
CHAPTER 144

The Use of Array Processors for Numerical Modelling
of Tidal Estuary Dynamics

by D. Prandle*, E.R. Funke**,
N.L. Crookshank*** and E. Renner****

1.0 INTRODUCTION

The use of array processors for the numerical
modelling of estuarine systems is discussed here in the con-
text of "hybrid modelling", however, it is shown that array
processors may be used to advantage in independent numerical
simulations. Hybrid modelling of tidal estuaries was first
introduced by fiolz (1977) and later by Funke and Crookshank
(1978). In a hybrid model, tidal propagation in an estuary
is simulated by dynamically linking an hydraulic (or physi-
cal) scale model of part of the estuary to a numerical model
of the remaining part in a manner such that a free inter-
change of flow occurs at the interface(s). Typically, the
elevation of the water surface at the boundary of the scale
model is measured and transmitted to the numerical model.
In return, the flow computed at the boundary of the numeri-
cal model is fed directly into the scale model.

This approach enables the extent of the scale
model to be limited to the area of immediate interest (or to
that area where flow conditions are such that they can be
most accurately simulated by a scale model). In addition,
since the region simulated by the numerical model can be
extended almost indefinitely, the problems of spurious
reflections from downstream boundaries can be eliminated.

In normal use, numerical models are evaluated on
the basis of computing requirements, cost and accuracy. The
computer time required to simulate one tide cycle is, in
itself, seldom of interest except in so far as it affects
the above criteria. However in hybrid modelling this param-
eter is often paramount since concurrent operation of the
numerical and scale models requires that the former must
keep pace with the latter.

The earlier hybrid model of the St. Lawrence
(Funke and Crookshank, 1978) involved a one-dimensional
numerical model of the upstream regions of the river. How-
ever, future applications are likely to involve extensive
two-dimensional numerical simulation. Consequently the

* Visiting Scientist, **Senior Research Officer, ***sys-
tems Hanager, Hydraulics Laboratory, national Research Coun-
cil of Canada, Ottawa, Canada.
**** chief Scientist, Canadian Astronautics Ltd., Ottawa,
Canada.

2413

2414 COASTAL ENGINEERING-1980

computational power required will be considerable and almost
certainly in excess of the power of present-day mini-comput-
ers. The use of a substantial main frame machine is compli-
cated by both the cost and the requirement for a high prior-
ity real time service. Thus the use of an array
processor/mini-computer combination was examined to bridge
this gap in computational power.

Section 2 describes a hybrid model of the Bay of
Fundy with the details of the numerical scheme given in sec-
tion 3. Sections 4, 5 and 6 describe, in some detail, vari-
ous aspects relating to the usage of the array processor.
Finally section 7 provides a comparison of the performance
of the array processor against that of both a mini-computer
and two main frame machines.

2.0 THE BAT OF FUNDY HYBBIP MODEL

In order to subject the development project to the
rigors of a practical application, a suitable estuary was
selected. The Bay of Fundy offered several advantages. For
one, there exists a proven explicit model (Greenberg, 1976)
which covers both the Bay of Fundy and the Gulf of Maine,
down to the Continental Shelf. Secondly, there is a consid-
erable interest in the electric power potential of the Fundy
tide and it was felt that the experience gained from the
pilot model study may benefit future investigations whenever
the Bay of Fundy tidal power development progresses to the
engineering design stage. With these considerations in
mind, the construction of a pilot hybrid model was initiated
with Cumberland Basin and Shepody Bay forming the physical
model and the remainder of the estuary down to the Continen-
tal Shelf forming the numerical model. Fig. 1 illustrates
the general outline of this estuary, and includes the sche-
matization employed for the finite difference scheme. The
small "boxed-in" area in the upper right hand corner of the
diagram is simulated by a physical model. Fig. 2 illus-
trates the outline of this scaled model and its relationship
to the numerical model. The computer in this hybrid model
serves the dual functions of being both host to the array
processor and at the same time, being the data acquisition
system and feedback controller for the discharge control
pump (Funke, Crookshank and Wingham, 1980) .

