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ABSTRACT 

This paper describes experimental  results on the in-line and lift 
forces acting on inclined circular piles which are placed in two differ- 
ent planes:   (1) a vertical  plane parallel   to the direction of wave prop- 
agation; and (2) a vertical  plane parallel  to the wave crest. 

The in-line and lift force formulas for an inclined pile are formu- 
lated by referring to the conventional Morison and lift force formulas, 
respectively.    Stokes third order wave theory is used for the estimation 
of flow kinematics induced around a pile.    Based on these formulas, the 
time-independent and time-dependent values of the drag, mass and lift 
coefficients are determined by using several  methods.    Further, the time- 
dependent coefficients are expanded into Fourier series which consist of 
several  significant components. 

Reliability of these coefficient values are studied by examining 
the relative deviation of the predicted wave forces based on these coef- 
ficient values from the measured ones.    The analysis finds that relative 
deviations of the in-line and lift forces exceed in many cases 15% and 
100%, respectively, when the time-independent coefficients are used for 
the prediction of wave forces, but that they are reduced to 5% and 15%, 
respectively, when the time-dependent coefficients are used for it. 

INTRODUCTION 

It is commonly recognized that two types of wave forces are induced 
on a slender cylindrical  pile subject to the motion of unbroken waves. 
One is called in-line force which acts on the pile to the direction of 
wave propagation and the other is called lift force which acts on the 
pile transversely to the direction of wave propagation.    For the present, 
the in-line force is calculated by the Morison formula which evaluates 
the in-line force as a linear sum of the drag force and the inertia force. 
The lift force is calculated by the lift force formula which is same as 
that in a steady flow.    However, when one attempts to predict these wave 
forces by the above formulas, one has to get reliable information on:   (1) 
the flow kinematics induced around an inclined pile; and (2) the values 
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of the hydrodynamic coefficients [Cn] and [CM] included in the Morison 

formula and of the lift coefficient [C, ] included in the lift force for- 

mula.     It is currently common practice to estimate the flow kinematics 
by using appropriate wave theories.    Airy's wave theory has been widely 
used because of its simplicity although Stokes wave theory of higher or- 
der and Dean's stream function theory have also been used recently for 
the estimation of the flow kinematics.    Hence, determination of Cp., CM 

and C.   values experimentally has become one of the major themes in the 

present research of the wave forces. 

Since Morison(1950) developed his unique method of determining 'D 

M 
ducted on wave forces and coefficient values have been determined by 
several methods.    Table 1  summarizes some of the representative works in 
which unique methods have been either developed or used to determine the 
coefficient values.    Through a brief review of these previous works, the 
following facts can be noted: 

1. Coefficient values for either vertical or horizontal  piles have 
been determined mainly by the methods shown in Table 1. 

2. There has not been sufficient study conducted to determine which 
method will provide the most reliable coefficient values for the 
prediction of wave forces. 

3. Inasmuch as only a few works have been done on the wave forces 
acting on inclined piles, there is a limited amout of informa- 
tion available on the coefficient values for inclined piles. 

It should be noted, however, that jecket-type offshore structures 
generally consist of many steel  piles which are inclined in various planes 
at different angles.    Thus, it is quite doubtful whether the coefficient 
values determined for either vertical  or horizontal  piles can be used 
directly for the evaluation of wave forces exerted on inclined piles. 

Based on this, a basic experiment is performed in this study to in- 
vestigate the characteristics of in-line and lift forces which act on 
inclined piles placed in two different planes:   (1) a vertical  plane par- 
allel  to the direction of wave propagation; and (2) a vertical  plane par- 
allel  to the wave crest.    The conventional Morison and lift force formu- 
las are modified, respectively, to predict the in-line and lift forces 
acting on the inclined piles which are placed in each of both vertical 
planes.    Further, Stokes third order wave theory is used to estimate the 
flow kinematics induced around the inclined piles.    Based on these formu- 
las, the time-independent and time-dependent values of CD, C^ and CL are 

determined by using either the methods shown in Table 1  or the methods 
which are derived by modifying the previous ones. 

The analysis is focussed to determine:   (1) whether the inclinations 
of piles affect the coefficient values;  (2) which method will  provide the 
most reliable coefficient values for the prediction of respective wave 
forces; and (3) how the inclinations of piles affect the ratio of the 
maximum lift force to the maximum in-line force exerted of an inclined 
pile over a wave cycle. 



INCLINED CIRCULAR PILE 1763 

TD 1 X? w 

es
 

te
rm

 
m

e-
 

he
re

- 1      1     E 1     QJ o 
I     rd   QJ   rd CD   S- x: x:    _J 

•—-    >>XJ           = -a S- -P XJ XI       QJ XJ   QJ -p r— CJ 
r-       XI    O    S-           ID o Or—                *• QJ      tO x: cu 
*—-           -E   QJ   S-   O _E 4-   =5 XJ -P en    ra o B 

to          •<— XJ ..      —,+J 4_>   QJ XI •p E   O   E ra    x: to XJ B     • 
tO <T3     A3 -P  cu to    CM  cu -P  E -P CD E -r- XI   QJ S-       Q. r—    CU QJ cu = 
OJ _c      .,-          ,_. •i-    -—' B  "3  S-  cu E O    tO -P T- CD rd r~ £- x: XJ 
3 a.   -P to i— CO                         r—    O    E tO           QJ   O >       CJ rd -P  o 

i- at to >,    -O   S-         4- -p •r- -—   E  -r- ra    •«- XJ   fO 3 x: 
rO O      Q)   C   U i—       E   QJ    CU          XJ E S- -P         4- 1       4- o   CJ cr 4-  P > •i-       E -i- ra     to  B -E  cu  cu O   <   to 4- S-      -r- sz to O   Qj      • 

