
CHAPTER 6 

WAVE SHOALING CALCULATED FROM COKELET'S THEORY. 

T. Sakai1) and J.A. Battjes2) 

ABSTRACT 

Cokelet's numerical non-linear theory for progressive, periodic 
gravity waves is applied to the two-dimensional shoaling of finite 
amplitude waves on a beach up to breaking. The shoaling curves so obtained 
are compared with existing shoaling curves calculated from different 
finite amplitude wave theories, and with existing experimental data. It 
was found that the shoaling curves calculated from Cokelet's theory 
predict higher wave height ratios than other curves. The agreement between 
the present curves and the experimental results is good except near the 
breakpoint, where the wave height of the present curves is larger than the 
experimental wave height. 

INTRODUCTION 

In recent years, significant developments have taken place in the 
field of non-linear theories for progressive, periodic gravity waves of 
constant form. 

Schwartz (1974) derived recurrence relations between successive 
coefficients in a Stokes-type power series, which made it possible to find 
computer-generated solutions of very high order. 

Cokeket (1977) modified the procedure developed by Schwartz. He 
calculated the wave parameters with great precision, for arbitrary depth- 
length ratio and arbitrary wave steepness up to the highest wave of 
permanent form. 

For all practical purposes, Cokelet's work can be seen as giving an 
exact solution to the classical nonlinear irrotational gravity wave 
problem addressed first by Stokes. It is worthwhile to apply it in 
situations involving highly nonlinear waves. One such application is given 
in the present paper, in which Cokeket's results are being used to 
calculate the two-dimensional shoaling of finite-amplitude waves on a 
beach, up to breaking. 

Shoaling calculations have been made previously by several authors, 
using one or another approximate non-linear theory of the Stokes type or 
the cnoidal type, or a semi-numerical theory. The majority of these 
theories is for periodic waves of permanent form in water of uniform depth. 
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They are applied locally in water of gradually varying depth on the 
assumption that the rate of change of the wave parameters is sufficiently 
small so that its effect on the local wave behaviour is negligible. 

While it is difficult to make an a priori assessment of the errors 
resulting from this assumption, it is reasonable to expect that the 
approximation improves with decreasing value of the relative depth change 
within an interval of one wavelength. Thus, provided that the bed slope is 
sufficiently small, depending on the depth-to-wavelength ratio, it seems 
reasonable to expect also that the calculated wave height variation in the 
shoaling process is more nearly exact when it is based on a more nearly 
exact theory for waves of permanent form in water of constant depth. 

The paper is made up as follows. Some relevant points of Cokelet's 
theory are summarized first. This is followed by an outline of the shoaling 
calculations, and by a presentation of the results. Finally, a comparison 
is made with previously published shoaling curves and with experimental 
data. 

The presentation in this proceedings paper is kept rather brief. The 
reader is referred to Sakai and Battjes (1980) for more details and 
quantitative formulations. 

COKELET'S THEORY 

Cokelet (1977) deals with the classical problem of two-dimensional 
irrotational periodic gravity waves of constant form in a fluid of constant 
density (p) and uniform mean depth (h) and with a stress-free upper 
surface. The equations describing these conditions are well known and will 
not be repeated here. Neither shall we describe in detail the method of 
solution employed by Cokelet. 

For given values of p and g, the motion is specified entirely by the 
wave length X (or, equivalently, the wave number k = 2TT/X) , the wave height 
H (or, equivalently, the semi-wave height a = H/2) , and the mean depth h. 
Cokelet makes all quantities dimensionless in terms of k, p and g. 

An orthogonal system of rectilinear axes is used, with Ox horizontal, 
positive in the direction of wave advance, and with Oy vertical, positive 
upward. The reference plane y = 0 is chosen near but not in the mean water 
level. The elevation of the free surface is given by y = ri(x,,t), and that 
of the sea bed by y = -d, so that d + Ti = h, the mean depth (an overbar 
denotes a time average). 

The Oxy frame of reference is chosen such that the Eulerian mean 
velocity is zero in all points below the level of the wave troughs. A 
consequence of this choice is that the mean mass transport in this 
reference frame is not zero. 

A Fourier series development was assumed for the complex velocity 
potential as a function of the complex coordinate. The Laplace equation 
and the kinematic boundary conditions at the bottom and the free surface 
can be made to be satisfied exactly. Satisfaction of the condition of 
constancy of pressure at the free surface leads to a set of nonlinear 
algebraic equations which determine the Fourier coefficients completely. 
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The values of these could be computed on a digital computer up to very- 
high order (>100) and with great accuracy (4 to 6 significant figures). In 
his calculations, Cokelet used a perturbation parameter E, whose value 
ranges from zero for waves of vanishing steepness to 1 for waves of 
limiting height. 

