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INTRODUCTION 

The problem of beach planform stability has been known for a long 
time: When does a small perturbation on a straight beach tend to 
grow with time and when does it tend to be flattened out?  The 
interest in this problem arises from evidence of instabilities 
occurring in nature, but perhaps more importantly it is a problem 
that must be taken into account when formulating models for beach 
evolution and erosion. Existing mathematical models describing 
shoreline changes assume that the beach planform is stable and in 
equilibrium. It is therefore important to establish the range of 
wave conditions for which instabilities could occur, thereby in- 
validating such models.  In the present case our interest is 
specifically directed towards determining conditions for which a 

model for shoreline evolution is intangible because of development 
of local instability. 

Grijm (1960) gave an approximate mathematical analysis 
indicating that at the point where the longshore sediment transport 
Q as a function of wave angle is maximum the shoreline must either 
be straight or form a cusp.  Under his assumption that Q is pro- 
portional to sin 2a the maximum occurs for a = 45°.  Le Mehaute and 
Soldate (1977) summarizes other studies that essentially arrive at 
the same results, viz. when the deep water wave angle is greater 
than 45° the shoreline is unstable. This result did not seem to 
be substantiated by field or laboratory observations. 

In this study of shoreline planform we first derive a 
criterion for instability of straight beaches. Then assuming that 
longshore sediment transport is proportional to the alongshore wave 
energy flux component at the point of breaking we determine the 
range of deep water wave characteristics and beach slopes which 
would cause unstable situations to occur. 

We consider only the longshore transport and exclude effects 
of on-offshore transport. 

PLANFORM STABILITY CRITERION 

Consider a straight beach along which an x-axis is defined, see 
Fig. 1. We shall take the usual definition of instability as a 
condition under which an initial infinitesimal disturbance grows 
in time. Accordingly, we introduce an infinitesimal protuberance 
on a straight shoreline, which is initially in equilibrium with 
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3Q/3x = 0.  A mass balance on the control volume also shown in 
Fig. 1 is performed. The seaward boundary of the control volume is 
chosen at a depth large enough so that the longshore transport is zero 
there. 

Two situations may arise: 

a) The longshore transport Q increases across the 
disturbance, i.e. 3Q/3x > 0. To satisfy con- 
servation of mass the increase in transport must 
come from erosion within the control volume and 
hence the protuberance is eroded until it dis- 
appears. The beach is stable for 3Q/3x > 0. 

b) In the case of decreasing longshore transport, 
sediment accumulates in the control volume and 
the protuberance grows. The beach is unstable 
for 3Q/3x < 0. 

The above analysis applies to the case of a protuberance from 
the beach, the opposite conclusions would be derived for a recession. 
It is therefore useful to generalize the results by considering Q as 
a function of the breaking wave angle, i.e. Q = Q(aD). According to 
our earlier assumption Q is also a function of deep water wave height, 
H0; wave period, T; and beach slope, S; however these can be assumed 
unaffected by the small disturbance and independent of x. 

We can then write 

3Q ,. 3Q dab 
3x ~ 3a, 3x 

b 

and considering the sign for 3aD/3x, which is positive for the pro- 
tuberance and negative for the recession the criterion for stability 
becomes 

|2- > 0 STABLE (1) 
3a, 

D 

and similarly 

3Q 
3ab 

0 UNSTABLE (2) 

Since aj, is a function of HQ, T, S, and the deep water incident 
wave angle, a0, the condition 3Q/3ab = 0 can also be given as a 
critical value of a0 for given H0, T, and S. Expressing the stability 
criterion in terms of deep water wave characteristics makes it easier 
to determine whether given wave conditions would cause instability. 
In the following we use linear and nonlinear wave theories to de- 
termine those critical values of a0. 
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Figure 1.  Local instability of a straight shoreline. 
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LINEAR THEORY 

In the case of Initially straight parallel contours, the deep water 
wave characteristics can easily be transformed into breaking wave 
characteristics by assuming conservation of energy flux between 
wave orthogonals. 

If linear theory is used to express energy flux conservation, 
one obtains the following: 

C3) 

c = wave group velocity 

Sub index o refers to deep water values and index b refers to breaking. 
By adding Snell's law; the dispersion relationship and the equation 
relating wave group velocity to wave phase velocity, c, 

(4)- 

(5) 

h sin a. 

