
CHAPTER 46 

A NUMERICAL MODEL OF STORM WAVES IN SHALLOW WATER 

A. HAUGUEL+ 

ABSTRACT 

For studying storm waves in coastal areas, usual waves theories are no 
more valid. The presented enoidal theory allows the modelling of these 
problems. Furthermore, thanks to its non-linear properties, it makes 
possible the simulation of many phenomena usually neglected. 

A numerical model using this theory has been developped. it has been 
tested against analytical results and certain properties of non-linear 
waves experimentaly observed. 

Finaly, the practical problems raised by the utilisation of this model 
for harbour agitation computations, have been solved. 

1 INTRODUCTION 

Two-dimensional numerical models are now of common use to study tidal 
propagation and related currents in coastal areas. These models are 
based upon long waves equations. By assuming that the vertical 
velocity linearly increases from the bottom to the sea surface, 
instead of doing the classical hypothesis of hydrostatic pressure 
distribution, it is possible to simulate non-linear waves in shallow 
water. This theory (Serre, 1953) belongs to the so called enoidal 
waves theories. This assumption leads to new third-order derivatives 
in the momentum equations, and it is possible to adapt the tidal 
models to non-linear waves in shallow water problems by taking in 
account these new terms. 

With such a model, it will be possible to compute non-linear waves of 
any form over any given bathymetry and current field. As this 
modelling gives quite correct simulation of breaking waves and 
associated radiation stresses, it seems that it will possible to 
compute longshore currents. 

The paper presents the modifications made on a tidal numerical model 
and the problems raised by the new conditions of utilisation. 

2 EQUATIONS 

By assuming that the vertical velocity linearly increases from the 
bottom to the sea surface, it is possible to average over the depth 
the Navier-Stokes equations. So the mass, and momentum conservation 
laws (Serre type equations) can be written as follow : 
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Fig.1 - INFLUENCE  OF   COMPUTED  POINTS   PER 
WAVE  LENGTH   NUMBER 
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where h is the water depth, p and q are x - and y - volume fluxes, z 
is the bed elevations, g the gravitational acceleration. The new 
terms a and 6 come from the new assumption, and caracterise the 
vertical accelerations raised by the steepness of the waves and the 
slope of the bed : 

a =  d^l, S = d£z (with d_ = ^_ + £3_ + q3_)       (4) 

dt2    dt2     dt  3t  h3x  h3y 

3 NUMERICAL MODELS 

More than the existence of the new terms a and S (which are introduced 
both in the same maner in this theory and then will be computed with 
the same procedure), the increased non-linearity in waves computation 
compared to tidal problems, and the reduced number of computed points 
per wave length required to assure the viability of the system in 
engineering practice, are the main difficulties to solve. 

A finite amplitude permanent (cnoidal) wave can be in fact regarded as 
the superposition of several sinusoidal waves. If the main one is 
described with a reduced number of points (10 for example), the first 
harmonic is computed with only 5- points, and the difference scheme 
must be able to propagate these coarsly described waves without any 
relative phase error, which would induce changes in shape, amplified 
then by the marked non-linearity of the problem. This leads to an 
extreme sensivity of the solutions of the equations to numerical error 
influence (Abbott, 1978). 

The numerical model developped in the Laboratoire National 
d'Hydraulique uses finite differences approximations built on a single 
space grid. The fractionnary steps are used to compute each part of 
the equations. 
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Theoritical    wave 

d=8m     H=2m 

Fig.2-INFLUENCE  OF   COURANT   NUMBER 

( 20 points  per wave length ) 
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3.1. One dimensional model : 

The advective terms of (2) are computed the first, the propagative and 
friction terms being solved in a second step. A third-order accuracy 
scheme based upon characteristic method is used for the advective 
components of (2) ; this one has been fitted to total derivatives 
computations of (4). The elaboration of a high-accuracy difference 
approximation of propagative components of (1, 2) including a and 6 
terms, has necessitated the use of an implicit three-stage difference 
scheme. A Newton discretisation is used to linearize the h cubed term 
which appears in the pressure gradient of (2). The discretization has 
been designed to eliminate in the linear case, any damping and phase 
error for any number of computed points per wave length, at least for 
a Courant number equal to 1 (Von Newmann stability analysis). These 
propagative components are solved by a tri-diagonal double sweep 
algorithm after combination of the discretized form of (1, 2), which 
discouples the variations of flux and water depth. In spite of the 
marked non-linearity of the problem, and as for other reasons the 
Courant number must be as closer as possible to 1, no iterative 
procedure is necessary to solve the equations. 

3.2. Two-dimensional model : 

The fractionnary steps are also used in the 2.D model. The advective 
components are solved by the one dimensional characteristic method 
scheme in the x-direction and then in the y-direction. The a and 13 
terms are computed with the same procedure (characteristics). To solve 
the left terms of (1, 2, 3) (propagation), a two-dimensional iterative 
procedure is used. This one is based on spliting with coordination. 
Usually, a simple spliting induces differences between the resolutions 
in the x-and the y-directions. In our model, iterations are used to 
obtain same water depths in the two directions. The method of 
coordination used is very fast. It suppresses any polarisation due to 
the grid (see fig. 8, 10, 11), but the advantages of 1-D-computations 
are preserved. 

3.3. Boundary conditions : 

In order to simulatte entering waves in the model at the seeward 
boundary, a condition allowing outgoing waves is necessary (see fig. 
8, 9). The relation on the outgoing characteristic of the linearised 
theory has been suited in the following form : 

fn - C (h + z) = - 2C Wi (5) 

where fn is the outgoing normal flux 
Wi is the sea surface elevation of the incident wave 
C is the celerity which appears in the discrete form of the 

propagative components. 