Cokelet has tabulated numerical values of several dimensionless 
dependent wave parameters as function of £ and the relative depth kd. 
These parameters include the semi-wave height (a), the square of the phase 
speed (c2), and a number of integral properties, such as the mean densities 
and fluxes of mass, momentum and energy. 

For constant relative depth (kd), the wave steepness ka was found to 
be a monotonic function of £2, but the phase speed and the integral 
properties appeared to have a maximum for some value of e2 a little less 
than 1, that is, for waves slightly less high than the highest wave possible 
for the given value of kd. This had been, discovered earlier for the 
solitary wave by Longuet-Higgins and Fenton (1974), and for deep-water 
waves by Longuet-Higgins (1975). 

CALCULATION OF WAVE SHOALING 

Assumptions 

We consider the classical, idealised wave shoaling problem: a purely 
periodic, two-dimensional wave motion, an impermeable, rigid sea bed of 
gentle slope and ending in a dry beach, zero reflection, and zero 
dissipation. As stated in the introduction, the bed slope is supposed to 
be sufficiently gentle for the local applicability of a theory for 
progressive waves of constant form in uniform depth. 

The preceding assumptions imply a zero mean mass transport, and 
constancy of wave frequency and of onshore energy flux. 

Adaptations of Cokelet's results 

The conditions stated above required an adaptation of Cokelet's 
results in two ways. 

First, we have transformed the results to a new reference frame by 
adding a vertically uniform mean counter-current, such that the mean mass 
flux would be zero. The transformed variables are indicated by a prime 
(e.g. a*, the wave frequency, and F', the mean onshore energy flux per unit 
span)„ 

Secondly, we have non-dimensionalised the results-with respect to p, 
g and a1, instead of p, g and k, which had been used by Cokelet. The latter 
set is less suitable since k varies in the shoaling process, while a1 does 
not. Varialles which have been made non-dimensional in terms of p, g and 
o1 are indicated by an asterisk. 

Procedure of shoaling calculation 

The onshore energy flux F', suitably normalized for our purposes, is 
expressed entirely in terms of dimensionless quantities tabulated by Cokelet 
as functions of e2 and kd. We can write therefore 
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F' = F'(e2, kd) . (1) 

Since the (dimensional) frequency oT and energy flux F* are constant in 
the shoaling process, so is F'. It is everywhere equal to its value in deep 
water, designated with a subscript "o": 

F*(e2, kd) = constant = F1 . (2) 

The procedure of the shoaling calculation is broadly as follows. A 
deep-water steepness H A = -n"""1k a is chosen; this determines the deep- 
water value e2, and subsequently^all other dimensionless parameters of the 
motion in deep water, including F'. For a chosen value of kd, Eq. 2 can be 
solved for £ , as illustrated in Fig. 1. The local values of £2 and kd in 
turn determine the local values of all other dimensionless parameters, 
including ka, krj, and k/k , so that the wave height ratio H/H = a/a is 
known as a function of relative depth h/A = (d+rj)A » with the chosen 
value of H A as a parameter. 

The variation of F' with £2 and kd was found to be qualitatively 
similar to that of F of Cokelet's theory itself, in the sense that for 
each relative depth (kd) it has a maximum (F1, say) for some value of e 
less than 1 (see Fig.l). Eq. 2 has (one) real toot(s) for sufficiently 
large kd-values only, such that the associated maximum of F' is at least 
as large as the. given de,ep-water value F* (see Fig. 1). In smaller relative 
depths, where F1(kd) <

AF
t, the ^aves cannot deliver the required energy 

flu^. The point where F?ikd) = F' (whose position is determined entirely 
by F', or by the deep-water wave steepness H A ) is provisionally called 
the Breakpoint. The shoaling calculations have been performed only up to 
that point. In the range of kd where Eq. 2 has two distinct roots in E

2
, 

the smallest one was taken for reasons of continuity (see Fig. 1). 

The numerical values of the functions referred to above were read 
from Cokelet*s tables. In each of these, kd is constant, and e2 is varied, 
from 0 to 0.8 with increments of 0.1, and from 0..8 to 1 with increments of 
0.01. The tables are given for ten values of e~^, ranging from 0 (deep 
water) to 0.9, with increments of 0.1. This grid proved to be too coarse 
for our shoaling calculations. Using cubic splines (Ahlberg et al, 1967), 
interpolated values were calculated first with respect to e , with a 
constant increment of 0.01, subsequently^with respect to kd, with a 
constant increment of 0.02. This was necessary (and sufficient) to obtain 
a well-defined curve through the calculated points. However, near the 
breakpoint still greater accuracy with respect to kd is required because 
of the rapid variation of theAwave parameters in that region. To locate 
the breakpoint, the equation F1(kd) = F' was solved for kd to an accuracy 
of lO"4, using cubic spline interpolations, after which a conventional 
shoaling calculation yielded the wave height at the breakpoint. 