Fig. 3 gives the timing diagram of a typical
hybrid model. It should be noted that the "hatched" pulses
represent the regular clock pulses which, for the Bay of
Fundy model, occur every 0.3 seconds. Shortly after each
pulse, a data transfer takes place which transmits the last
calculated discharge value QT from the array processor to
the control computer. The data acquisition phase follows
immediately, monitoring among other variables, the water
elevation Hj which is then transmitted back to the array

TIDAL ESTUARY DYNAMICS 2415

O

>-
Q
Z
3
U.

<
00

LL.

o

z
o
I-
<

Ul
<0
Ul
cc
LU
cc

o

UJ
X
o

2416 COASTAL ENGINEERING-1980

_M_E ASU R ED
TIDAL ELEVATION

Q- DISCHARGE CONTROL

PHYSICAL MODEL

CONTROL COMPUTER

•NUMERICAL MODEL

FIG. 2 HYBRID HODEt OF CUMBERLAND BASIN AND SHEPODY BAY

processor. Next comes the model control phase and while the
control computer is engaged in achieving the required dis-
charge, the array processor must solve one time step of the
numerical model. Since clock pulses for the -Bay of Fundy
hybrid model occur every 300 milliseconds, the computational
time available for one time step of the numerica.1 model must
be somewhat smaller. In fact, sufficient time must remain
to complete all the data acquisition and the data transfer
between the host computer and the array processor. In addi-
tion one wants to have some margin of safety so that the
"ping-pong" interchange between the two machines can never
get out of synchronism.

TIDAL ESTUARY DYNAMICS 2417

r "• \ u
FK o <<zx

u!

h (-; S5£ s
•

•* *

MODEL CONTROL

DATA STORAGE

ANC CISPLAY

TEST

FLAG

NUMERICAL MODEL

CONTROL AND

DATA ACQUISITION

COMPUTER
HP IOOO

NUMERICAL

MODEL COMPUTER
(ARRAY PROCESSOR API20B*)

TEST

FLAG

Hj • PHYSICAL MODEL WATER ELEVATION AT THE INTERFACE BOUNDARY

FOR THE INSTANCE 1

Q: • THE CALCULATED MODEL DISCHARGE AT THE INTERFACE

FOR THE INSTANCE t -At

•MANUFACTURED BY! FLOATING POINT SYSTEMS INC.

PIG. 3 TIMING DIAGRAM FOE HIBEID MODEL

3.0 THE EXTENT OF THE MATHEMATICAL MODEL

The estuary dynamics of the mathematical model for
the present Bay of Fundy is based on the following equa-
tions:

X-motion: 3D + 3Z + f U- (U
2 + V2) '/2

3t

3V

3x (D + Z) n-v = o

12.
ay

V-(U2 + V2) 2\ 1/2
y-motion: ^ + g _ + f ^__L_|_i_ + n.D = 0

3Z , 3 continuity: t+^ [D.(D+Z)]+^ [V(D + Z)] = 0

where 0 and v are the velocities in the x and y direction,
D is the depth below mean water,
Z is the tidal elevation about the mean,
f is the friction term, and
S is the Coriolis parameter.

Fiq. 4 shows the schematization using a finite difference,
explicit method with a staggered mesh and forward difference

2418 COASTAL ENGINEERING-1980

y + Ay

t Vx,y+1

<Hr x,y D

^

"-^•1.

X + Ax

FIG. 1* DEFINITION OF FINITE GEID ELEMENT

in time. The differential equations are thus approximated
by the following.
Ux,y = (Ux,y/At + g(Zx,y ' Zx-l,y)/Ax ' ^>/(VAt + F^)

where:

v = (vXry + vx_lfy + vx>y+1 + vx_1(y+1)/4

and

Fx = f-(0x,y2+ ^)lA/((Dx,y + Dx-l,y + Zx-l,y)/2)

Vx,y = (Vx,y/At + g(Zx,y " Zx,y-1)/Ay + •W* + V

where:

u = <Dx,y + °x+l,y + Ux,y-1 + °x+l,y-l)/4

and

f'(«2 + Vx,y2) l/2/((Dx,y + Dx,y-1 + Zx,y + Zx,y-1! /2)

TIDAL ESTUARY DYNAMICS 2419

and

Z' = Z /At + [U , n • (D , n + D + Z + Z ,n)
x,y { x,y' x+l,y x+l.y x,y x,y x+l,y