•4-      -r-    E   to E          S-4Jr  ra o s: + •-- QJ CD      CJ -p  to E  to 
•P •r-                  t.  T- (O      -"O         h-   (O a. •p x: o    • •r-          CU QJ .r- p> to       •«— 
E o    s- cu to 4-  to        s- cn^—-i— o = C.       Q. E to QJ   QJ   tO 
CJ <U       O-PTD S-       CU          CD          QJ o E                       XJ 13       CO XJ rd 3   S-   >> 

a.         0 c QJ     'i-   CU   O     •   > s •r- XJ      x:  o o to c QJ r—    ra  r- 
CJ to     cr>"a  rd •r-        S-XTT) 4->   fd p > E    • CJ x: Li_      rd •r-   tO tO   3   rd 

rd S-      QJ 1—          El r—   ra  CD   rd -P sz >  cr E 
4- o     s- XJ    « zs    to      *a cu s- CD o       to cu a> CU     -P h-   " QJ to  ra 
4- 2   *o o -P O                        E •«-   QJ -E to -p ro     e x:     ra _l x: •p 
QJ p         x:  E U_       S_     •   to   CJ ••— p x: 4- -p CJ -p E  P   S- 
O QJ  -P   QJ QJ -O          -r-    S- >,   »ao ui XJ QJ   to   QJ 
CJ •P      JZ    CU 'i- >^     «r-   QJ      "4-    Z3 >, XI   to >,     CD B 4- >> XJ   rd T- 

fO     4J   E   U JU       t- -O   trt 4-   O JH CD  r—    tO    >, XI      E ZJ  o XI E   QJ   S- 
en 3   E   QJ   QJ U- XJ   to   rd   CD i— E QJ  r—    3 
E X)       &-   to 4- "O      O   (0   zs   o = -o QJ   rd -P   Z3 *r- XJ     E •1-  {/I XJ CL         O 

cu    a> -i— *f- CU      U_    Q.r—   (J CD E x:  E i—   r-j QJ      S- X   CD QJ CU   QJ Lx. 
E E    x: JZ  cu E              X   <T3          CD E •r-   CD- QJ   ro   rd E       QJ ro   ZJ E XJ x: 

•r-      -P J—    O      • •.-      4-   QJ    > .E -E E        E  > ^ •1-    -p E r— E  P   QJ 
E E      -r~            U = E      O               CJ +-> E s_ cu QJ        i E      QJ rd E •i- =   x: 
s_ s-    QJ           XJ s-          >,-P ro S- CU    >   £_ -P r— S-     XJ cu  > XI &_ 1       -p 
CD cu             • XT   o CU      -P i—   E   CU   S- QJ •P  T-    CJ    C  <C QJ E o QJ QJ    fc- 

•P •p    ai >> u JZ •P      E i—   QJ          QJ •p CU   to   E   QJ = -P      CD rd -P x: •p E   CU   >> 
OJ CU      S- r—   ro P QJ     cu  ^ -a 4- -P QJ XJ      tO   •!-   XJ QJ       S- o c •p cu •r~   -P  X3 

XJ XJ      CU   CU   CU   CU "O     •<- 4-   E   O 4- -o CU          C   QJ Xt      QJ QJ   QJ CD XJ +J t^ 

-c. >        E CJ       cu        to o o  E cu x: 2 XI XJ B ra XJ 
s- CU      3 '.- M- CU     -i- 4-   CX to   QJ QJ to   CJ   rd  Q.+J CD c QJ to   CU   QJ 
o S-             4->   O -P %.     4-   O   CD   QJ   S» s~ r—    Z(             QJ S-      to OJ   QJ -p s- QJ   i.   E 
4- CU     cu  o        E QJ   4-      -a rj cu QJ rd   to   to XJ   S- CD      CD CJ   O- E QJ E   QJ *r- 

2      i-    0)    W-r- 3     aj  wi cr-r 2 •r-     1     QJ 2     ZJ i.   CD 2 •r- x:  E 
-a u aoj o O   OJ-r-   (O QJ -P          QJ -P O XJ o B        S- 
aj to      >,  LO   13   Q_ to    cj -t-   i   > -a to c.   rd -P   E 4- to      rd 4-   C a. to S- XJ   QJ 
to QJ         U    (Dr-      1 QJ              S-   CU          QJ QJ tU         <j -i-   rd QJ       > t QJ QJ    QJ   P 
=3 3              S-   «3   O 3        >, QJ    E -P,— rs 2 XJ         P   QJ 3 •p   1 cu 3 P r—   QJ 

i—      QJ           >   2 i—        S-.   tO -i~    E t— QJ   QJ          t- 1—      —1 4-   OJ E QJ r— XJ 
(/I as     >    "       P 03      fO         -P   CD   fO rd to XJ   S-   QJ   QJ ra   CJ •r-    B o (O XJ  ro 

XJ >      rO   O -P = >     E  S-      "O  o > QJ -r- QJ x: x: > > CJ   QJ 
o 2  S-  E •r-   CU   to   E zs  > x: P -a "~ -p o       s- 
x: s:      cu cu cu s: s~ -r- cu cu to s: i— o 2     XJ s: E QJ cu SI   to   to   QJ 
-p CJ     *  NTJJ: CJ    a. s- E a..r- CJ rd   S-          to   CD CJ      ra x:  to x: o r-  -r-    2 
cu E p ZJ -r-   QJ >   Q. >, CU r— •P    QJ •p to 
s: XJ     c  aj cu -a    cu o E -o -a -o i—   E t— XJ     XJ c XJ XJ   to 

E      -r-    B   Q-  C E      .E U_    S-     1     O E CD   to   to ••-   rd E       O QJ   -r- s- E x:   o   QJ 
ftf      XI    CO   CD    CU tO      +->           CU    CU JE rd to   rd   Z3   E   CJ ro    x: c.   g CD rd CJ x:  3 

•P   CJ XJ  P OJ -P   E -P QJ i—   O   S- 4-> OJ   s- •p <r-  P r— 
Q -i-   CU   E 4- Q   >,JE   CU T~   CU Qx:   3   Q)   Q)   w J3 u x:  QJ 4- o x:  aj  ra 

