
CHAPTER 109 

WAVE-INDUCED SEEPAGE EFFECTS ON A VERTICAL CYLINDER 
by 

Thomas J.P. Durand1 and Peter L. Monkmeyer2, M. ASCE 

ABSTRACT 

This study deals with the seepage effects experienced by a large, 
vertical, circular cylinder resting on a submerged bed of sand when 
planar water waves interact with it.  Potential theory is used to 
describe the seepage flow field.  The sea bottom pressure condition is 
determined from the water field velocity potential derived by MacCamy 
and Fuchs (1954) in the case of planar waves diffracted by a large 
impervious cylinder.  Consideration is also given to cylinders with a 
thin circular base whose diameter exceeds that of the cylinder itself. 

The problem formulation as well as the initiation of the analysis 
apply to the general case of a bed of sand with finite depth. 

For the case of infinite depth of the porous medium, theoretical 
solutions for the seepage pressure are obtained in the form of infinite 
integrals.  Theoretical solutions for the pressure along the cylinder 
circular base are then derived, leading by integration to closed form 
expressions for the wave-induced seepage uplift force and overturning 
moment exerted on the cylinder.  These expressions for the force and 
moment, which are presented in non-dimensional form are shown to be 
universal functions of a unique variable.  Graphs are provided so that 
very few computations are required to determine the uplift force and 
overturning moment exerted on a cylinder.  A comparison with various 
approximate theories reveals the present theory to be the only one 
which gives reliable results in general. 

The amplitude and phase angle of the oscillating wave-induced 
pressure along the cylinder base are determined numerically.  Results 
for the pressure amplitude are presented as non-dimensional ratios to 
the amplitude of the pressure that would prevail if no cylinder were 
disturbing the wave field. 

Expressions for the exit gradient around the cylinder base are 
also determined.  Contours of the ratio of the exit gradient to the one 
that would prevail in the absence of a cylinder are presented. 

Laboratory measurements of uplift pressure amplitudes on a circu- 
lar cylinder show good agreement with theoretical calculations. 

INTRODUCTION 

The rapid development of offshore construction in recent years has 
led to some complex technological problems, not the least of which are 
those concerned with the foundation and the possibility of foundation 
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failure.  There is some indication that such failure may be due to 
wave-induced seepage in the porous sea bed.  Dynamic seepage pressures 
are believed to induce erosion phenomenon around the foundation of some 
structures as well as the cyclic uplift forces which act on the under- 
side of a structure resting on the sea bottom. As a result, research 
dealing with the dynamics of wave-induced seepage in sea beds has been 
conducted by a number of investigators. 

Most of the past research on the subject has focused upon the 
mathematical formulation required to obtain a realistic model of the 
physical phenomenon involved.  Although work on this matter is still in 
progress, it may be useful to summarize the assumptions and governing 
equations used by some of the contributors.  Sleath (1970) performed 
experiments which strongly support Putnam's (1949) use of potential 
theory, thereby suggesting that elastic effects can be neglected. 
Later, however, Moshagen and T^rum (1975),by including a water compres- 
sibility term in the continuity equation, derived a "heat conduction 
type" equation for the pressure.  In the case of coarse sand, solutions 
to their equation approach those of Putnam, using potential theory, 
asymptotically.  The results deviate only slightly for fine sands and 
are quite different for silts and silty clays.  Yamamoto (1977), using 
the consolidation theory of Biot (1941), derived and solved a system of 
partial differential equations taking into account the compressibility 
of the water and the skeleton.  Interestingly enough his solutions are 
very similar to those obtained from potential theory in the case of 
coarse sands and slightly different in the case of fine sands.  Madsen 
(1978) also considered compressibility of water and skeleton as well as 
other soil properties.  He concluded that for fine sands, as well as 
coarse sands which are isotropic, the effect of compressibility of 
fluid and skeleton is negligible. 

It should be emphasized that all the previously mentioned studies 
apply only to planar waves unaffected by any structure.  No considera- 
tion was given to the presence of a structure until Moshagen and 
Monkmeyer (1979) completed an investigation in which an embedded verti- 
cal cylinder was subjected to horizontal, wave-induced seepage forces. 
For a more detailed literature review the reader is referred to their 
paper. 