-U • (D +Dn +Z +Zn)]/(2«Ax)
x,y x,y x-l,y x,y x-l,y'J/v

+ [V , , • (D x, + D + Z . ., + Z)
x,y+l x,y+l x,y x,y+l x,y

- V • (D + D n + Z)]/(2-Ay)
x,y x,y x,y-l x,y'J/ J'

Fig. 1 shows that the area to be modelled is subdivided
into three zones. The Gulf of Maine is represented by a
35 x 22 grid. The Bay of Fundy area has three times the
resolution with a 24 x 25 grid. Finally the upper reaches of
the Bay have again three times the resolution with a 55 x 45
grid.

Fig. 5 shows that five finite grid elements form the
boundary with the scaled model. It is anticipated that each
of these five elements could control an appropriate inter-
face pump. However, for the pilot model now under construc-
tion, only one elevation, Zj, is measured and the numerical
model supplies the average discharge through the boundary by
means of the averaging formula given in Fig. 5.

4.0 A BRIEF DESCRIPTION OF ABRAY PROCESSOR HARDWARE

An array processor (AP) is a digital data proc-
essor which is specifically and optimally designed to proc-
ess long data vectors. Typically, one can say that the
longer the data vector or vectors, the more advantageous is
the array processor as a "number cruncher".

Array processors are peripheral to so-called host
computers. Their advantage must, of course, be measured
relative to their host computer. For this reason, it is
quite common now to find array processors interfaced to
mini-computers rather than to larger main frame machines.
The list of references suggests some papers which offer more
technical information on various array processors.

Fig. 6 shows the major components of a typical
array processor "Floating Point Systems Inc. AP120B", i.e.
the machine used for this particular study. From this dia-
gram several pertinent features can be recognized:

2420 COASTAL ENGINEERING-1980

NUMERICAL
MODEL

HYDRAULIC SCALE
MODEL

ASSUME: 7,^^ = Z^^ = Z^. = Z^^ = Z ^ ^ = Zj

Y4
Q. = 1 AyU . • (D . + D . . + Z . + Z)/2 WI . J XO,l XO , 1 x-l,i xo,i x-l,i

i = Y0

FIG. 5 INTERFACE DETAILS BETWEEN NUHEKICAL AND SCALED MODEL

(a) The AP has separate and independent memory components
for data, program store and table constants. This per-
mits not only some parallel processing but also an
optimum choice of word length for instructions and data
respectively. For example, the AP120B has a 64 bit
instruction word which may control up to ten different
operations more or less at the same time. On the other
hand, the data word is 3 8 bits long with 28 bits used
as mantissa and 10 bits as exponent. This is a worth-
while improvement over the usual 32 bit data formats
especially for the type of problem described by this
paper.

(b) The AP has parallel arithmetic processors which may
operate on data concurrently.

(c) Data processing may take place in a "pipeline" fashion
so that data words move progressively through succes-
sive stages. Each stage may require in the order of

TIDAL ESTUARY DYNAMICS 2421

ULTiPLE 38 BIT DATA PATHS

:ONTROL DM ,rr,
INTERFACE

TT
DATA
PAD 1

32 WOFiLS
(38 BITS)

MAI M DATA
ME MORT

TO M WDS
{38 BITS)
IN 8 K WDS
MODULES

MEMORY
16 WORDS
116 BITS)

I
PROGRAM
MEMORY

TO 4K WDS
(64 BITS)

IN 256
WORD

INCREMENTS

u
FLOATING POINT

ADDER

ULTIPLE 38 BIT DATA PATHS

FIG. 6 GENERAL SYSTEM DIAGEAH FOE AP122B AEEAY PEOCESSOB

167 nanoseconds. Once the "pipeline" is filled,
solutions are returned back to the data memory at the
same 167 nanosecond rate. It is both the parallel
processing and the "pipelining" which gives these proc-
essors their phenomenal speed.

(d) The interface between the host computer and the AP is
of particular importance in appreciating the operation
of the machine in relation to its host. In the usual
configuration depicted by Fig. 6, all AP-programs and
data cone from the host and results are returned to the
host. An executive program in the host keeps track of
the programs which are required in the AP program store
and if a particular program which is being called is
not, at that time, resident in the AP, it must be
transferred there into whatever free area is available.
If the program store is filled to capacity, then the
last program in will be the first program to be over-
laid, and hence destroyed.