RESULTS 

The calculations were performed for different values of the deep-water 
steepness H /A , ranging from 0.001 to 0.1. The calculated values of H/H 
were plotted versus h/A and a smooth curve was drawn through the points. 
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(deep water) 

e"kd= const. 

Fig. 1 Sketch illustrating procedure of shoaling calculation 
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The results are presented In Fig. 2 with a full line. The curve for H /A 
= 0 is for the linear wave theory. The breakpoints of the non-linear ° ° 
shoaling curves have been connected by a smooth curve. Dashed lines indi 
extrapolations. 

It should be noted that the quantity A is defined as the wave length 
in deep water, including non-linear effects. It must be distinguished from 
the deep-water wave length L in the linear approximation. Values of the 
ratio between the two as calculated by Cokelet (1977) , are presented in 
Table 1, for those values of H /A for which the shoaling curves were 
calculated. 

Table 1 Non-linear effect on deep-water wavelength 

H /A    0 < H /A < 0.02  0.04  0.06  0.08  0.10 o  o o o u 

A /L    1 < A /L < 1.01  1.02  1.04  1.07  1.10 

DISCUSSIONS 

The behaviour of the shoaling curves near the breakpoint deserves a 
special comment. The curves are seen to have a very steep gradient there. 
This is a consequence of the fact that (by definition) the energy flux has 
a maximum (in e2) at the breakpoint (see Fig. 1). This implies that an 
infinitestimal variation of e2 from its value at the breakpoint, at 
constant value of the energy flux F', gives zero variation of kd. Since 
for constant kd the wave steepness is a monotonically increasing function 
of e2, it follows that the gradient of the shoaling curve becomes infinite 
at the breakpoint. 

The foregoing conclusion contrasts with the assumption of very gradual 
variation of the wave parameters, which was the justification for the use 
of a theory for waves of constant form in the calculation of wave shoaling. 
Notice also that it holds regardless of how small the bed slope is. The use 
of Cokelet's theory for wave shoaling calculation therefore leads to an 
internal inconsistency as the breakpoint is approached. Consequently, the 
behaviour of the waves near that point cannot be inferred from that theory, 
no matter how small the bed slope may be. 

Comparisons with existing shoaling cwves 

There are several theoretical shoaling curves, calculated by using 
different finite amplitude wave theories. 

Le MShaute' and Webb (1964) calculated shoaling curves of Stokes waves 
of the third order. Their curves are limited to rather large deep-water 
wave steepness due to the limitation of applicability of Stokes waves. 
Iwagaki and Sakai (1967) calculated shoaling curves for rather small deep- 
water wave steepness and small depth-length ratio. They used an approximate 
expression of Laitone's cnoidal wave theory of the second approximation 
which is called "hyperbolic waves". Fig. 2 shows the comparison of the 
shoaling curves calculated from Cokelet*s theory with the above mentioned 
two kinds of shoaling curves. It is clear that the wave height ratio H/H 
of the present curves increases more rapidly with decreasing relative 
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depth than that of the other two kinds of curves. In general, the 
difference between the values of the present and other curves becomes 
large with decreasing water depth. The breaking wave height of the present 
curves is much larger than, that of the other two kinds of curves. 

Svendsen and Brink-Kjaer (1972) presented shoaling curves of cnoidal 
waves. They used Laitone's cnoidal waves of the first approximation (1963). 
Fig. 3 shows the comparison with their shoaling curves. (The values were 
read from a table in Skovgaard, Svendsen, Jonsson and Brink-Kjaer, 1974.) 
In their shoaling curves, the small-amplitude deep-water wave length (L ) 
was used, for which reason we have replotted our curves as H/H vs. h/L ; 
however, we have not found it worthwhile to re-calculate a set of curves 
so as to obtain slightly different values of the deep-water steepness. The 
H/H -values given by Svendsen and Brink-Kjaer are considerably smaller 
than those of the present paper. It must be pointed out in this respect 
that the former were obtained by matching the calculated energy flux values 
of the cnoidal theory and the linear theory at h/L - 0.1, which gives a 
discontinuity in wave height. If the wave heights are matched instead, 
then the calculated H/H -values increase significantly (Svendsen and Buhr- 
Hansen, 1976). 

Shuto (1974) derived several practically useful formulae for wave 
shoaling from an equation of non-linear long waves including effects of 
dispersion and variable depth. The trend of Shuto's curves is found to be 
nearly the same as that of Iwagaki and Sakai's curves. The values of H/H 
of Shuto's curves (not shown here) are smaller than those of the present 
shoaling curves. 