The objective of this study is to analyze the dynamic seepage 
pressures and forces exerted on the base of a single, vertical, circu- 
lar cylinder resting on a bed of sand when linear progressive waves 
interact with it.  The cylinder does not penetrate the sea bed but its 
base can have a larger radius than the cylinder body itself.  This 
extended circular base, when it is considered, is assumed to be 
infinitely thin.  (See Fig. 1.) 

The good agreement among the solutions of the various theories 
mentioned previously, when applied to sands (especially coarse sands), 
together with the great simplification it provides, makes potential 
theory the logical choice for the present study, especially in view of 
Sleath's experimental confirmation.  The coupling condition between the 
sea water field and the pore water seepage field is obtained by means 
of a pressure matching procedure along the sea bottom.  To accomplish 
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Fig. 1. Definition Sketch 

this, MacCamy and Fuchs' (1954) potential function, describing both the 
incident and diffracted waves of the sea water flow field, is used to 
derive an analytic expression for the sea water pressure on the sea 
bottom.  This pressure distribution provides a coupling boundary condi- 
tion for the dynamic seepage field.  The various additional boundary 
conditions are also stated for the seepage potential function. 
Although the analysis is initiated for the general case of a porous 
medium of finite thickness, theoretical solutions for the seepage pres- 
sures in the sea bed are only presented for the case of a porous medium 
of infinite thickness.  Indeed, only in that case do the solutions lead 
to relatively simple expressions for the pressure distribution along the 
underside of the cylinder base.  The uplift force and overturning moment 
exerted on the cylinder base by the dynamic seepage can then be obtained 
by integration. 

THEORETICAL ANALYSIS 

Governing Equation 

The seepage flow field in the porous medium is assumed to follow 
Darcy's law, 

q = v*, (i) 

with 

where 

-K[p2/y + z] (2) 

r2„2, 
= velocity potential [L^/T] 

= specific weight of water [M/L^T^] 
2 

= pressure [M/LT ] 

= specific discharge [L/T] 

= hydraulic conductivity [L/T] 

= vertical coordinate [L] 
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Assuming a completely saturated soil and neglecting the various effects 
due to the compressibilities of the water, porous skeleton and sand 
grains themselves, the continuity equation takes the form: 

q = 0 (3) 

By substitution of Eq. 1 into Eq. 3, the governing equations for 
seepage then lead to Laplace's Equation, 

= 0 (4) 

so that under the assumption of essentially incompressible water flow- 
ing through a saturated, rigid, isotropic porous medium, potential 
theory may be used to describe the seepage flow field, as noted before. 

Boundary Conditions 

In order to couple the sea water field to the seepage flow field, 
the pore water pressure distribution along the mud line is matched to 
the corresponding sea water pressure distribution.  To this end, use is 
made of the well-known MacCamy and Fuchs (1954) velocity potential for 
small amplitude water waves diffracted by a vertical circular cylinder 
of radius b. 

,(r,8,2,t) = 
j£H -iait cosh(kz) I coshCkh^ ^0 

: i C (kr) 
mm 

H(1)'(kb) 
cos(mO) (5) 

where C (kr) = J'(kb) H«(kr) m 
H(1)'(kb) J (kr) 

= { 

if m = 0 

if m > 1 

and where g-     = acceleration due to gravity [L/T ] 

H      = wave height [L] 

ID      = 2TT/T = wave frequency = [gk tanh(kh )][T  ] 
-1 

= wave number [L  ] 

= elevation of mean sea level above sea bottom [L] 

= cylinder radius [L] 

= Bessel function of the first kind of order m 

( ) = Hankel function of the first kind of order m 

k 

hl 
b 

m 

(i) H 

where the primes indicate differentiation with respect to the argument. 
It should be emphasized at this point that MacCamy and Fuchs1 velocity 
potential is valid for cylinders large with respect to the wave dimen- 
sions. More specifically, since the MacCamy and Fuchs theory neglects 
drag but considers inertial effects it is only valid when drag effects 
are minimal. As Dean and Harleman (1966) point out, this is the case 
when H/b is small and kh-^ is large. 