Data transfer to and from the AP is usually costly in
time. Consequently an awareness of these operational
and hardware features can affect the manner in which an
AP program is written for best performance.

2422 COASTAL ENGINEERING-1980

5.0 ARRAY PROCESSOR APPLICATION TO BAY OF FOND? MODEL

Fig. 7 illustrates the particular computer and

ULTIFLE 38 BIT DAI
--GEh-

PROGB U

MEMO Y

TO 3K VDS

161 61

MULTIPLE 38 BIT DA'

FIG. 7 THE ARRAY PROCESSOR CONFIGURATION AS FOR B OF F MODEL

array processor configuration which is being used for the
Bay of Fundy pilot hybrid model. It may be noted that the
host computer is a Hewlett-Packard HP-1000 model U5, while
the data acquisition and on-line, digital control computer
is the HP-21MXE computer. Although the configuration of
Fiq. 6 could have served the requirements of the hybrid
model, the configuration of Figi 7 was selected in order to
qet a better overall system utilization. This is of partic-
ular importance since the hybrid model is not the only real
time activity which is being supported concurrently by this
H.P. computer system (Funke, Crookshank and Bingham, 1980).

The DMA interface to the host computer in Fig. 7
is the usual channel for transmission of AP-programs and for
initial model constants. The entire Bay of Fundy numerical
model, as described in section 3.0, is doiin-loaded in this
way prior to commencement of actual model operation. Once
in operation, data related to the tidal elevation is trans-
mitted from the data acquisition computer to the AP via the
input/output processor box (IOP) and the resultant discharge
data travels on the same channel in the opposite direction.
In this manner, the array processor is an autonomous, dedi-
cated numerical model, completely freeing the host computer
for other activity.

TIDAL ESTUARY DYNAMICS 2423

A suitable "logical" switch was provided to run
the numerical model of the Bay of Fundy either as a hybrid
model or as a completely independent numerical model. In
the former case a boundary exists at the entrance to the
Cumberland and Shepody Basins and boundary information is
transmitted via the IOP. In the latter case, this boundary
does not exist as the two basins are included in the numeri-
cal model.

In order to monitor the progress of tidal propaga-
tion through the numerical model, the solutions for tidal
elevation at each grid point are also transmitted to the
data acguisition and control computer at each control step.
In this manner one may treat the data in a similar fashion
to other data which were acquired through instrumentation on
the physical model.

6.0 PROGRAMING ARRAY PROCESSORS

Hhereas the array processors offer substantial
improvements in processing speed, the effort reguired to
exploit their power may still be substantial. For this rea-
son it is a definite advantage to have the help of an expert
consultant who can quickly solve the usual "teething" prob-
lems and who can pilot the project around the various pit-
falls.* However, there is a significant and promising devel-
opment in progress which may overcome many obstacles.

There are four different ways by which the Float-
ing Point Systems Inc. AP120B may be programmed. Each of
these offers certain advantages or disadvantages which must
be traded off.

6.1 FORTRAN Calls to Existing Library subprograms

Fig. 8 gives a typical example of a program task
which requires various vector and matrix operations. The
first portion in Fig. 8 describes this task as a conven-
tional FORTRAN code. Following this, one may recognize
calls to various subroutines which serve

(a) to initialize the AP,
(b) to transfer data from the host to the AP, and
(c) to cause a wait until the transfer of data is complete.

It is worth noting that the data memory in
the AP is addressed here in terms of absolute addresses and
these must be generated before the data transfer calls can

Canadian Astronautics Ltd.
1024 Morrison Dr., Ottawa, K2H 8K7 Canada.