CJ      3 J3 ••-   iC CJ    .o +^ -o +->  E CJ t—    E    E   +->  -r- 2 -P ra CJ 2   E   > 

>> E XJ -p 

QJ o 1     CD 4- 1 XJ 
r—            tO S- N 1    o O   Q. QJ 

T3    «3  r—    (T3 CU     "  E   QJ      • XJ        to  to QJ -P   rd -P XJ XJ   s- 
E   CJ   fO   CU to j=   in   cu   S:   >> S- E           (Dr-   C £-  ro x: s- E   E   Z3 

to rd T- -P   E QJ   4->   QJ JZ          i— o rd XJ   QJ   rd   O QJ  r—    tO XJ      ' CD ra   ra   tO 
E •P   o -P         > +J   to <— -E E    £ 2r-     t E XJ > to 
o to   S- -P  cu fO -P   (d          E   (0 «  ra          CD XJ •r- ZD rd   QJ *   QJ    QJ 

cu  cu        &_ i—  fd  2  E  i-  cj -a tO          QJ   S-   QJ to   CJ s_ XJ to   E   £ 
-p i—  > XJ  cu a.           o (DT a QJ   QJ   S-   QJ -P CD   tO   QJ CD   ZJ QJ QJ •«- 
ra E   2 >,  Dl         4-> _E CJ >   to   CD   2   S- s- ox: E    tO o >r—   QJ 
CO CXXJ   rO -P r—    E   CD -P   O. rd rd   t-   2         CU QJ         -P •r-  rd to ra   t   i~ 

CU           E fO r— T-   CJ   fd    to 2 cu        to x x:  E r—    CU 2   E   0) 
-p XJ CJ    " cu r— to ~a i- o. s- Q- >   B -P   QJ CL-r-    E i    E ex ••-  2 
t/> •Q) ID wx: 4- +->   E   o         en QJ    to   OJ    E tO                T— E cu 
cu Q-r—   CU   -P E   fd 4-   2   o QJ > E x: cu to >, •r-   CU QJ >r-    E > rtJ    CX   > U   OP          O -P 5- r~   rd -P   B  QJ XJ r— XJ s- S- r-   ro   QJ 
E XI         iO  c E    M   to   QJ r-    O QJ tO    S-          •!—   U E  r—    QJ r—    QJ CD to   E SZ 

tO  cu  2  o fO •!-       cux: 2 tO -P   E   i_   S- to   ra -P ra   2 2 to   O -P 
1     S- s- M— •#-       a. QJ          O   QJ   O     ' •P   ra •p aj -r- 

4- rc aj aj to to   O   O r-     . to C     "         CL4-   to tO   E    S- o E S- -P   E 
o 2  > cu cu x:        r  -o -a QJ en cu   to   X         OJ CU   O   CD -p aj CD en cj  o 

*a      -i- u i—       to E cu cu O   E    OJ    QJ   CU i— i—    ME x: O   QJ 
to E    tO    CO    S- •i- ~a -P •<- s_ > S- ••-   (J          > •«- •i-  -i-    QJ XJ  -P i.  to  to 

•p ra   CU   i/)   O am  c       3  s- Q. CXi—   L   (U   (O   CL CL s-  en E a. CX          QJ 
E •P   CU 4- O -r- r—   to    CU I    O   E   2 o rd   E XJ   CJ 
cu i-   (O   S- S~   fd   O   rd   rd   to t- E   E 4-   O         XJ c. x:  to o s- E    E   S- 

•p fO i—    CD CU rd .—   CLP   CD XI rd r- -r-          CO   E   CD «        2 ra <-    (O   O 
E i—   Q- O   E <—   Q-         O   E   O -P          O   E r~ XJ    O 4- 
o ZS                   S-    •!—          • n      .— -p 3 >,r—  4-       •           T- ZJ    CU  r— QJ   CD ZJ >><— 

CJ CJ -p ex.— -a U   QJ   rd          QJ   O CJ —    to T- XJ   CD r— U   CJ 4- E   CJ u —   ra -P 
S-   rC            1     QJ s-  S- XJ -a  s- to s- —   -P  r—    QJ  XJ    CJ s- m E   S- s~ — -P 4- 

•r-  r—    E    E    S- 'i-   QJ   O   E   CU i— rd   O   PL S-   ro   C •r- r—    >^ =3    O ra   O T- 
CJ  4-  T-  -r-    =3 CJ   2   E   to   3   rd CJ P -P  ZJ  u  E T- u as. -P 4- o U -P r— 

tO 

T3 
E 
rd •p 

S- s- >1 s- 
o E    QJ ra ra x: E rd -P >1 XI +-> o -—» CO E — N ' rd --^ rd 
13 to O QJ   CD CO rd (NJ _^: to s~ — <X) <: •r-  LO r—    CLLTi ^ r^ Q-r-. j*: ra r^ 

s- en =1   S- CT\ i  en s~ en ra CT) 
O  r— CD    (O  r— ra r— x: P r— s; -— ^ o-— <c- CO  CJ <"— 



1764 COASTAL ENGINEERING-1980 

THEORETICAL CONSIDERATION 

This study employs an essential assumption that the in-line and lift 
forces exerted on any inclined piles can be evaluated by the conventional 
Morison and lift force formulas if certain modifications are made on them. 
This assumption is the basis of this research. 

Wave Force Formulas for an Inclined Pile 

Figure 1 shows a sketch of a circular pile with an outer diameter, 
D, placed in a vertical plane parallel to the direction of wave propaga- 
tion at an inclining angle, 9, and the coordinate system used for the 

analysis. For the convenience of later 
discussion, this vertical plane will be 
called hereafter the "Plane A". 