EFFECTS ON VERTICAL CYLINDER 1785 

By substituting Eq. 5 into the linearized dynamic pressure 
equation, 

3*i   pi 
3t   p 

3 
where p = mass density [M/L ], 

one can derive an expression for the dynamic pressure at the bottom of 
the sea.  The next step is to equate the pore water pressure immedi- 
ately below the mud line to the corresponding sea water pressure 
immediately above. 

p. = p? at z = 0 for r >_ a (7) 

where a = radius of the cylinder circular base [L]. 

Making use of Eq. 2 one finally obtains the following condition for ^ 
along the mud line 

K 
3*i   IK: 

d> = — —— = ud>     at z = 0  r > a T2  g 3t     g  Tl - 

or,  henceforth dropping   the  subscript  2, 

._,     -i(Dt <»     e  i     C   (kr) - 
, r                  r*  ^\          ,     KH e fro         m                   .   „.                    /ON <t>(r>a,6,z=0,t)   = -i h(kh  )     I     7Ty cos(me) (8) 

l cosing; m=Q      HUJ   (kb) 

m 
The impervious  condition at  bed  rock is 

I1 =   0 at  z  = -h„ (9) 

while the impervious condition along the circular disc of radius a on 
the underside of the base of the structure is 

|^=0 atz=0 r<a (10) 
9z — 

It should be noted that the radiation condition associated with the 
present potential problem - such a condition is needed to insure the 
uniqueness of the solution - turns out to be implicitly integrated in 
the pressure matching condition along the mud line so that no addi- 
tional requirement need be prescribed. 

The governing Laplace equation, Eq. 4, is therefore constrained by 
its boundary conditions, Eqs. 8, 9 and 10.  It clearly appears that a 
Neumann type condition and a Dirichlet type condition are prescribed on 
different parts of the same boundary, namely the upper plane z = 0, so 
that the potential problem to be solved is of the mixed boundary value 
type. 

Solution 

Due to the non-axisymmetric diffracted wave pattern-, the analysis 
is initiated in three dimensions using a non-dimensional coordinate 
system 
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r* = r/a z* = z/a h* = h2/a (11) 

The stars are dropped for simplicity of the notation. 

The particular form of the pressure matching condition, Eq. 8, 
suggests that the unknown potential function be expressed in a Fourier 
expansion of the polar angle, 

.m   ,   . 
„  -not   <*>    ei <(> (r,z) 

• (r,6,s,t) - -i •^      I -^—?  cos(me) (12) 
/ costHKry m=0  Hu; (kb) 

m 

where the functions <t>m(r,z) are the new problem unknowns satisfying the 
reduced partial differential equation 

3   <|> ,   3$ 2 32<f> 

2    +r!r    "     2  *m + ~T~ "  ° (13) 

3r r 3z 

A solution of Eq. 13, satisfying the bed rock condition, Eq. 9, can be 
obtained through a Hankel integral transform and is given by 

<t>m(r,z) = / pAm(p)[e
pz + e""p(z+2h2)]Jm(pr)dp (14) 

o 

^C ) is a new unknown function which can be det 
the remaining boundary conditions, Eqs. 8 and 1 

/ p tanh(ph2) F (p) J   (pr)dp = 0 0<r<l 

where A^i   ) is a new unknown function which can be determined by making 
use of the remaining boundary conditions, Eqs. 8 and 10, 

d5) 
/  Fm(p) Jm(pr)dp = Cm(kar) l<r 
o 

where 
F (p) = pA (p)[l + e"/ph2] (16) 
m       m 

Eqs. 15 are known as Dual Integral Equations.  They obviously 
result from the mixed nature of the boundary value problem.  Sneddon 
(1966) presents a thorough treatment of these equations.  Closed form 
solutions of Dual Integral Equations have been obtained in the case of 
ti2 •* <», which corresponds to the physical case of infinite depth of the 
porous medium, and therefore this analysis will be restricted to the 
infinite depth case only. 