2424 COASTAL ENGINEERING-1980

C******* POTENTIAL CALCULATION **************************************
C

C ORIGINAL FORTRAN
C
C SUBROUTINE EX2
C COMMON /B/PHIB(100,10),HB(100,10),PKB(100),DS12
C DO 1 J=l,9
C DO 1 1=1,100
C 1 PHIS(I,J+1)=PHIB(I,J)+DS12*PKB(I)*(HB(I,J+1)+HB(I,J)
C RETURN
C END

C
SUBROUTINE EX2
COMMON /B/PHIB(100,10),HB(100,10),PK(100),DS12

C AP MEMORY LAYOUT
IDS12=0
IPKB=1
IHB=IPKB+100
IPHIB=IBH+1000

C INITIALIZE THE AP
CALL APINIT (0,0,STATUS)
IP (STATUS.LT.O) CALL ERROR

C PUT OUT THE DATA TO AP
CALL APPUT(PHIB,IPHIB,1000,2)
CALL APPUT(HB,IHB,1000,2)
CALL APPUT(PKB,IPKB,100,2)
CALL APPUT(DS12,IDS12,1,2)
CALL APWD

C
C DO THE COMPUTATION
C
C AP COMPUTATION TIME IS 2.3 MS FOR 167 NS MEMORY, 3.7 MS FOR
C 333NS MEMORY, EXCLUSIVE OF HOST SYSTEM OVERHEAD
C

CALL VSMUL(IPKB,1,IDS12,IPKB,1,100)
CALL VADD(IHB+100,1,IHB,1,IHB,1,900)
JHB=IHB
DO 1 J=l,9
CALL VMUL(IPKB,1,JHB,1,JHB,1,100)

1 JHB=JHB+100
CALL VADD(IPHIB,1,IHB,1,IPHIB+100,1,900)
CALL APWR

C GET THE RESULTS FROM AP
CALL APGET(PHIB(1,2),IPHIB+100,900,2)
CALL APWD
APRLSE
RETURN
END

FIG. 8 EXAMPLE AP PROGRAM FOR CALLS ON AP-MATHEMATICAL LIBRARY

TIDAL ESTUARY DYNAMICS 2425

be made. other arguments specify typically how many ele-
ments are to be transferred and what format conversion is to
take place.

The subsequent calls deal with the actual
solution of the problem. One may recognize vector multiply
and vector addition operation which make reference to the
various arrays in terms of their addresses in AP memory. In
order to make these routines as general as possible, they
have been designed to permit operation either on consecutive
elements (i.e. arguments No. 2, No. 4 and No. 6 are set to
1) or on alternate or arbitrarily spaced arguments. It is
typical for the list of arguments to be organized as
"S00BCE1", "SO0ECE2" and "DESTINATION". For each of these
the order is always "WHEBE". "HOW MANY" and "NOHBEB OF SKIPS
- 1". Prior to the data transfer from AP to host a "WAIT
FOE AP BEADY" must also be invoked.

It should be noted that the DO-loop and the
calculation of the "JHB" parameter are executed in the host
computer and for each pass through the DO-loop a transfer of
subroutine arguments to the AP will be implemented. This is
not the fastest way of running the solution but it does
offer a relative simplicity in implementation.

The disadvantages of this approach are:

(a) Programming is limited to existing algorithms in the
various libraries supplied by the manufacturer,

(b) Special requirements, such as conditional branches,
require FOETEAN coding in the host computer with the
consequent loss of speed due to repeated interchange of
information between the host and the AP,

(c) Addressing of variables and arrays in the AP must be
implemented in terms of absolute addresses with a sub-
sequent loss of the convenience and power of a mnemonic
address structure which is inherent to FOETEAN and

(d) Althouqh each AP subprogram has been coded in an opti-
mum fashion, any special requirements, which could ben-
efit from some of the various hardware features of the
AP, cannot be accommodated.

6-2 Programming with the Vector Function Chainer Language

The Vector Function Chainer is an AP programming
language of a somewhat higher power than the simple calling
of precoded library subprograms. This language allows not
only the creation of new AP library subprograms, but it also
permits some simple, FORTEAN-like statements for execution
in the array processor rather than the host computer.