In this figure, u and v represent 
the horizontal and vertical velocity 
components of an induced flow at an ar- 
bitrary position, (x,z) on the circular 
pile, at an arbitrary phase, t. Simi- 

larly, u and v represent the accelera- 
tion components of u and v, respective- 
ly. Here assume that the velocity com- 
ponent normal to the pile axis, U and 

its accerelation, U can be composed into 
the following equations: 

 (1) 

 (2) 

Figure 1. Schematic drawing of 
an inclined pile U = u cosQ + v sin9 
placed in the Plane A. U = u cos8 + v sin9 

Then, the total  in-line force, Ft A(t) which acts on the inclined 

pile at an arbitrary phase, t, will  be evaluated by the following equa- 
tion: 

fl 

•W^ = 
ft 

CDU £fD U|U|sec8 dz    + 
-II 

+   |fgJlD2n_tan9 

C • If JID2 0 sec9 dz 

.(3) 

where CDU and C^ represent the drag and mass coefficients of the inclined 

pile, and the last term represents the buoyancy caused by the fluctuation 
of the surface elevation,^. 

Similarly, the total lift force, F
tLA(t) which acts on the inclined 

pile at the same phase, t will be evaluated by the following equation: 
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W^ j.h 
CLU V*  U sec6 (4) 

where C, .. is the lift coefficient of the inclined pile. 

Figure 2 shows a sketch of a circular pile with an outer diameter, 
D, placed in a vertical plane parallel to the wave crest at an arbitrary 
inclining angle, 9, and the coordinate system used for the analysis. For 
the convenience of later discussion, this vertical plane will be called 
hereafter the "Plane B". 

In this figure, u and v repre- 
sent the horizontal and vertical 
velocity components of an induced 
flow at an arbitrary position, (y,z) 
on the pile at an arbitrary phase, 

t. Similarly, ii and v represent 
the acceleration components of u 
and v, respectively. 

Here assume that the in-line 
force which acts on the inclined 
pile sonsists of the in-line force 

caused by u and ii, and the lift 
force caused by v. Similarly, as- 
sume that the lift force which acts 
on the inclined pile consists of 
the in-line force caused by v and 

v, and the lift force caused by u. 

-kv-i--Rvr--i 
-v,y • 

Figure 2. Schematic drwing of an 
inclined pile placed 
in Plane B. 

Then, the total   in-line force, F.vR(t) which acts on the inclined txBx 

pile at an arbitrary phase, t, will  be evaluated by the following 
tion: 

F...,(t) =|   CDu 1/D u|u|sec9 dz +j     CM. }fJTD2u sec9 dz 

equa- 

txB* Mil 4J 

1 
"Lv 2 f(v sin9) secQ dz .(5) 

where the first two terms in the right-hand side of Eq.(5) represent the 

in-line force caused by u and u, and the last term represents the lift 
force caused by v. 

Similarly, the total  lift force, F.. „(t) which acts on the inclined 

pile at an arbitrary phase, t, will  be evaluated by the following equa- 
tion: 
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W^= C
Lu IS°  y2 sec9 dz + 

1 
CDv lfD vlvlsine tan9 dz 

-h -h 

Sv i^2 *tane dz + i^°2)i tanS  <6) 
h 

where the first term in the right-hand side of Eq.(6) represents the lift 
force caused by u and the second and third terms represent the in-line 

force eaused by v and v. Eqs. (3), (4), (5) and (6) were all derived by 
referring to the Mori son and lift force formulas. 

Determination of Coefficient Values 

It is known that the coefficients in each of the above equations are 
functions of certain variables associated with the characteristics of the 
flow kinematics induced around a pile and of the pile itself. Thus, these 
coefficients may have different values from one point to another over the 
submerged portion of the pile. 

In this study, however, the representative values of each coefficient 
over the submerged portion will be determined. Thus, the coefficients in 
each integral term of Eqs.(3), (4), (5) and (6) can be taken out of each 
integral sign. Consequently, Eqs.(3) and (4) can be rewritten as follows: 
rewritten as follows: 

FtxA(t) = CDU "W*) + CMU FIU + FB^   <7> 

W^ aCLUFLU<t>    <8> 

where FDU(t) and Fjy(t) in Eq.(7) represent the corresponding integral 
terms in Eq.(3), and F„(t) represents the buoyancy term in Eq.(3). 

Similarly, Eqs.(5) and (6) can be rewritten as follows: 

•W*' = CDu W*) + Cm  Flu + CLv FLv(t)  <9> 

W^ = CLu \uW  + Sv W^ +  CMv FIv<t) + W   -dO) 
where Fr, (t), F-.(t) and F, (t) in Eq.(9) represent the corresponding 

integral terms in Eq.(5), and F. (t), FQ (t) and F,^(t) in Eq.(10) repre- 

sent the corresponding integral terms in Eq.(6). 

As it can be noted from these equations, both time-independent and 
time-dependent values of each coefficient can be determined once the flow 
kinematics around an inclined pile and measured values of the wave forces 
are known. In advance of determining these coefficient values, all inte- 
gral terms in Eqs.(7), (8), (9) and (10) are calculated at every incre- 
mental phase of 0.01 second over a wave cycle, based on the information 
of flow kinematics estimated by the Stokes third order wave theory. 
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Further, recorded data of incident waves and wave forces are quantized 
at the corresponding phases and punched on input cards automatically by 
a special A-D converter. 

1. Coefficient Values for Inclined Piles Placed in Plane A 

Based on the data provided previously, the time-independent values 
of CD(J and C.,,-. in Eq.(7) are determined in this study by the two-point 

method and by the least square method which are shown in Table 1.    Sim- 
ilarly, the time-independent values of C.., in Eq.(8) are determined by 

the one-point method and by the least square method. 

The time-dependent values of £„„ and C,,.-. at every incremental  phase 

are also determined in this study by Al-Kazily's method which is shown in 
Table 1.    Similarly, the time-dependent values of C,,, are determined by 

solving Eq.(8) directly at the same incremental  phases.    The time-depend- 
ent coefficients are all expanded into Fourier series in which several 
significant components are involved.    The details of this method has been 
shown in Shigemura and Nishimura's paper(1979). 

2. Coefficient Values for Inclined Piles Placed in Plane B 

Eqs.(9) and  (10) include three unknown coefficients in themselves. 
Thus, data should be provided at least at three successive phase for each 
equation to determine these coefficient values. 