The same sort of condition has been imposed on inside breakwaters to 
model partial reflections : 
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Before     collision 

phase   shift 

After    collision 

Computed     waves Thaoritical   waves 
without    interaction 
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DX=2,5m   DT= 0.25s 

Fig.5- COLLISION   BETWEEN  TWO  SOLITARY   WAVES 
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Fig.6- DIFFERENT   CONDITIONS  OF REFLECTION 
OF A SOLITARY WAVE 
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T = 10,7 s T = 16,3 s 

24,7 s 31,7 s 

d=8m        H= 2m 

DX = 7 m     DT = 0,7 s 

Fig.7- PROPAGATION   OF   A   SOLITARY   WAVE 
IN   A   INCLINED   CHANNEL   (45°) 
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fn - C (1 - Y) (h + z) = 0 (6) 

where Y is a coefficient of reflection : 
(if Y = 1 : total reflection, if y  = 0 : no reflection). 

In the 2.D model, when there is an inflow a second boundary condition 
is required (Daubert, 1967). In that case, the normal derivative of 
the tangential flux is put equal to zero in the advective step. Thanks 
to the method of coordination used in the propagative step, the 
condition (6) can also be imposed on boundaries inclined to the grid, 
although it couples the two components of the volume flux. This 
coordination nearly suppresses shear effects on inclined boundaries 
(see fig. 7, 10). 

4  NUMERICAL RESULTS 

The modifications have been tested against analytical results in one 
and two dimensions for various Courant numbers and numbers of points 
per wave length. The different tests have shown that, for a Courant 
number equal to 1, a very good accuracy is obtained with values of the 
number of points per wave length as low as 20, even with a relative 
wave height equal to 0.4 (see fig. 1). For much smaller relative wave 
heights, the non-linearity of the governing equations decreases, and 
the number of points per wave length required can be reduced to 10. On 
the contrary, this one must be increased to conserve an acceptable 
accuracy if the Courant number differs from 1 (see fig. 2, 3). 

The influence of the bottom shape and the geometry of the area has 
also been studied. Figure 4 shows the transformation of a solitary 
wave propagating over a slope onto a shelf of smaller depth. On the 
shelf, a desintegration of the initial wave into a train of solitary 
waves of decreasing amplitude is found. The amplitude of the crests is 
in good agreement with the results obtained by Madsen (1969) in the 
same case. 

Figure 5 presents the phase shift obtained from non-linear effects 
after collision between two waves. This shift is in good agreement 
with the one experimentaly obtained by Maxworthy (1976). 

Figure 6 shows the aptitude/ of the boundary condition (6) to simulate 
the whole range of reflections on different breakwaters. 

The possibility of propagating a wave in a narrow channel inclined in 
the grid has also been studied. Figure 7 shows such a computation. 
Thanks to the coordinator, the condition on the normal flux (fn = 0) 
can be well imposed. The shfear effect numericaly induced by the 
boundary condition nearly disappears in this case. 

Figures 8 and 9 show the aptitude of the boundary condition (5) to 
generate incident waves in the domain (even with an angle of 
incidence) without presuming anything on outgoing wave-s. In these 
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T = 7,8s T= 20,3 s 

T= 26.8 s T= 43,8 s 

d = 8 m        K= im 

DX = 5 m     DT = 0,5 s 

Fig.8- GENERATION   AND   TOTAL   REFLECTION   OF   A   WAVE 
ENTERING   THE   DOMAIN   WITH   AN   ANGLE   (45°) 
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T = 26,8 s T = 41,8 s 

d =8 m        H=2m 

DX = 5 m     DT = 0,5 s 

Fig.9 - GENERATION   AND   PARTIAL   REFLECTION   OF  A  WAVE 
ENTERING   THE   DOMAIN   WITH   AN   ANGLE   (45°) 
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T : 5,2 s T = 12,7 s 
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d=8m        H:2m 
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Fig.10-REFLECTION   OF   A   WAVE 
ON   A   INCLINED   BOUNDARY 
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T =w,5s 

T=58,5s 

d:9m  j. H= 2m 

DX = 7 m    DT = 0.7s 

Fig.11- DIFFRACTION   -   REFLEXION   OF  A  SOLITARY 
WAVE   (  BASIN    217 m x 392 m ) 
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English   channel 
breakwaters 

PORT   OF   FECAMP 

Incident  cno'idal waves 

d =   8,5 m. 
H =    3 m. 
T = 11 s.. 
L = 97 m. 

Fig. 12-WAVE   FIELD   IN   THE   PORT   OF   FECAMP 

AFTER    50 sec.  SIMULATION 
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figures two reflection conditions have been imposed on the opposite 
boundary : total reflection (fig. 8), partial reflection (fig. 9). In 
the two cases, the reflected wave has to establish itself after a 
diffraction period, which is best shown in figure 10. This one 
presents the computation of the reflection on an inclined boundary. 

As, any changement in water depth induces harmonics due to non-linear 
effects, any variation of the geometry of the area (diffraction) 
desintegrate the initial wave into a train of waves of decreasing 
amplitude. This is again shown in figure 11, where a wave entering a 
closed basin of 217 m x 392 m is presented. This example demonstrates 
that there is no polarisation induced by the grid in the computed wave 
(coordinator). In this case, the variation of width creates harmonics 
at the point of diffraction. Then, they propagate into the basin 
giving circular waves. After reflection on the opposite boundary, this 
induced a lapping in the basin. 

5  CONCLUSION 

The' model, severly tested over the operational range of wave 
parameters, and over different physical conditions (all the 
computational tests presented have been done without any bottom 
friction, so there were no damping decreasing the computed waves) is 
now applied in coastal engineering practice. Figure 12 presents the 
first computations done in the port of Fecamp (French port on the 
English Channel). 
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