Yamaguchi and Tsuchiya (1976) calculated shoaling curves from several 
kinds of finite amplitude wave theories. Their shoaling curves, calculated 
from Chappelear's (1962) cnoidal wave theory of the second approximation, 
which predict the highest wave height among their calculated curves, were 
compared with those of the present paper. The trend of these shoaling 
curves (not shown here) is also found to be nearly the same as that given 
by Iwagaki and Sakai. 

All of the curves based on approximate shallow-water theories display 
a smaller rate of wave amplification as the breakpoint is approached, than 
the curves based on Cokeletfs theory. But, as has been pointed out, the 
application of Cokeletfs theory gives an inconsistency near the breakpoint. 
Therefore, although it may be an exact theory for waves of constant form, 
its use for the calculation of wave shoaling does not necessarily give 
more reliable results near the breakpoint than does the use of an approximate 
theory. Ironically, the inconsistency noted above has not appeared in the 
existing shoaling calculations, based on more approximate theories for 
waves of constant form, because in all of these theories the energy flux 
is an increasing function of wave height, up to the highest wave. 

Comparison with experimental data 

The theoretical shoaling curves calculated from Cokelet's theory are 
compared with experimental data. We have selected data published by 
Svendsen and Buhr-Hansen (1976), since these were obtained in waves which 
were relatively free from undesired disturbances. Svendsen and Buhr-HansenTs 
experiments were carried out on a plane beach of 1:35 slope. Six cases of 
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variation of wave height were discussed in their paper. These were used 
for the present comparison. The data were read from data tables which were 
kindly provided to the present authors. 

From the experimental values of wave period, wave height and mean 
water depth at the toe of the slope, a deep-water steepness (H /L ) was 
calculated on the basis of the shoaling theory of the present paper. 

To estimate the damping due to boundary layers on the bed and the 
sidewalls, we used Hunt's theory (1952). Although this theory is based on 
the assumptions of small amplitude and laminar boundary layers, it is 
thought to be sufficient for an estimate of the damping, which is relatively 
small anyway. A damping factor C, (ratio of local damped wave amplitude to 
local undamped amplitude) was calculated at several points on the slope up 
to the breakpoint. Its value was found to range from 2% to 7%. The 
theoretical wave height H was then calculated as 

H = C -H -(H/H )  , 
do    o t 

where (H/H )  is the wave height ratio of the present theoretical curves, 
and H is the deep-water wave height determined in the calculation of H /L . 
The still water depth was corrected for wave set-down. 

Fig. 4 shows the comparisons between the theoretical wave height 
variation and experimental results obtained by Svendsen and Buhr-Hansen. 
The theoretical curve ends at its breakpoint. It is clear that in all cases 
the agreement with the experimental results is good except near the 
breakpoint. The theoretical wave height increases more rapidly near the 
breakpoint than the experimental wave height. The reason for this rapid 
increase has already been explained. 

For completeness' sake, it is noted that Svendsen and Buhr-Hansen 
(1976) have compared Svendsen and Brink-Kjaer's shoaling curves (1972) to 
their data. The agreement was found to be very good even near the 
breakpoint, but only after the original curves were shifted upwards so as 
to have continuity in wave height at the point of matching with the (linear) 
theory for deeper water, at the expense of continuity in calculated energy 
flux. 

CONCLUSIONS 

Wave shoaling curves were calculated by using Cokelet's (1977) non- 
linear theory for progressive, periodic gravity waves of constant form in 
arbitrary uniform depth. 

It was found that the shoaling curves calculated from Cokelet's theory 
show a rapid amplification as the theoretical'breakpoint is approached, 
and that they have an infinite slope at their breakpoints. The reason for 
this is that the wave energy flux in Cokelet's theory has an intermediate 
maximum before the highest wave is reached. The rapid variation of wave 
height is inconsistent with the basic assumption of gradually varying wave 
parameters. In this meaning, the accuracy of the present curves near the 
breakpoint is poor. 
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The shoaling curves calculated from Cokelet's theory were compared 
with five kinds of existing shoaling curves calculated from different 
finite amplitude wave theories: Le Mehaute and Webb (1964), Iwagaki and 
Sakai (1967), Svendsen and Brink-Kjaer (1972), Shuto (1974), and Yamaguchi 
and Tsuchiya (1976). The curves of the present paper showed the largest 
amplification for all initial steepnesses and relative depths. However, 
except for the region near the breakpoint, the differences between most 
of the existing curves used in the comparison, and those from the present 
paper, are relatively minor. 
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