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ABSTRACT 

Directional wave data obtained simultaneously at two measurement sites 
is used to confirm the constancy, and therefore the validity, of Snell's 
laws for wave packets.  It is found that the wave packets refract ac- 
cording to Snell's law with the geometric g'roup velocity whereas the 
wavelets within a packet refract according to SnellTs law with phase 
velocity. 

An expression for the ray curvature of a wave packet is derived which 
is suitable for use in wave prediction programs. The ray curvature of 
the wave packet is found to vanish if the packet direction becomes 
either perpendicular or parallel to the wave speed contours, assuming 
the wavelet direction is not parallel to the contours.  This means that 
as a hydron (wave packet) moves into shoaling water refraction tends 
eventually to turn the hydron so that it is directed either perpendic- 
ular or parallel to the shoreline.  The first case is similar to mono- 
chromatic waves.  For parallel water depth contours, it is the result 
for hydrons which begin in deep water if the angle of incidence is be- 
tween 0° and 74.8° with respect to the contour normal. However, for 
deep water angles of incidence equal to or greater than 74.8° the hy- 
drons are turned and move parallel to shore in water of intermediate 
depth.  The packet ray curvature approaches infinity as the wavelet di- 
rection, but not the hydron direction, becomes parallel to the wave 
speed contours. The result is total reflection of the waves.  Total re- 
flection occurs if a hydron is moving into deeper water and its initial 
direction exceeds a critical angle.  At the reflection point the hydron 
direction becomes perpendicular to the water depth contours.  Further, 
the hydron velocity goes to zero, which is consistent with a particle 
concept. As in quantum mechanics, the wave-particle duality is encoun- 
tered. 

1   INTRODUCTION 

The conventional definition of group speed U has been defined as 

U = dw/dk (1) 

where w is the angular frequency and k is the wave number.  This equa- 
tion defines the speed of the group in the direction of the wavelet 
velocity.  The geometric group speed G was defined by Breeding (1978a) 
as 
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G = U cos  <f> (2) 

where 

<f> = 8 - y (3) 

The direction of movement of the wave packet is represented by 8, and 
the direction the wavelets move within the packet is specified by y. 

Breeding (1978a) and Black (1979) have found that the trajectories of 
wave packets are not determined by a monochromatic refraction law, i.e., 
by simply using Snell's law with phase velocity. Based on a comparison 
of computed backtracks from the measurement site with the known source 
of the waves, Breeding (1978a) has shown that wave packets refract ac- 
cording to Snell's law with the geometric group velocity. This refrac- 
tion law determines the wave path of constructive interference. At 
each point of the wave packet trajectory the wavelet direction is de- 
termined by Snell's law with phase velocity. 

One objective of this paper is to investigate more directly the validity 
of the refraction laws by testing the constancy of Snell's laws for the 
wave packets and wavelets using directional wave data obtained simul- 
taneously at two measurement sites. A further purpose of the paper is 
to derive an expression for the ray curvature of a wave packet which is 
suitable for use in wave prediction programs.  Properties of the packet 
ray curvature are described, and the important features of wave packet 
refraction are demonstrated using examples of gravity water waves. 

2        TEST OF WAVE PACKET REFRACTION LAWS 

2.1      Theory 

Snell's law for a wave packet can be stated 

(sin 6)/G = CG (4) 

where CQ is a constant for a given frequency.  The direction of y is 
determined by 

(sin Y)/v = Cv (5) 

which is Snell's law with phase velocity where v = (o/k is the phase 
speed and Cv is a constant for a given frequency.  To use (4) and (5) 
the y-axis is taken parallel with the wave speed contours. By virtue 
of Snell's law with phase velocity, y  is a function of k.  The water 
depth h is assumed to vary slowly over the distance of a wavelength so 
that k is given by the classical dispersion relation 

a)2 = gk tarih kh (6) 

where g is the acceleration due to gravity. By considering the varia- 
tion of (5) with respect to frequency it is found that (Breeding, 1978a) 

tan <f>  = k(dy/dk) (7) 
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which is a useful relation for determining 6  from a set of wave measure- 
ments. 