For h„ -> «, Sneddon reports Titchmarsh's solution as 

-7=—    °°     .. ,0 ,      °°    C   (kau)du 

pAm(P)   -  - /£/ t-1'2 W(pt)dt ^ / li%7rr «7> 
1 t u /u'-t' 

which,   after  some rearrangement  and then substitution  into  Eq.   14, 
leads  to 

V(r,Z)   =  /  ^T ePZ.Jm(pr)dp  /  tJ^CpOC^CkaOdt (18) 
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where 

C£u/2(kat) = J^kb) H^/2(kat) - H(m),(kb) Vl/2(kat)     (19) 

It should be pointed out that Eq. 18 together with Eq. 12 provide 
an exact expression for the wave-induced potential distribution 
throughout the entire seepage field when a cylinder is resting on a bed 
of sand of infinite thickness. 

Although some simplifications of Eq. 18 can be performed by making 
use of the Hankel inversion formula and of a known indefinite integral 
for the inner integral, this would only apply for the Bessel function 
of first kind, Jm( ), but not for H^y ( ) so that no equation for ,j> , 
more suited to computational purposes, could be derived. 

RESULTS OF THE THEORETICAL ANALYSIS 

Pressure Distribution along the Cylinder Base 

Substituting z = 0 in Eq. 18, inverting the order of integration, 
and performing the inner integration leads to 

-TT—      •   "C*^! /0(kat)dt 
<f>   (r<l,0)   =/^a-    rm / -StlZl—^^ (20) 
V    -  • w [  tm-l/2   /t2_r2 

which can in turn be transformed into 

TT,     1 C*  ,„(kat)dt 
* (r<l,0) - C (kar) -/ ^ m j    _nri-l/2 (21) 
m —       m IT      

J   m-1/2 /^  2 
r t     /tz-r^ 

Hence the exact solution for the wave-induced pressure distribution 
along the circular base of the cylinder is, dropping the hydrostatic 
term, 

•   4. .m+1,    .       . -not       °°       ei       <j>   (r,0) 
P(r<l,6,0,t)   =       fl I m m  cos(me) (22) 

/ costiun^   m=0     Hu; (kb) 
m 

where, for computational purposes, Eq. 21 is transformed into 

  cosn K„) (kar cosh u) 

* (r<l,0) = C (kar) -/ ^^ /        -^^ r^  du  (23) Tm —       m IT   ' ,       ,  .m-1/2 
o (cosh u) 

Tabulated numerical results for the wave-induced dynamic pressure 
amplitude along the cylinder base are presented as non-dimensional 
ratios to the amplitude of the pressure that would prevail if no cylin- 
der were disturbing the wave field, namely 
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YH 
LT 2  cosh(kh  ) (24) 

Hence only the infinite sum in Eq. 22 is tabulated.  Table I shows the 
values of these pressure ratios for ka = kb = 0.2, 1.0 and ka = 2kb = 
2.0. 

Table I 

DIMENSIONLESS PRESSURE AMPLITUDE ON THE CYLINDER BASE 

= kb = 0.2  r/a = 0.2  r/a = 0.4  r/a = 0.6 r/a = 0. r/a 1.0 
e =  o° .85260 .85978 .87580 .90536 .99894 
8 =  30° .85285 .85979 .87500 .90288 .99067 
0 = 60° .85369 .86052 .87450 .89949 .97643 
9 =  90° .85525 .86321 .87782 .90283 .97724 
8 = 120° .85728 .86779 .88568 .91518 1.00101 
6 = 150° .85905 .87233 .89420 .92962 1.03179 
0 = 180° .85976 .87423 .89789 .93599 1.04562 