L o sin a 

h 
L o 

2^ 
= tanh —  

lh (i + - 
2 T     *• 

s 

4irh 
b 

'gb 4TT1I, 
inh         b 

(6) 

V 
where hj, is the depth at breaking and L is the wave length, one has 
4 equations to determine the 5 unknowns:  Hj,, h^,, Lb, Cgf, and aD. •% 
The fifth equation consists of a breaking criterion for which we 
use the empirical relation proposed by he  Mehaute and Koh (1967). 

H, . ,, H -1/4 
f = 0.76 .S1/7 ijS.) (7) 
o o 

Equation (7) , which was derived for normal incident waves is 
modified to make it applicable to obliquely incident waves.  The 
deep water wave height, H0, is replaced by its unrefracted value 
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H    -s- H 
o    cos  a. 

and the bottom slope Is replaced by the slope 

S •+ S  cos a, 
b 

leading  to  the result- 

\ H 

o Lb 

,   1/4        3/8 -13/56 
) cos cc     cos a, 

o b 
(8) 

By straightforward manipulation of Eqs.   (3)  -  (8),  one obtains 
the following implicit equation for determining the breaking wave 
angle as a function of incident wave angle,  aQ and the parameter 
H   /L„s4/7 

0.76 (- 
Ho   ~lM    3/8     -13/56 

^)    cos    a  cos      a. 
~JTP L S 

o 

sin a 1/2  cos a  1/2 sin a + sin a. 

= c-—-)     (— sin a,     cos 

4 sin a„ sin a. 

-) 1 + 2 In (- 

. -2      . -2 
sin  a - sin  a. 

-1\ -1/2 

(9) 

The equation is solved numericallyand the results are shown in 
Fig. 2. 

LINEAR STABILITY CRITERION 

The usual assumption is that longshore transport is proportional to 
the longshore component of wave energy flux at the point of breaking: 

Q «•  H , c , sin x    b gb (10) 

We can normalize this expression with the constant HQ
Z Cg0 to give the 

remarkably simple result 
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Q - (^) Jk sln 2ab 
o   go 

cos a_ 
2 sin a, cos a 

cos a,   c b     , b   go b 

;    c u 
2.        gp 

= 2 cos a sin a, (11) 
o     b 

Using Eq. (11) and (.9) we can determine the critical value of aQ 
for which 3Q/3at, = 0. This is again calculated numerically and the 
results are shown in Table 1. For each value of H0/L0S4/7, two 
critical values of a0 are found. For incident wave angles between 
these two values the beach is unstable, otherwise it is stable. 

The lower limit of the unstable region is almost invariant to 
the parameter H0/LQS4/7 with a value of a0 = 42° while the upper 
limit decreases with increasing H0/L0*''. The upper limit in terms 
of a0 varies between 59°.8 < aQ < 63°.5. 

NON-LINEAR WAVE THEORY 

It is well-known that linear wave theory underestimates the wave height 
near breaking.  Since we are using an empirical breaking criterion 
derived from observations of real waves, we would expect that the pre- 
dicted breaking depth is smaller than the real depth and thus the 
predicted limits for a0 and aj, are also smaller than the real waves. 
Wang and Le Mehaute (1980) have shown that better results can be ob- 
tained for large deep water wave steepness using a non-linear hybrid 
wave theory which uses cnoidal theory to predict wave height and 
linear theory for wave length.  A detailed description of the rationale 
and verification of this model is given in that paper. Here, we use 
the hybrid theory with the breaking criterion (8) to.determine critical 
values of ct0. 

A problem arises because wave energy flux is not properly defined 
for the hybrid theory. We carried out the stability analysis using 
both the linear expression (11) and the normalized cnoidal energy flux 
given by 

j, 2 

Q " (H )  L~ B Sln 2ab (12) 

o   o 
B is a function of elliptic integrals: 
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H 
0 Lower 

a o 

Limit 
ab 

Upper 
a 
o 

Limit 
ab LS4/? 