2.2 Field Observations 

2.2.1 Directional wave data 

Hurricane Betsy passed over the southern tip of Florida and entered the 
Gulf of Mexico at about 1500 UT on September 8, 1965.  After making a 
curved path the hurricane entered land at the Mississippi Delta at about 
0400 DT on September 10.  The storm had winds in excess of 100 knots. 

Waves due to Hurricane Betsy were measured (Breeding, 1972) using two 
independent arrays of six pressure transducers which were placed on the 
sea floor at the sites of two offshore platforms (stages) near Panama 
City, Florida. The location and configuration of the arrays are shown 
in Figure 1.  In each array a pressure sensor is located at each corner 
of a pentagon of side 35.8 m (117.6 ft) and these sensors are located 
30.5 m (100.0 ft) from a sensor at the center of the array.  Stage 1 is 
located in 31.7 m (104 ft) of water 17.7 km (11 mi) from shore.  Stage 
2 is located in 19.2 m (63 ft) of water 2.8 km (1.7 mi) from shore. Di- 
rectional power spectra with 60 d.f. were computed for time series rec- 
ords about 30 min in length by Bennett (1972) Based on the method of 
Munk et al. (1963). 

The results of the wave directional analysis for successive measurement 
times of 1712 - 1743 and 1744 - 1815 UT on September 9, 1965 at Stage 1 
are shown in Figure 2.  In the array pressure sensors 1, 2, 4, and 5 were 
operational. The wavelet directions shown are the bearings from which 
the waves come relative to true north.  It is apparent that the findings 
for the two measurement periods are consistent.  The wave directional re- 
sults for measurements made independently at Stage 2 for the same times 
as presented for Stage 1 are shown in Figure 3.  For this array all the 
sensors were working but sensors 2 and 4. 

2.2.2 Test of Snell's laws 

For the observations presented in Figures 2 and 3 the wavelet direction 
Y and an estimate of the slope dy/dk were obtained by fitting a quadra- 
tic polynomial to the data by the method of least squares. The result- 
ing quadratic curves are shown with the data in the figures. The poly- 
nomial obtained for the Stage 1 data is given by 

Y2 = 3.724 - 17.26 kj + 68.32 kj
2 (8) 

The similar finding for the Stage 2 data is 

Y2 = 3.984 - 18.74 k2 + 92.06 k* <9> 

Once Y and dy/dk are determined for a given wavelet period from (8) and 
(9), the wave packet bearings can be determined for each measurement 
site, respectively, using (7) and (3). For example, for a wavelet period 
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Figure 1. Bottom topography and array configuration near Panama City, 
Florida. 
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Figure 2. Wavelet directions as a function of wave number at Stage 1. 
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Figure 3. Wavelet directions as a function of wave number at Stage 2. 
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of 10.9 s, at Stage 1 V[ = 14.48 m/s, Yi = 180.19°, G1 = 9.23 m/s, and 
6j = 154.97°. The corresponding values at Stage 2 are v2 = 12.23 m/s, 
Y2 = 189.37°, G2 = 8.89 m/s, and 62 = 164.01°. 

To evaluate the constants in Snell's laws the wave packet and wavelet 
directions are defined with respect to the normal to the water depth 
contours.  The water depth contours between the stages are approximate- 
ly parallel with a bearing of 131 with respect to true north.  For the 
data summarized by (8) and (9) the Snell's law constants for both the 
wave packets and wavelets were evaluated for each wavelet period. The 
percentage differences of the constants at Stage 2 from the correspond- 
ing values at Stage 1 are shown in Figure 4.  In the same figure the sur- 
face extrapolations of the energy density for the first of the two mea- 
surement periods used to determine (8) and (9) are presented for both 
stages. 