ka = kb = 1 .0 r/a = 0.2 r/a = 0.4 r/a = 0.6 r/a = 0.8 r/a = 1.0 
8 =  0° .33957 .25847 .26442 .40492 .88819 
0 =  30° .35685 .28891 .27930 .36903 .74425 
8 =  60° .40360 .38152 .39463 .46184 .73888 
8 =  90° .46534 .50802 .58878 .73176 1.17128 
8 = 120° .52368 .62174 .75669 .95830 1.52487 
0 = 150° .56391 .69448 .85453 1.07523 1.67346 
8 = 180° .57809 .71879 .88496 1.10795 1.70708 

ka = 2kb = 2 .0 r/a = 0.2 r/a = 0.4 r/a = 0.6 r/a = 0.8 r/a = 1.0 
e =  0° .05838 .10355 .22347 .40757 .92881 
0 =  30° .06704 .09116 .18303 .33408 .78076 
0 =  60° .09431 .11759 .19394 .34493 .83519 
0 =  90° .13022 .18857 .30615 .52746 1.27124 
0 = 120° .16014 .23754 .36243 .58202 1.38303 
8 = 150° .17771 .25566 .35972 .52815 1.21639 
8 = 180° .18326 .25908 .35205 .49587 1.11703 

Uplift Force and Overturning Moment or i the Structure 

In addition to providing a simplifying transformation, the Fourier 
expansion, as performed at the beginning of the analysis, also has the 
well-known advantage of extracting from the pressure the very terms 
required for calculating the uplift force and overturning moment 
exerted on the cylinder base.  More specifically, when performing the 
integration of the pressure, only the zero or first order terms of the 
Fourier infinite series make a non-zero contribution to the force or 
moment respectively.  Furthermore, in both cases, the corresponding 
integration of Eq. 21 involves two integrations which can be inverted 
and performed analytically.  Various straightforward algebraic manipu- 
lations - for the detailed derivation see Durand (1978) - finally yield 
closed form expressions for the wave-induced seepage uplift force and 
overturning moment exerted on the cylinder base as follows: 



where 
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2 
 1,, ,    .   — A   (kb)   cosCoit +  a   (kb)) 
coshl.kh   )   ka       o o 

{Jn (kb) [Y, (ka)   + - C°f — + - sin  ka] 
1 1 TT       ka IT 

-Y,(kb)[J.(ka)   - - Sl" ka + | cos  ka] } (25) 

H 3 

* -  TTnr^rf5- Mkb>   sin(u.t + on(kb)) cosh(kh  )   ka      1 1 

(J^(kb)[Y2(ka)   - ^-(cos   ka(l ^_)-  3   S^  ka] 
(ka) 

-Y'(kb)[J2(ka)  + ^r(sin ka(l 5_) + ^_£g_M]} (26) 
(ka) 

Y!(kb) 
tan[a.(kb)]  = jryj^y i   =   0,1 (27) 

2 2  -1/2 

A.(kb)  =   [J!(kb)     + Y!(kb)   ] i  =   0,1 (28) 

It   should  be  noted   that  Eq.   26  can be  simplified when  kb  =  ka by making 
use  of   the  identity, 

J'(ka)   Y.(ka)   - Y'(ka)   J,(ka)   = ~ (29) 
11 LI ,r(kar 

Eq. 25 may be normalized with expressions for the amplitude of the 
force based on two approximate theories.  First, assuming that the 
oscillating pressure has the same amplitude and phase across the cylin- 
der base, one obtains (see curve A in Fig. 2) 

FTT = -. 1*       • Tra2 (30) 
LT   2 cosh(kh ) 

The second approximate force is derived by taking into account the 
spatial variation of the pressure that would prevail across the cylin- 
der base if no cylinder were present, (see curve B in Fig. 2) 

V = Y"       I      1 fin 
\l2       cosh(kh1) 

Tra   ka ^     ' 

Eq.   26 may  also  be normalized with  an  approximate  expression  for 
the  amplitude  of   the moment  derived  for  conditions   similar   to   those of 
Eq.   31.      (The moment  vanishes   for  the  conditions  of  Eq.   30.) 