2426 COASTAL ENGINEERING-1980

Fig. 9 gives an example of a subprogram for a

******** MVADD = MATRIX/VECTOR ADD **********************************

II DEFINE MVADD(A,I,B,J,C,K,NRC,NCC)

" ADD VECTOR B TO EVERY ROW OF MATRIX A, PUTTING THE RESULT IN C

" A - ADDRESS OF MATRIX A
" I - INCREMENT BETWEEN ELEMENTS OF A
" B - ADDRESS OF VECTOR B
" J - INCREMENT BETWEEN ELEMENTS OF B
" C - ADDRESS OF DESTINATION MATRIX C

K - INCREMENT BETWEEN ELEMENTS OF C
" NRC - NUMBER OF ROWS IN C (AND A)

NCC - NUMBER OF COLUMNS IN C (AND A)

"THE MATRICES ARE STORED IN COLUMN ORDER. THUS I AND K ARE INCREMENTS
"BETWEEN ELEMENTS IN A COLUMN. WE MUST COMPUTE THE INCREMENT BETWEEN
"ELEMENTS IN A ROW.

LOCAL AR,CR

AR = I * NRC "COMPUTE 'A' ROW INCREMENT
CR = K * NRC "COMPUTE 'C ROW INCREMENT

LOOP: CALL VADD (A, AR,B, J,C,CR,NCC) "ADD TO A ROW
A = A + I "ADVANCE 'A' POINTER
C = C + K "ADVANCE 'C POINTER
NRC = NRC - 1 "DECREMENT ROW COUNTER
IF NRC < 0 GOTO LOOP "GO BACK IF NOT DONE
END

FIG. 9 EXAMPLE AP PEOGBAH USING VECTOE FUNCTION CHAINEE

matrix/vector addition which was created using the vector
function chainer. This example illustrates some of the fea-
tures of this language such as the calling of other existing
subprograms, the creation of absolute addresses by arithme-
tic statements and the use of the logical IF-statement.

Fig. 10 shows the procedure by which a vector
function chainer program is implemented. The source code of
the program is first processed by the vector function
chainer and the resultant output is a "second stage" source
code in the AP assembler language. This assembler must also
process the code which is then fed through the AP linking
loader which serves to satisfy calls to the AP-library. The
result of these operations leads to a third-stage source
code which is in the host FORTBAN language. However, this
code is quite unreadable as it consists of no more than a
subroutine definition and termination statements and a long
list of DATA statements with integer values. Each integer
word is a quarter of a 6« bit instruction word which forms
part of the desired AP program.

TIDAL ESTUARY DYNAMICS 2427

HOST FORTRAN

SOURC E CODE

VE CTOR FUN CTION

CHAINER SOURCE

HOST

F ORTRAN COMPILER

VECTOR FUNCTION

CHAINER

HOST OBJECT

HOST

LINKING LOADE R

EXE CUTABL E

PROGRAM IN

HOST AND API20B

„- LIBRARY

-AP MATH LIBRARY#I

^ AP MATH LlBRARY#2

AP SOURCE CODE

AP A L

ASSEMBLER

LINKING LOADER
-AP LIBRARY

FIG. 10 USE OF VECTOR FUNCTION CHAINER

This third stage source program now represents the
newly created member of an AP subprogram library. Before
execution it must be compiled together with its calling FOR-
TRAN program by the host FORTRAN compiler and then loaded in
the usual fashion.

The vector function chainer offers greater pro-
gramming power than the approach described under section
3.1. It is egually cumbersome in the management of absolute
addresses but since addresses and additional branches
defined by the vector function chainer language are commuted
within the AP, the repeated information transfer between the
host computer and the AP is eliminated and a considerable
speed-up of the solution times is achievable. The explict
model of the Bay of Fundy was coded in this manner.

6.3 programming by Using the AP-FORTRAN Compiler

A more recent addition to the bag of tricks for
programming is a FORTRAN compiler for the array processor.
It offers potentially many significant advantages over any
other approach and promises to make the array processor a
truly general purpose computer which can bring low cost,
high speed computation into the reach of anyone who has a
need for it.

2428 COASTAL ENGINEERING-1980

In order to code a task in AP FORTRAN, it is nec-
essary to define that portion of a program which is to run
on the array procesor as distinct from the host computer.
This portion must be coded as a standard FORTRAN subprogram.
If all of the task is to run on the AP, it is still neces-
sary to have a host program that simply states:

READ ARG1,ARG2
CALL NAHE(ARG1,ARG2, ... ARGN)
WRITE ARGN
END

The subroutine NAME must be processed by the AP FORTRAN com-
piler which will take care of all data transfers to and from
the AP and the associated wait-calls. It can handle any
type of linear or non-linear functional relationships and
any multi-dimensional array configuration. However, the
usual data input/output function via the host computer's
peripherals must be looked after by the host computer.