2.2.3    Discussion of the results 

The difference in the energy density for Stage 1 and Stage 2 shown in 
Figure 4 is a manifestation of the wave modification occurring between 
the stages.  Over most of the frequency range considered, the Shell's 
law constants at Stage 2 differ by less than +10% from the corresponding 
constants at Stage 1 for both the wave packets and the wavelets. The dif- 
ference in the constants increases as the waves become less energetic. 
However, the difference in the constants is less than 5% for both the 
wave packets and the wavelets at the wave period where the energy den- 
sity peaks.  These findings are significant. Although the validity of 
Snell's law with phase velocity is well established, the results pre- 
sented here indicate that Snell's law with the geometric group velocity 
is equally valid. 

There are a number of reasons why different constants are found for 
Snell's laws for the wave packets and wavelets at the offshore stages. 
For example, a measurement error of a few degrees for each array is pos- 
sible from inaccuracies in locating the positions of the pressure sen- 
sors. The water depth contours are not exactly parallel as was assumed 
in the computations. Further, the accuracy in determining the Snell's 
law constants for the wave packets depends upon the method used in eval- 
uating the slope dy/dk from the data. Higher accuracy could be achieved 
by the use of higher order polynomials to better fit the data. 

3        RAY CURVATURE FOR WAVE PACKETS 

It is more convenient tc determine ray trajectories using the ray curva- 
ture than it is to use Snell's law.  The ray curvature Kv of a ray mov- 
ing with phase speed v was derived by Munk and Arthur (1952) and Arthur, 
et al (1952) as 

dy   1  , .   3v       3v , ,,„. 
K = -r1— - — (sin Y-X cos y -r- ) (10) 
v  ds   v       3x       ay 
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Figure 4.  Comparison of Snell's law constants for wave packets and 
wavelets at Stage 1 and Stage 2 for Hurricane Betsy for measurement 
times of 1712-1743 and 1744-1815 UT on September 9, 1965.  The 
percentage differences of the constants at Stage 2 from the corre- 
sponding values at Stage 1 are shown versus wave period.  The energy 
density is presented for both stages for the time period 1712-1743 
DT. 
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where x,y are the Cartesian coordinates, Y is the direction of the ray 
with respect to the positive x-axis, and sv is the arc length along the 
ray. The ray curvature Kg for the trajectory of a wave packet is given 
by 

KG = ds~ = G (sln 9 Ix" ' COS 6 3JF> (U) 

G 

where 6 is the direction of the packet ray with respect to the positive 
x-axis and SQ is the arc length along the ray. 

3.1      Packet Ray Curvature 

The derivation of the packet ray curvature is greatly simplified by us- 
ing a x'y'-coordinate system which is chosen so that at each ray point 
the positive x'-ax±s is in the direction of the gradient of the water 
depth.  As a result, the first partial derivatives of the water depth 
and the wave speeds with respect to y' vanish.  From (2) the space deriv- 
ative of G is then 

3x 

Also 

3G _ 3U     .  TT .  ,,36'  3y' , 
(12) 

36'/3x' = [(3G/3x')/G] tan 9" (13) 

3Y'/3x' = [(3v/3x')/v] tan Y' (14) 

After (13), (14), and (12) are substituted into (11) and the result is 
simplified, the packet ray curvature is found to be 

[QU/3x')/u] + [Qv/3x')/v] tan <|> tan y' 
G esc 9' + tan <j) sec 9' K    ' 

This expression is used by Breeding (1978b) in a wave prediction program. 

3.2      Properties of the Packet Ray Curvature 

The ray curvature of a wave packet defined by (15) exhibits some very 
remarkable properties.  To determine the important properties the dis- 
cussion is simplified by taking the wave speed contours parallel to the 
y-axis. It is assumed that v, U , and their derivative's are continuous 
and finite. However, under various conditions the trigonometric terms 
of the equation can become infinite or have indeterminate forms. The 
value of KQ approaches zero as the wave packet direction 9 becomes 
either parallel or perpendicular to the wave speed contours, provided 
the wavelet direction y  is not parallel to the contours. This means 
that given a sufficiently long path, refraction tends to turn the wave 
packet so that it is directed either parallel or perpendicular to the 
wave speed contours.  If 9 is neither parallel nor perpendicular to 
the wave speed contours, then KG approaches infinity as y  becomes 
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parallel to the wave speed contours.  In this case, due to the value of 
y, the wave packet undergoes total reflection. 