0 

.005 41.9 2.18 63.5 2.57 

.01 41.9 3.09 63.5 3.64 

.05 41.9 7.00 63.4 8.26 

.1 42.0 10.1 63.1 11.9 

.2 42.0 15.0 62.5 17.6 

.3 42.1 19.5 61.6 22.8 

.4 42.3 24.8 59.8 28.7 

TABLE 1 

a limits for shoreline instability 
linear theory. 
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I I and II II 
Lower Limit Upper Limit Lower Limit 

s HQ/L0 a 
o ab 

a        i  a, 
o  1   b 

a 
o «b 

.01 0.005 46.7 13.0 77.6 16.7 48.3 13.4 
0.01 46.7 16.4 79.5 21.4 48.3 16.8 
0.03 47.3 21.1 85.0 28.8 48.4 21.6 
0.03 47.7 25.4 >85. 49.2 26.1 

.02 0.005 46.7 12.2 77.3 15.5 48.1 12.4 
0.01 46.7 15.1 78.5 19.4 48.2 12.4 
0.02 46.7 18.9 80.2 24.9 48.4 19.4 
0.03 46.9 21.8 83.2 29.4 48.5 22.4 
0.04 47.0 24.2 >85. 48.6 24.9 
0.05. 47.1 26.6 >85. 49.0 27.6 

0.03 Q.005 46.4 11.7 77.7 14.9 48.2 12.0 
0.01 46.6 14.4 78.0 18.6 48.3 14.8 
0.03 46.7 20.5 80.0 27.1 48.4 21.1 
0.05 46.7 24.4 >85. 48.5 25.1 
0.07 46.4 27.5 >85. 49.2 29.0 

0.05 0.005 46.5 11.1 77.3 14.2 48.1 11.4 

0.01 46.7 13.8 78.2 17.6 48.3 14.1 
0.03 46.4 19.2 79.2 25.2 48.3 19.8 
0.05 46.3 22.5 80.0 30.2 48.3 23.3 
0.07 46.0 25.0 >85. 48.5 26.1 

0.09 45.5 27.0 >85. 48.6 28.5 
0.11 45.0 28.7 >85. 49.0 31.0 

0.1 0.005 46.2 10.4 77.2 13.3 48.2 10.8 
0.01 46.2 12.8 77.3 16.4 48.2 13.2 

0.03 46.3 17.9 77.9 23.2 48.2 18.5 

0.05 46.3 20.8 79.2 27.5 48.2 21.5 
0.07 45.6 22.8 80.2 30.8 48.2 23.8 

0.09 45.4 24.6 80.8 33.8 48.2 25.8 
0.11 45.3 26.0 82.5 36.6 48.2 27.4 

0.13 45.2 27.3 >85. 48.2 28.9 
0.15 44.8 28.4 >85. 48.3 30.0 

Table 2 

Lower and upper limits for unstable shoreline regimes.  I i 
computed using linear wave energy transport Eq. 11.  II is 
computed using cnoidal wave energy transport Eq. 12. 
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B = B(m) = -i  i (3 m2 - 5 m + 2 + (4 m - 2) ^0 
m  L K(m) 

,-,      E(m) 2 

" (1 " m ~ KW» J (13) 
K(m) and E(m) are complete elliptic integrals of the first and second 
kind respectively. The parameter m is given by, see e.g. Svendsen and 
Brink-Kjaer (1973): 

2     1 HL 2 mK(m)=l6^f- <14) 

where L is the cnoidal wave length parameter. 

The critical values of a0 and a^  corresponding to 3Q/3a^ = 0 are 
presented in Table 2. Again two values for a0 are found indicating 
a bounded region of instability. 

It is seen that as expected the critical values are somewhat 
greater than those computed using linear theory.  The difference 
between using linear wave or cnoidal wave energy flux is small and 
only influences the lower limit. The upper limit is not affected by 
the choice of energy flux expression because it is determined 
practically by the maximum value of a;, for given S and Ho/L0. 

Of greater importance is the fact that the non-linear theory 
predicts a larger zone of instability since the upper limit is 
significantly higher than predicted by linear theory. For large 
deep water wave steepness the upper limit for a0 is greater than 
85°, however, this may be due to the fact that we are outside of 
the region for which the breaking criterion and wave theory are 
verified. Another source of uncertainty derives from the empirical 
relationship between longshore transport and energy flux used in 
this study. When better parameterization of transport rates becomes 
available the same methodology can however be used to investigate 
for instabilities. 

CONCLUSION 

As part of our effort to develop useful models for the prediction of 
long term shoreline evolution we have investigated the practical 
limitations imposed on the models by the external conditions. The 
local instability phenomenon considered in this study is an example 
of such a limitation.  Other areas that need further research in- 
volves the definition of an equivalent monochromatic wave from a 
multi-directional spectrum and the temporal discretization of an 
observed wave record. 
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