The time-independent values of these coefficients are determined by 
the following procedures: 

1. Divide a wave cycle into four equal  divisions.    Further, deter- 
mine three phases in each division by dividing it into four 
equal  subdivisions. 

2. At each division, establish three equations for both of Eqs.(9) 
and (10), based on the data provided at the three phases men- 
tioned above. 

3. Solve each pair of three equations simultaneously to determine 
ihe respective coefficient values in each division. 

4. Calculate the arithmetic means of the respective coefficient 
values obtained in the four divisions. 

This method will  be called hereafter the "three-point method".    The least 
square method is also used to determine the time-independent values of 
these coefficients. 

The time-dependent values of each coefficient in Eqs.(9) and (10) 
are also determined by a method similar to the Al-Kazily's method. 
Namely, three equations are provided first for each of Eqs.(9) and (10), 
based on the data provided at three successive phases,  (t-At), t, and (t 
+At) where At is an incremental  phase.    Two pairs of these three equations 
are then solved simultaneously under the assumption that each coefficient 
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keeps constant value at the three successive phases.    The coefficient 
values determined by this method are also expanded into Fourier series 
which consist of several significant components. 

Reliability of Coefficient Values 

Based on the coefficient values determined, theoretical  values of 
each wave force are calculated at every incremental phase of 0.01 second 
over a wave cycle by Eqs.(7),  (8),  (9) and (10), respectively.    To deter- 
mine the reliability of each coefficient value quantitatively, relative 
deviations of theoretical wave forces from the measured ones are calcu- 
lated by the following equation: 

£?(%)  = -—53 1 x 100   (11) 

TF 1   - TF 1 . L tJmax   tJmin 

In this equation, F (t) and Ft(t) represent the measured and theoretical 

values, respectively, of a wave force at an arbitrary phase, t. Further, 
[F.l   and [F.] . represent the maximum and minimum values, respective- 

t ma x     t min 
ly of the theoretical wave force over a wave cycle, and N is sample num- 
ber used for the calculation of £F. Note that SF also measures the pro- 
priety of formulation of each wave force formula. 

EXPERIMENTAL SETUP AND PRECEDURES 

A 4.5 meters wide, 1.2 meters deep and 12.0 meters long wave channel 
was used for this experimental study. This wave channel has a flap-type 
wave generator at the back of the channel. A self-driven truck sits a- 
stride the channel so that it can run from the wave generating paddle to 
the wave absorber installed at the front end of the channel. This truck 
was locked at a position of 6 meters from the wave generating paddle. 

At a point below the main beam of this truck, a chuck was fixed in 
such a way that it could rotate around an axis parallel to the direction 
of wave propagation and around an axis parallel to the wave crest. This 
chuck allows placing a force meter on the beam. A commercialized force 
meter, or a three-component loadcell was clamped firmly by this chuck. 
This loadcell is designed to detect the electrical signals produced by 
two components of forces, F and F which are perpendicular to each other, 

x   y 
and by a component of the bending moment caused, by either F or F , simul- 

taneously. This force meter was connected to an oscillograph through 
proper amplifiers. 

A total of twelve model piles used in this experiment were made of 
aluminum and acrylic acid resin tubes having circular cross sections. The 
upper portion of each pile was fabricated so that it could be connected 
to the force meter, and its lower portion was cut off so that the cut face 
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would be parallel to the bottom of the channel when the pile was con- 
nected to the force meter. The cut face of each pile was also shielded 
by vinyl sheet to avoid edge effects. 

It was decided to give seven different angles of 0°, +10°, +20° and 
+30° to each model pile placed in an allotted plane. Thesl anglis are 
those measured against an axis normal to the still water surface. Here, 
the plus sign in front of each angle indicates that a pile is inclined 
away from the direction of wave propagation and the minus sign means that 
a model pile is inclined towards the direction of wave propagation. This 
is the case when a model pile is placed in Plane A. In the case of model 
pile placed in Plane B, the plus sign indicates that a model pile is in- 
clined towards the left side of the wave channel when one views the chan- 
nel from the side of wave absorber, and the minus sign means that the 
pile is inclined towards the right side of wave channel. It was also 
decided to perform all tests at a constant water depth of 0.8 meters and 
seven waves were chosen as the experimental waves. Table 2 summarizes 
experimental conditions used in this study. 

Table 2. Experimental conditions used in this study. 

Characteristics of Model Piles 

Materials of Model Pile Aluminum Tube Acrilic Resin Tubes 

Outer Dia. of Model Pile(cm) 

Inner Dia. of Model Pile(cm) 

2.2 

1.9 

3.0 

2.2 

4.0 

3.2 

Placement of Model Piles 

Planes for Placing Model Pile 

Inclining Angles of Model Pile 

Plane A and Plane B 

0°, +10°, +20° and +30° 

Characteristics of Experimental Waves 

Wave No. Wave Period  Wave Hight 
T(sec)      H(cm) 

H/L h/L 

1 0.86 2.8 0.024 0.693 
2 0.94 4.4 0.032 0.576 
3 1.02 5.9 0.036 0.489 
4 1.14 6.7 0.033 0.395 
5 1.27 8.3 0.034 0.325 
6 1.46 8.3 0.027 0.257 
7 1.69 9.2 0.024 0.208 

A total of 273 tests were conducted. In each test, both in-line and 
lift forces ex erted on the model pile were recorded on the oscillograph. 
Characteristics of the incident waves were also measured simultaneously 
by a capacitance-type wave gage which was placed at a position 15 cm from 
the right side of the model pile by aligning the gage front carefully with 
the intersection of model pile and still water surface, and were recorded 
on the same oscillogragh. 
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RESULTS AND DISCUSSIONS 

Values of Drag, Mass and Lift Coefficients for Inclined Piles 

Time-independent and time-dependent values of drag, mass and lift 
coefficients were determined for inclined piles placed in both Plane A 
and Plane B, by using the methods described in the previous Chapter, and 
characteristics of these coefficient values were studied. 