Fig. 11 shows the procedure for implementing an AP pro-

HOST FORTRAN

SOURC E CODE
AP FORTRAN

SOURCE CODE

HOST FORTRAN

COMPILER
AP FORTRAN

COMPILER

HOST OBJ ECT

HOST

LINKING LOADER

EXE CUTABLE

PROGRAM IN

HOST AND APIZOB

- LIBRARY • I

* LIBRARY #N

AP OBJECT CODE

I

i
LINKING LOADER

FORTRAN

SOURCE CODE

FIG. 11 USE OF AP FORTRAN COMPILER

gram by the AP FORTRAN compiler. The source code of the
subroutine 'NAME* is first processed by the AP FORTRAN com-
piler. This must be done on a larger 32 bit computer as the
compiler is not, at present, operational on 16 bit comput-
ers. However, its output may be run on 16 bit host comput-
ers which provide, after linking-loading, a secondary source
code in host FORTRAN. As before, this source code consists
substantially of DATA statements only and looks quite simi-
lar to the third stage source code produced by the vector
function chainer described in section 6.3.

TIDAL ESTUARY DYNAMICS 2429

At this time, the community of users of an AP-FORTRAN
compiler is still relatively small and general experience in
its use must yet be established. However, for the purpose of
the Bay of Fundy hybrid model study, an investigation was
carried out for the purpose of:

(a) establishing the suitability of either the explicit or
the implicit method for numerical models with regard to
array processor operations, and

(b) establishing the effectiveness of the AP-FORTRAN compi-
ler vis *a vis the Vector Function Chainer as a means
for implementing the implicit model on the AP.

Table 1
COMPARISON OF AP-FORTRAN WITH VECTOR FUNCTION CHAINER

AP PROGRAM
STORE RORD

PROCESSING
SPEED PER
TIME STEP**

NO, OF DAYS RORD
TO IMPLEMENT PROGRAM*

VECTOR FUNCTION CHAINER 2700 1.5 s 7 days

AP-FORTRAN COMPILER 2200 1.5 s 1 day

* From an original statement of the model in terms of a correctly
working program in host computer FORTRAN.

** 48 steps per tidal cycle

The comparison of Table 1 favours the AP-FORTRAN
compiler. This came as a surprise because other users had
indicated that both the required program store and the
solution time would increase as a consequence of using the
AP-FORTRAN compiler.* It may be possible that the nature of
the particular program or the manner in which the program
was coded using the vector function chainer could both
affect the results. Nevertheless the authors* experience has
been most encouraging even though there still are some minor
errors in the AP-FOETRAN compiler.

6.1 Programming by Using the AP Assembler Language

In order to get the greatest processing speed with
the least amount of reguired program store, it is necessary
to use assembly language. This option was considered as a
last resort for the Bay of Fundy hybrid model if other pro-
gramming methods had not brought the solution speed within
the real time constraints imposed by the physical model.

* Verbal communications

2430 COASTAL ENGINEERING-1980

The assembly language permits direct control over
all registers, data buses and arithmetic units. The price
for this additional flexibility and power is the greater
language complexity. As a result it is difficult and costly
to learn the language and very time consuming to create an
error-free program. Coding by the AP assembly language is
considered practical only for those situations where the
additional speed justifies the additional cost in program
development effort.

7.0 COMPARISON OF AP PEBFORMAHCE TO OTHER COMPUTERS

Comparisons between computers are meaningful only
in terms of specific benchmark programs which contain a spe-
cific mix of computational operations. For this reason it
is necessary to point out that this comparison applies
strictly to the solution of a system of finite difference
eguations describing estuary dynamics.

The original numerical model of the Bay of Fundy
(Greenberg, 1976) uses an explicit method, a schematization
similar to Fig. 1 and a time step of 30 seconds in prototype
time. Because of the particular interests in the Hinas
Basin, that area was originally schematized with a finer
grid than the one shown in Fig. 1 However, the hybrid model
of the Cumberland and Shepody Basins does not require this
detailed representation of the Minas Basin and therefore the
schematization of Fig. 1 could be adopted. As a conse-
quence, the time step could also be increased to 1 minute in
prototype time. The execution times which are listed in
Table 2 apply to one semi-diurnal cycle of a tide and, the
execution times for the explicit model are based on a time
step of 1 minute.