,,„ ,  J,(ka) 
n Y" 3 I /TON M =    ,       .   ira    —:  (3z) o cosh(kh   ) ka 
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Fig. 2.  Uplift Force Ratios 

The ratios of the amplitude of the uplift force and overturning 
moment to the above normalizing quantities are plotted in Figs. 3 and 4 
with ka as the variable and kb as parameter.  For the most common case 
of a = b, each result is restricted to a universal graph because the 
above ratios are universal functions of a unique variable, ka. 

Vertical Velocity Distribution along the Mud Line 

It is important to note that Sneddon (1966) provides an alternate 
method to derive Eq. 20 directly from the Dual Integral Equations them- 
selves.  Interestingly enough he also provides a direct solution for 

the vertical velocity -r-*- at the mud line through an expression for 
3<j> 6Z 

T— (r > 1, z = 0) which can take the form 

m+3/2,. 

(r > 1, z = 0) = ka C (kar) +/ 
2ka °m+l/21' 

(r^ 
2 ."372 

u ) 

du (33) 

Hence Eqs. 12 and 33 enable one to determine the vertical compo- 
nent of the specific discharge along the mud line and therefore the 
exit gradient.  This quantity obviously appears to become infinite at 
the end of the cylinder base, r = a, but one may extract the singular- 
ity from Eq. 33 as 

/ 2ka m+l/2(ka) r (34) 

/ 
so that the singularity of the seepage velocity field is clearly of the 
same weak nature as the well-known seepage velocity singularity occur- 
ring at the toe of an impervious dam resting on the top of a porous 
medium. 
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Fig. 3.b.  Uplift Force Ratio:  ka <  20.0 
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Fig. 4.  Overturning Moment Ratio 

The vertical component of the specific discharge can then be 
obtained from Eq. 12 so that the exit gradient 

\ = \  £ <*>i.e.o.t) 

i = - 

.m+l 
">  E l     34 
y   m [m 

2coah(kh1)JbkaH(l)'(kb)3z 

kH e 
(r>l,0) cos(m9) 

(35) 

(36) 

One may use the notion of critical gradient by comparing the amplitude 
of the oscillating exit gradient as given by Eq. 36 to the well-known 
expression 

x  = Xl = _§  
cr  y    1 + e (37) 

which for sands is approximately equal to 1. 

If no cylinder were disturbing the wave field, the amplitude of 
the exit gradient to be used in place of Eq. 36 would simply be 

kH 
Te  = 2 cosh(kh ) 

so that it appears to be useful to simply compute the quantity 

.m+l 

S(r, 
3(J> 

m=0 H(1)'(kb) ka 3z 
I (r>l,0) cos(m6)| 
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after substituting from Eq. 33. 

A stability condition is then given by 

kH 
S  - 1 

u„ u \" S(r,6) < I  = —:—-— = 1 2 cosh(kh.)        — cr   1 + e 

in which the cylinder effect has been concentrated in a single 
coefficient, S(r,6). 

EXPERIMENTAL STUDY 

In order to check the validity of the above theory, actual uplift 
pressure amplitudes along the base of a rigidly fixed, vertical, circu- 
lar cylinder resting on a bed of sand were measured in the wave tank of 
the Hydraulics Laboratory of the University of Wisconsin-Madison.  The 
sand used in the experiments was a fairly uniform coarse sand (about 
1 mm in diameter).  Although the depth of the porous medium had to be 
finite, it was kept large enough with respect to the wave length to 
permit the use of infinite-depth theory.  More specifically the quan- 
tity kh2 was equal to 2.1 so that tanh(kh2) was close to 1, or more 
precisely 0.97.  The tank used was 26 ft (7.92 m) long, 4 ft (1.22 m) 
wide and 2 ft (61 cm) deep but the inclusion of a bed of sand reduced 
the depth to 1 ft (30.5 cm).  The sinusoidal progressive waves gener- 
ated were in the following approximate ranges 

.7 s £ T < .9 s       '2.4' <  L <  3.5' 2.2" <_ H <_  2.85" 
(73.2 cm)    (106.7 cm)   (5.59 cm)   (7.24 cm) 

Pressure measurements were made on the underside of the base of a 
vertical, circular cylinder mounted in the tank on top of the sand bed. 
Only one cylinder having a diameter of 5.72 in (14.5 cm) was tested 
with a sea water depth of 8 in (20.3 cm).  A Pace transducer was used 
to measure pressures along the underside of the cylinder base at ri = 
.991 in (2.52 cm) and r2 = 1.963 in (4.99 cm) while variation of the 
polar angle 6 was obtained by rotation of the cylinder.  The cylinder 
base had the same radius as the cylinder itself:  b = a.  See Fig. 5. 