1.    Time-Independent Values of Drag, Mass and Lift Coefficients 

for Inclined Piles Placed in Plane A 

Time-independent values of the drag and mass coefficients in Eq.(7) 
were determined by the two-point method and by the least square method, 
respectively.    Similarly, those of the lift coefficient in Eq.(8) were 
determined by the one-point method and by the least square method, re- 
spectively.    For the convenience of later discussion, the following no- 
tations were given to the values of these coefficients: 

Gn||„:value of the drag coefficient determined by the two-point 
uu^ method. 

Cm.:value of the drag coefficient determined by the least square 
Uln method. 

CM.'.„:value of the mass coefficient determined by the two-point 
md method. 

CMI',.:value of the mass coefficient determined by the least square 
mul method. 

C.m :value of the lift coefficient determined by the one-point 
LUI method. 

C,.n:value of the lift coefficient determined by the least square 
LUl method. 

As mentioned previously, it has been pointed out by many researchers 
that the time-independent values of drag, mass and lift coefficients for 
either vertical or horizontal  piles have some functional  relationships 
with the period parameter or the Keulegan-Carpenter number.    To determine 
whether this is true in the case of the coefficient values for inclined 
piles, coefficient values determined were plotted against the value of 
the rmsKC number, at every inclination of the pile.    Here, the rmsKC num- 

[-2 R> ber is the Keulegan-Carpenter number evaluated by JU    T/D whereJU    is 
the root mean square of the velocity component, U, T is a wave period and 
D is a pile diameter. 

Figure 3 shows the plots of the coefficient values determined for 
the piles inclined away from the direction of wave propagation.    In this 
figure, the dotted lines show the Sarpkaya's results(1975) which were ob- 
tained for the piles placed horizontally in oscillatory flows, and the 
solid lines represent the variation ranges of each coefficient obtained 
in this study for the vertical  piles.    From this figure, the following 
facts were noted: 

(1).  Both CQ.JJ, and CDy,   increase their values first as the rmsKC number 
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9 = 0° 
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orvariation curves of each coefficient determined by either the one- 
point or the two-point method. 

•:variation curve of eavh coefficient determined by the least square 
method. 
 variation curves found by Sarpkaya for horizontal  piles. 
 :variation curves found by the writer for vertical  piles(9=0°). 

Figure 3.    Variations of the coefficient values versus rmsKC number for 
circularpiles placed in Plane A at plus inclination. 



1772 COASTAL ENGINEERING-1980 

increases its value up to approximately 10.0, then start decreasing 
their values as the rmsKC number increases its value farther, al- 
though values of both coefficients scatter considerably. 

(2). Variations of C„,.„ and Cj,,.. values versus rmsKC number agree consid- 

erably well to that found by Sarpkaya except for some data obtained 
for the piles inclined at 20° and 30°. It should be noted that 
these coefficients tend to decrease their values as the rmsKC number 
increases its value up to approximately 6.0. 

(3). Both CMA„ and CM|\. decrease their values first as the rmsKC number 

increases its value up to approximately 10.0, then start increasing 
their values as the rmsKC number increases its value farther. In 
this case, both coefficient values do not scatter as greatly as the 
the values of drag coefficient. 

(4). Variations of CMQ„ and C^, values versus rmsKC number agree consid- 

erably well to that found by Sarpkaya although inflection points of 
each variation curve appear at smaller value of the rmsKC number 
than the value of the KC number at which inflection point appears 
in the variation curve found by Sarpkaya. Further, distinct effect 
of pile inclination is not found on the variations of these coeffi- 
cient values versus rmsKC number. 

(5). Many of C,y, and C,y, take minus values over the whole range of the 

rmsKC number. Further, the values of both coefficients scatter con- 
siderably over the whole range of the rmsKC number. 

(6). Variations of C,.,, and C..., values versus rmsKC number do not show 

any agreement with the variation curve found by Sarpkaya, although 
distinct effect of the pile inclination is not found on the varia- 
tions of these coefficient values versus rmsKC number. 

Similar plots were also made for the coefficient values of the piles 
inclined towards the direction of wave propagation. These plots found 
that variations of each coefficient value versus rmsKC number were quite 
similar to those found for the coefficient values of the piles inclined 
away from the direction of wave propagation except for the fact that many 
of the drag coefficient took minus values in the range where the value of 
the rmsKC number was smaller than approximately 6.0. 

These facts found above may be caused partially by the following 
reasons: 

(1). Coefficient values determined here are a sort of representative val- 
ues averaged over the submerged portions of inclined piles. Thus, 
effects of the water depth for these coefficient values are not eval- 
uated properly. 

(2). The rmsKC number is used for the analysis of these coefficient val- 
ues instead of the conventional period parameter. 

(3). Experiments have been conducted in the range of relatively small 
values of rmsKC number where the inertia force is predominant in 
comparision to the drag force. 
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2.    Time-Independent Values of Drag, Mass and Lift Coefficients 

for Inclined Piles placed in Plane B 

Time-independent values of drag, mass and lift coefficients in 
Eqs.(9) and (10) were determined by the three-point method and by the 
least square method, respectively.    Many of these coefficients, however, 
took incredibly large values.    This might be caused by the defect of the 
determination methods which require each force term in Eqs.(9) and (10) 
to share equal weight for the determination of each coefficient value 
regardless to its magnitude.    Then, the following ratios were calculated 
to find some information which help minimize this defect: 

RXl(t) = FDu(t)/FmxB(t) x 100(%) 

RX2(t) = FIu(t)/FmxB(t) x 100(%) 

RX3(T) = FLv(t)/FmxB(t) x 100(3!) 

RLl(t) = FLu(t)/FmLB(t) x 100(%) 

RL2(t) = FDv(t)/FmLB(t) x 100(%) 

RL3(t) =  F^(t)/FmLB(t) x 100(3!) 