Since the original Greenberg model was not run
under exactly these conditions, the time for the CDC
CYBER 74 (equivalent to a CDC 6600) can only be estimated.

A finite difference implicit model of the Bay of
Fundy was tested with 15 minute time step in prototype time.
For the particular requirements of the hybrid model, this
implicit method is not considered economically justified.
At $1.00 per word for AP data storage, this model is sub-
stantially more expensive to implement.

In assessing the results shown in Table 2, one
additional factor is the usefulness of an in-house machine
for other applications. In buying time on a main-frame
machine, the cost involved includes a significant proportion
relating to peripheral equipment which may not be required
for present purposes. Thus while it is difficult to obtain
accurate costs for main frame time. Table 3 shows that the
complete array processor/mini-computer package costs less

TIDAL ESTUARY DYNAMICS 2431

than $150 000 - a figure considerably less than the annual
expenditure involved with many large model studies.

Table 2
Comparison of Execution Times for Fundy Models

EXPLICIT MODEL
1 MINUTE TIME STEP

750 STEPS/CYCLE

IMPLICIT MODEL
15 MINUTE TIME STEP

48 STEPS/CYCLE

MINUTES MEMORY MINUTES MEMORY

CDC CYBER 74
IBM 3032
HPIOOO, MOD. 45
AP-120B

2 to 2.5
5

75.
2.5

6 OK
•-40K-WDS**

128
1,2

145K WDS*
40K WDS

* A modification to the algorithm reduced this to 75K WDS
"•Considerable memory savings could be achieved with additional

programming effort.

Table 3
CAPITAL COST FOE MINI-COMPUTEB/AP SYSTEM

2.

(January 1980)

HP1000, MODEL «5 - 128 K WORDS MEM0EY
- 20 MBYTE DISC,
- 26U8 VIDEO GEAPHICS TEBMINAL
AP-120B AEEAY PEOCESSOES WITH
- 3K PEOGSAM STORE, - 1K TABLE RAM,
- 40K DATA MEMOEY (167 ns) , - IOP
- EXTENDED SOFTWARE
- AP-FORTRAN COMPILER

$45 000.

$81 130.
$ 8 U75.
$ 8 500.

O.S. $1U3 105.

2432 COASTAL ENGINEERING-1980

8.0 GENERAL REFERENCES

— Funke, E.E. and N.I. Crookshank (1978), "A Hybrid Model
of the St. Lawrence River Estuary", Proc. 16th Coastal
Engineering Conf., Hamburg.
Funke, E.R., N.L. Crookshank and H. Hingham (1980), "An
Introduction to GEDAP - An Integrated Software System
for Experiment Control, Data Acquisition and Data Anal-
ysis", Hydraulics Laboratory Technical Report LTR-
HY-75, NRC, Ottawa, Canada.
Greenberg, D.A. (1976), "Mathematical Description of
the Bay of Fundy-Gulf of Maine Numerical Model", Tech-
nical Note No. 16, Marine Environmental Data Service,
Environment Canada, Ottawa.

— Holz, K.P. (1977), "Hybrid Models, A Study on Their
Principle and Realization", Proc. 7th Conf. IAHR,
Vol. 6, pp. 674-678.

9.0 ARRAY PROCESSOR REFERENCES

Alexander, P. (1979), "Array Processors", Machine
Design, pp. 87-92, August 23, 1979.

— Caspe, R.A. (1978), "Array Processors", Mini-Micro Sys-
tems, pp. 54-64 (Comparison of Processors) .

— Hufnagel, S.P. (1979), "Comparison of Selected Array
Processor Architectures", Computer Design, pp. 151-158,
March.
Strelchun, J. (1979), "Array Processor Responds in Real
Time", Electronics, pp. 118-124, August 16, 1979.

— Wiley, P. (1979), "Interfacing Peripherals Directly to
an Array Processor", Computer Design, pp. 158-164,
August 1979.

— Wittmayer, W.R. (1978), "Array Processor Provides High
Throughput Rates", Computer Design, pp. 93-100.