The measured pressures were normalized with respect to the pres- 
sure that would have prevailed if no cylinder had been disturbing the 
incoming waves.  To this end, the normalizing quantities were deter- 
mined by substituting the physical values into Eq. 24. 

Spring and Monkmeyer (1975) studied the effect of wall confinement 
on pressure measurements along a cylinder placed in a tank of finite 
width.  Correction coefficients resulting from their theoretical anal- 
ysis of confinement were also used.  In all cases, however, this coef- 
ficient turned out to be very close to 1 because their results and 
recommendations had made it possible to avoid those very parameter 
values based on wave length, tank width, cylinder radius for which 
confinement effects are important. 

In Table II typical laboratory results are compared with the 
theory.  The non-dimensional theoretical results were computed from 
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DIRECTION Of WAVE ADVAUCE. 

Fig. 5.  Position of the Pressure Taps 

Eqs. 22, 23 and 24.  In combination with two values for r, r-i and r?, 
five values for the polar angle 6 were used. 

DISCUSSION 

Table I clearly shows that the maximum pressure amplitude gener- 
ally occurs at r = a, 6 = 180° while the minimum is generally found at 
8=0°, between r = 0.0 and r = 0.4a.  For small values of ka - kb 
(cylinder radius small with respect to the wave length) the maximum 
pressure amplitude is only 1.2 times the minimum so that the pressure 
amplitude variation across the cylinder base is not very significant in 
this case.  For larger values of ka, e.g. ka = kb = 1.0, however, the 
maximum amplitude may be as much as 7 times larger than the minimum and 
1.7 times larger than the value expected if no cylinder were disturbing 
the incoming wave field.  A strong damping effect is also demonstrated 
by the small value of the amplitude of the oscillating pressure at the 
point of minimum pressure amplitude (about 25% of the expected value at 
that point if no cylinder were there).  For the same cylinder, kb =1.0, 
with an extended base, ka - 2.0, the pressure amplitudes around the 
edge of the base are not as affected by the diffracted waves as they 
are* in the immediate vicinity of the cylinder wall, e.g. when ka - kb. 
However the damping effect taking place across the extended base is 
more striking. 

Typically the value of the parameter ka for conditions correspond- 
ing to large oil tanks in the North Sea (2a = 100 m) with the century 
wave (L = 320 m) is about 1.0.  Interestingly it was found that for 
values of ka of order 1, the pressure amplitude variation across the 
cylinder base is quite significant. 

The graphs presented on Figs. 3 and 4 show how the pressure vari- 
ation across the cylinder base affects the uplift force and overturning 
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TABLE II 

COMPARISON OF SELECTED EXPERIMENTAL PRESSURE RATIOS 
WITH PRESSURE RATIOS PREDICTED BY THEORY 

Experimental Data Theory 
kb (=ka)    r/a       6     R R 
 exp th  

0.6133    0.3465    180    0.719 0.75602 
0.71614 
0.62555 
0.55224 
0.53048 

0.686     180    0.970 0.99319 
0.90817 
0.71096 
0.58945 
0.58829 

0.4235    0.3465    180    0.777 0.78260 
0.76181 
0.71926 
0.69016 
0.68278 

0.686     180    0.903 0.92851 
0.87648 
0.77613 
0.73250 

 0.73619  
Note:  Waves approach from 9 = 180° 

moment.  The pressure damping in the sea bed as ka increases, clearly 
has the effect of decreasing the force and moment with respect to what 
approximate theories would predict.  This is consistent with what intu- 
itive consideration would suggest but a quantitative rather than quali- 
tative statement about the uplift force and overturning moment is quite 
important for design purposes.  As an example for ka = 1, the force is 
about 50% smaller than that which simple approximate theories would 
predict. 