In the above equations, F    „(t) represents measured value of the 

in-line force exerted on a pile placed in Plane B at an arbitrary phase, 
t, and F . R(t) represents measured value of the lift force on the same 

pile at the same phase.    Hence, these six ratios measure the relative 
magnitude or the contribution rate of each force term in Eqs.(9) and (10) 
to the corresponding wave forces.    These calculations found that values 
of RX3(t) were always quite small comparing to the values of the other 
ratios.    Namely, the maxumum values of RX3(t) within a wave cycle were 
always smaller than 53! when piles were inclined at an inclination less 
than or equal  to 20°.    Further, some of RX3(t) surely exceeded 5% when 
piles were inclined at 30°, but they did not exceed 10% in these cases. 

Based on this finding,  it was assumed that contribution rate of 
FL  (t)  in eq.(9) to its total   in-line force, F    B(t)  is negligibly small 

in the cases of runs where the maximum value of RX3(t)  is less than 5%, 
and the values of only C„    and C...  in Eq.(9) were determined in these 

cases again by the two-point method and by the least square method, re- 
spectively.    For determining the coefficient values in Eq.(10), it was 
further assumed that the values of C...  in Eq.(10) are approximately equal 

to the values of C„.  determined previously since values of C„. were almost 

constant over the range of rmsKC number experienced in this study.    Based 
on this assumption, values of only C.     and C~    in Eq.(10) were determined 

again by the two-point method and by the least square method, respective- 
ly. 

Coefficient values determined by these procedures were also plotted 
similarly against the values of the rmsKC number.    As a result, it was 
found that the values of thses coefficients also showed quite similar 
variations to those of the corresponding values of the coefficients found 
for the inclined piles placed in Plane A. 
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3.    Time-Dependent Values of Drag, Mass and Lift, Coefficients 

for Inclined Piles 

Time-dependent values of drag, mass and lift coefficients for in- 
clined piles placed in Plane A were determined by the same methods as 
described in the previous Chapter.    Namely, time-dependent values of drag 
and mass coefficients in Eq.(9) were determined by the Al-Kazily's method, 
and those of the lift coefficient in Eq.(8) were determined by solving 
Eq.(8) at every incremental  phase of 0.01  second over a wave cycle. 

In the determination of time-dependent values of each coefficient 
for the piles placed in Plane B, however, coefficient values were deter- 
mined by using the same procedures as developed previously for the deter- 
mination of their time-independent values.    Namely, the time-dependent 
values of each coefficient in Eqs.(9) and (10) were determined by the 
Al-Kazily's method when the contribution rate of each force term was less 
than 5%, although coefficient values were determined by the three-point 

method described in the pre- 
•:A1-Kazily's method    0:Fourier series     vious Chapter when the contri- 

bution rates of all  force terms 
were greater than 5%. 
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Figure 4. Variation of the time-depend- 
ent coefficients  (9 = +20°, 
D = 4.0cm, rmsKC No. = 2.80) 

Coefficient values deter- 
mined by these methods were 
expanded into Fourier series 
which consist of six signifi- 
cant components whose frequen- 
cies are the multiples of the 
frequency of incident wave. 
As a result, it was found that 
correlation coefficients be- 
tween determined values of each 
coefficient and the values of 
the corresponding coefficient 
estimated by the Fourier series 
reached approximately 0.8 in 
average. 

Fiture 4 shows some com- 
parisons of the time-dependent 
values of each coefficient de- 
termined by the Al-Kazily's 
method, with those estimated 
by the Fourier series mentioned 
above.    It can be noted clearly 
from this figure that coeffi- 
cient values are not constant 
but vary considerably within a 
wave cycle, and that Fourier 
series of significant compo- 
nents can trace determined val- 
ues of each coefficient quite 
satisfactorily. 
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Reliability of the Coefficient Values 

To check the reliability of the time-independent and time-dependent 
values of each coefficient determined above, quantitatively, relative de- 
viations of the calculated wave forces from the measured ones were com- 
puted by Eq.(ll) which was shown previously.    This computation was made 
for both in-line and lift forces exerted on all  piles placed in Plane A 
and Plane B.    To distinguish these relative deviations, two suffixes were 
further added to the notations indicating the relative deviations of the 
in-line force, £F    and that of the lift force, £F. , respectively.  Namely, 

the first suffix of the two indicates the plane where piles were placed: 
suffix [A] represents Plane A; and suffix [B] represents Plane B.    On the 
other hand,  the second suffix indicates the coefficients used for the cal- 
culation of wave force:  suffix [1] represents the coefficeint determined 
by the one-point method; suffix [2] represents the coefficients determined 
by the two-point method; suffix [I] represents the coefficients determined 
by the least square method; and suffix [F] represents the coefficients de- 
termined by the Fourier series of six significant components.    These val- 
ues were plotted against the rmsKC number at every inclination of a pile. 

Figure 5 shows the relative deviations of the in-line force exerted 
on the piles placed in Plane A and Plane B at plus inclinations, respec- 
tively.    Namely, the left half of this figure shows the variations of rel- 
ative deviations versus rmsKC number in the cases when the time-independ- 
ent coefficients were used for the calculation of in-line force, and the 
right half of it shows the variations of the relative deviations versus 
rmsKC number in the cases when the time-dependent coefficients determined 
by the Fourier series were used for the calculation of in-line force. 
Form this figure, the following facts were noted: 

(1).    Relative deviations calculated basing on the time-independent 
coefficients are less than 10% mostly, regardless of the plac- 
ing plane or the inclination of the piles, although some of 
them exceed 10% in the case of vertical  pile(9 = 0°).     It is 
further noted that these relative deviations tend to increase 
slightly as the rmsKC number increases although some scatters 
are found among them in the range of the rmsKC number smaller 
than approximately 4.0. 

(2).    Relative deviations calculated basing on the coefficients de- 
termined by the least square method are always few percents 
smaller than those calculated basing on the coefficients de- 
termined by the two-point method, regardless of the placing 
plane or the inclination of the piles. 

