FORTRAN. As before, this source code consists 
substantially of DATA statements only and looks quite simi- 
lar to the third stage source code produced by the vector 
function chainer described in section 6.3. 
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At this time, the community of users of an AP-FORTRAN 
compiler is still relatively small and general experience in 
its use must yet be established. However, for the purpose of 
the Bay of Fundy hybrid model study, an investigation was 
carried  out  for the  purpose  of: 

(a) establishing the suitability of either the explicit or 
the implicit method for numerical models with regard to 
array  processor operations,   and 

(b) establishing the effectiveness of the AP-FORTRAN compi- 
ler vis *a vis the Vector Function Chainer as a means 
for  implementing the  implicit  model  on   the  AP. 

Table  1 
COMPARISON   OF   AP-FORTRAN   WITH   VECTOR   FUNCTION  CHAINER 

AP PROGRAM 
STORE RORD 

PROCESSING 
SPEED  PER 
TIME STEP** 

NO, OF DAYS RORD 
TO IMPLEMENT PROGRAM* 

VECTOR FUNCTION CHAINER 2700 1.5 s 7 days 

AP-FORTRAN COMPILER 2200 1.5 s 1 day 

* From an original  statement of  the model   in  terms of  a  correctly 
working program in host computer FORTRAN. 

**  48  steps per tidal  cycle 

The comparison of Table 1 favours the AP-FORTRAN 
compiler. This came as a surprise because other users had 
indicated that both the required program store and the 
solution time would increase as a consequence of using the 
AP-FORTRAN compiler.* It may be possible that the nature of 
the particular program or the manner in which the program 
was coded using the vector function chainer could both 
affect the results. Nevertheless the authors* experience has 
been most encouraging even though there still are some minor 
errors in the AP-FOETRAN compiler. 

6.1  Programming by Using the AP Assembler Language 

In order to get the greatest processing speed with 
the least amount of reguired program store, it is necessary 
to use assembly language. This option was considered as a 
last resort for the Bay of Fundy hybrid model if other pro- 
gramming methods had not brought the solution speed within 
the real time constraints imposed by the physical model. 

* Verbal communications 



2430 COASTAL ENGINEERING-1980 

The assembly language permits direct control over 
all registers, data buses and arithmetic units. The price 
for this additional flexibility and power is the greater 
language complexity. As a result it is difficult and costly 
to learn the language and very time consuming to create an 
error-free program. Coding by the AP assembly language is 
considered practical only for those situations where the 
additional speed justifies the additional cost in program 
development effort. 

7.0  COMPARISON OF AP PEBFORMAHCE TO OTHER COMPUTERS 

Comparisons between computers are meaningful only 
in terms of specific benchmark programs which contain a spe- 
cific mix of computational operations. For this reason it 
is necessary to point out that this comparison applies 
strictly to the solution of a system of finite difference 
eguations describing estuary dynamics. 

The original numerical model of the Bay of Fundy 
(Greenberg, 1976) uses an explicit method, a schematization 
similar to Fig. 1 and a time step of 30 seconds in prototype 
time. Because of the particular interests in the Hinas 
Basin, that area was originally schematized with a finer 
grid than the one shown in Fig. 1 However, the hybrid model 
of the Cumberland and Shepody Basins does not require this 
detailed representation of the Minas Basin and therefore the 
schematization of Fig. 1 could be adopted. As a conse- 
quence, the time step could also be increased to 1 minute in 
prototype time. The execution times which are listed in 
Table 2 apply to one semi-diurnal cycle of a tide and, the 
execution times for the explicit model are based on a time 
step of 1 minute. 

Since the original Greenberg model was not run 
under exactly these conditions, the time for the CDC 
CYBER 74 (equivalent to a CDC 6600) can only be estimated. 

A finite difference implicit model of the Bay of 
Fundy was tested with 15 minute time step in prototype time. 
For the particular requirements of the hybrid model, this 
implicit method is not considered economically justified. 
At $1.00 per word for AP data storage, this model is sub- 
stantially more expensive to implement. 

In assessing the results shown in Table 2, one 
additional factor is the usefulness of an in-house machine 
for other applications. In buying time on a main-frame 
machine, the cost involved includes a significant proportion 
relating to peripheral equipment which may not be required 
for present purposes. Thus while it is difficult to obtain 
accurate costs for main frame time. Table 3 shows that the 
complete array processor/mini-computer package costs less 
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than $150  000 -    a  figure considerably less    than the annual 
expenditure  involved  with many  large model studies. 

Table  2 
Comparison  of Execution  Times for Fundy  Models 

EXPLICIT MODEL 
1 MINUTE TIME STEP 

750 STEPS/CYCLE 

IMPLICIT MODEL 
15 MINUTE TIME STEP 

48  STEPS/CYCLE 

MINUTES MEMORY MINUTES MEMORY 

CDC CYBER 74 
IBM 3032 
HPIOOO, MOD. 45 
AP-120B 

2 to 2.5 
5 

75. 
2.5 

6 OK 
•-40K-WDS** 

128 
1,2 

145K WDS* 
40K WDS 

* A modification to the algorithm reduced this  to  75K WDS 
"•Considerable memory savings could be achieved with additional 

programming effort. 

Table  3 
CAPITAL   COST   FOE   MINI-COMPUTEB/AP   SYSTEM 

2. 

(January 1980) 

HP1000, MODEL «5 - 128 K WORDS MEM0EY 
- 20   MBYTE  DISC, 
- 26U8  VIDEO  GEAPHICS  TEBMINAL 
AP-120B   AEEAY   PEOCESSOES   WITH 
- 3K   PEOGSAM   STORE,   -   1K   TABLE   RAM, 
- 40K   DATA   MEMOEY   (167   ns) ,   -   IOP 
- EXTENDED   SOFTWARE 
- AP-FORTRAN   COMPILER 

$45  000. 

$81 130. 
$ 8 U75. 
$   8   500. 

O.S.      $1U3   105. 
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