Although not presented here in detail, additional studies led to 
the following conclusion:  From the standpoint of minimizing the net 
uplift force and net overturning moment exerted on a cylinder of given 
radius b, also taking into account the effect of the pressure distribu- 
tion along the upperside of the extended base, it appears that a 
cylinder without an extended base (a = b) rather than one with an 
extended base (a > b) is preferable.  In the latter case one might have 
expected the dynamic pressure exerted along the upperside of the 
extended base to somehow compensate for the increase in the underside 
contribution from the dynamic seepage.  But this was not the case.  In 
other words, to minimize the force and moment, other considerations 
aside, an extended base should be avoided. 

180 0.719 
135 0.657 
90 0.549 
45 0.547 
0 0.548 

180 0.970 
135 0.813 
90 0.707 
45 0.581 
0 0.558 

180 0.777 
135 0.744 
90 0.718 
45 0.705 
0 0.729 

180 0.903 
135 0.804 
90 0.750 
45 0.728 
0 0.741 
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Insofar as an extended base does not remove the seepage velocity 
singularity occurring around the edge of the cylinder base such a base 
has little or no value in preventing erosion.  Rather the technique 
of laying a rock filter around the cylinder base would seem more appro- 
priate because it stabilizes the sand, while not increasing the net 
uplift force and overturning moment on the structure itself.  The spe- 
cific area to be protected around the cylinder base should be deter- 
mined by calculating the exit gradient.  As an example of what Eqs. 12 
and 33 can provide, a contour of value 2.0 for the ratio of the hydrau- 
lic gradient amplitude to its value if no cylinder were there, namely 
of the coefficient S(r,8), is shown on Fig. 6.  Obviously for practical 
purposes, the critical exit gradient corresponding to the conditions of 
a specific problem should be determined and thus a critical contour 
around the cylinder base could be drawn, delimiting the area to be pro- 
tected.  As usual a safety factor should be introduced. 

DIRECTION  OP       / /    II,,      \\       ^„ ,,,. , / /   ka-k.t = lo   \\ CONTOUR 
WAVE ADVICE    / / W 6Cne>2.o 

Fig. 6.  Hydraulic Gradient Ratio 

Table II shows that good agreement was found between experimental 
and theoretical results.  Possible reasons for the small but persistent 
discrepancies include experimental error, difficulty in achieving a 
truly isotropic and homogeneous sand bed, and compressibility effects 
in the porous medium.  In general these effects were not very 
significant. 

CONCLUSIONS 

1. The theory presented allows calculation of seepage pressure, 
uplift force and overturning moment values for a single vertical cir- 
cular cylinder resting on a bed of sand of infinite depth.  Evaluation 
of the exit gradient around the cylinder base is also possible.  The 
nature of the seepage velocity singularity is shown to be similar to 
the singularity encountered at the toe of an impervious dam. 

2. Normalized forms of the force and moment appear to be univer- 
sal functions of two non-dimensional parameters ka and kb (k is the 
wave number, b the cylinder radius, and a the radius of the cylinder 
base), reducing to one when a = b.  Graphs for these functions are 
provided so that once the physical characteristics of the problem are 
known, little additional computation is required. 
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3. A cylinder base extending beyond the cylinder radius does not 
remove the exit gradient singularity at the edge of the base.  Further- 
more, for a given cylinder radius, the effect of an extended base is to 
increase the maximum value of the net uplift force and overturning 
moment exerted on the cylinder.  As a preferred protection against pos- 
sible piping below and around the structure foundation, the use of a 
rock filter is recommended. 

4. The theoretical results for the pressure appear to be in good 
agreement with data from a limited experimental program in a wave tank 
at the Hydraulics Laboratory of the University of Wisconsin-Madison. 

5. The graphs presented in Fig. 2 show that approximate theories 
generally can not predict the wave-induced seepage effects on the 
cylinder. 
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