(3).    Relative deviations calculated basing on the time-dependent 
coefficients determined by the Fourier series are less than 
5% mostly over the whole range of the rmsKC number, regardless 
of the placing plane or the inclination of the piles. 

Similar facts were also found in the cases when piles were placed at 
minus inclinations.    These facts found above may indicate that the time- 
independent coefficients can be used for the prediction of the in-line 
force exerted on the inclined piles although usage of the time-dependent 
coefficients is more desirable for that purpose.    These facts may also 
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endorse the propriety of wave force formulas formulated in this study for 
the inclined piles. 

Figure 6 shows the relative deviations of the lift force exerted on 
the piles placed in Plane A and Plane B at plus inclinations, respective- 
ly.    Namely, the left half of this figure summarizes variations of the 
relative deviations versus rmsKC number in the cases when the time-inde- 
pendent coefficients were used for the calculation of the lift force, and 
the right half of it summarizes those in the cases when the time-dependent 
coefficients determined by the Fourier series were used.    From this figure, 
the following facts were noted: 

(1). Relative deviations calculated basing on the time-independent 
coefficients scatter considerably over the whole range of the 
rmsKC number, regardless of the placing plane or the inclina- 
tion of the piles, and some of them exceed 200%. 

(2).    Relative deviations calculated basing on the time-dependent co- 
efficients are decreased significantly,  irrespective of the 
placing plane or the inclination of the piles.    Further, they 
tend to decrease as the rmsKC number increases, and most of 
them become approximately 10% when the rmsKC number reach 10.0. 

Similar facts were also found in the cases when piles were placed at 
minus inclinations.    The above facts may indicate that considerable amount 
of error would be induced if the time-independent coefficients are used 
for the prediction of lift force acting on the inclined piles, and that 
it is desirable to use some sorts of time-dependent coefficients such as 
the ones determined by the Fourier series for the prediction of lift force 
acting on the inclined piles. 

Ratio of the Maximum Lift Force to the Maximum In-Line Force 

Bidde(1971) conducted laboratory tests on the lift force acting on 
vertical  circular piles and found that ratio of the lift force to the in- 
line force increased steadily as KC number increased, and that the ratio 
reached about 0.6 at the KC number of approximately 15 although it stopped 
increasing at the range of KC number greater than 15. 

Sarpkaya(1975) also measured the lift force acting on horizontal  cir- 
cular piles and found.that the ratio of the maximum lift force to the max- 
imum in-line force varied with two humps while KC number increased up to 
about 30 although it kept almost constant value of about 0.8 at the range 
of KC number greater than 30.    Further, he found that the ratio reached 
the maximum value of about 1.3 at one of the humps which appeared at the 
KC number of about 18. 

In this study, ratio of the maximum lift force to the maximum in-line 
force recorded within a wave cycle were checked for all  test cases and 
plotted at every inclination against the rmsKC number.    Figure 7 shows 
these ratios found in the cases of the tests where piles were placed at 
plus inclination.    In this figure, solid lines show the variation range 
of the ratio found by Bidde(1971).    From this figure, the following facts 
were noted: 
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Rm = (FL>max/(gmax x 100.0 
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Figure 7.    Ratio of the maximum lift 
force to the maximum in-line 
force versus rmsKC number(in 
cases of plus inclinations). 

recognize the fact that considerably 1 
even at the small  value of rmsKC number 
20°. 

(1).    Ratio of the maximum 
lift force to the max- 
imum in-line force tend 
to increase generally 
as the rmsKC number in- 
creases.    Further, var- 
iations of the ratios 
versus rmsKC number 
agree quite well   to the 
upper envelope of the 
variations found by 
Bidde, when piles are 
inclined at the incli- 
nation equal  to or less 
than 10°. 

(2).    When piles are inclined 
10       rmsKC at the inclination equal 

to or greater than 20°, 
o some scatters appear 

among the values of the 
ratios for the piles 
placed in Plane B. 
Namely, in this case, 
the ratios become almost 
constant ranging from 
approximately 0.3 to 0.6. 

Similar facts were also 
found in the cases where piles 
were inclined at minus incli- 
nation. 

The fact described in  (2) 
may be caused partially by the 
effect of vertical  velocity 
component of the induced flow. 
In any rate, readers should 

rge lift force may possibly appear 

-J L_i I 
5 10       rmsKC 

9=30° 

when piles are inclined more than 

CONCLUSIONS 

Both time-independent and time-dependent values of drag, mass and 
lift coefficients for inclined piles were determined by several  methods, 
based on the respective wave force formulas which were derived by referr- 
ing to the conventional Morison and lift force formulas.    Reliability of 
these coefficient values were examined by checking the relative deviations 
of the calculated wave forces from the measured ones.    Further, ratio of 
the maximum lift force to the maximum in-line force was also studied.    As 
a result, the following conclusions were drawn: 

(1).    Time-independent values of drag and mass coefficients can be 
used for the prediction of in-line force acting on the inclined 
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piles.    Relative deviation calculated basing on these coeffi- 
cients increases as the rmsKC number increases, but it will be 
10% at most if the rmsKC number is smaller tha    about 12.0. 

(2).    Time-independent values of lift coefficient can not be used 
for the prediction of lift force acting on the inclined piles. 
If they are used for prediction, relative deviation is about 
100% in average over the whole range of rmsKC number.    Lift 
coefficient determined by the Fourier series of six significant 
components will  be a good one to be used for the prediction of 
lift force?    If this coefficient is used for prediction, rela- 
tive deviation is 20% at most.    Further, it will  decrease as 
the rmsKC number increases. 

(3).    Ratio of the maximum lift force to the maximum in-line force 
increases slightly as the rmsKC number increases, and variation 
of the ratio versus rmsKC.number agrees quite well  to the upper 
envelope of the variation of the ratio versus KC number found 
by Bidde, as long as the pile inclination is equal  to or less 
than 10°.    However, considerably large value of the ratio is 
found at the small  value of rmsKC number if the piles are in- 
clined more than 20°. 
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