To determine the value of KQ when there are Indeterminate forms it is 
necessary to consider the variations of 6 and Y as the indeterminate 
forms are approached.  For example, (15) contains an indeterminate form 
when 8 becomes perpendicular to the wave speed contours while Y becomes 
parallel to the contours.  If y approaches parallelism to the contours 
faster than 6 approaches the perpendicular to the contours the value of 
KQ becomes infinite. 

The relationship between 9 and y due to refraction is clearly seen by 
integrating the ray curvature expressions (10) and (11).  The y-derlva- 
tives being zero, integration of (11) leads to (4) which can be stated 

(sin 9)/[u cos (6 - y)] = C (16) 

which is Snell's law for a wave packet.  Snell's law with phase velocity, 
which determines y, is obtained by integrating (10).  The cosine term in 
(16) can be replaced by the identity for the difference of two angles 
and the terms rearranged to yield 

tan 6 = (UC cos y)/(l - UC sin y) (17) 

where the variation of 6 appears only on the left side of the equation. 

It is interesting to note that 9 becomes zero if y = (2m+l)(Tr/2) where 
m is an integer. Thus if the wavelet direction becomes parallel to the 
wave speed contours the wave packet direction becomes perpendicular to 
the contours.  Further, note that 9 = (2m+l)(ir/2) if DC sin y = 1. For 
this case the wave packet direction is parallel to the wave speed con- 
tours. 

Snell's law can be used to derive an expression for cos (9-y).  Eq. (17) 
is substituted into the identity for tan (9-y) and the result is simpli- 
fied to obtain 

tan (9-y) = CUC - sin y)/cos y (18) 

In terms of initial values, Snell's law with phase velocity can be writ- 
ten 

sin y = v sin y. (19) 

where vr = (v/v^) and the subscript i denotes an initial value.  Before 
refraction it "is assumed that 6. = y..  Then 

C = (sin y,)/U (20) 
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When (19) and (20) are substituted into (18), it is found that 

(U - v ) sin y. 
tan (6-Y) =—JL—-f \ (21) 

(1 - vr sin
2 Yt)

2 

where U = (D/U^). This result can be transformed by the use of an iden- 
tity to 

cos (9 - Y) 
(U - v K slnz Y- 

1+- 
1 - v sin Y- 

r     'i 

(22) 

Eqs. (1), (2), and (22) provide a useful means of computing the geomet- 
ric group speed. 

4        HYDRON EXAMPLES OF WAVE PACKET REFRACTION 

To demonstrate the properties of wave packet refraction, examples of 
gravity water waves will be considered.  Gravity water waves are parti- 
cularly suited as examples because of their highly dispersive nature. 
The term 'hydron,1 suggested by Purser and Synge (1962) and Synge (1962), 
will be used to denote the wave packet of water waves. 

4.1      Waves Starting in Deep Water 

In Figure 5 hydron trajectories are shown for waves beginning in deep 
water (water depth greater than one half the wavelength).  The water 
depth contours are parallel.  Initially 8. = Y-j where each initial di- 
rection indicated on the figure is the angle between the hydron veloc- 
ity vector and the normal to the depth contours.  Regardless of the 
wave period, for deep water angles of incidence between 0° and 74.8° 
the hydrons follow paths such that the angles increase to the depth of 
the geometric group speed maximum (see Figure 7), then undergo a point 
of inflection, and then decrease shoreward. As a hydron approaches 
shore its direction becomes perpendicular to the wave speed contours 
and the packet ray curvature approaches zero.  For deep water angles of 
incidence equal to or greater than 74.8 the hydron trajectories turn 
and move parallel to shore in water of intermediate depth. As the hy- 
dron direction becomes parallel to shore the packet ray curvature tends 
to vanish; this is apparent in ray number 5. 

For comparison, monochromatic rays are shown in Figure 6 for the same 
conditions considered in Figure 5.  For large incident angles there is 
a striking difference between hydron and monochromatic trajectories. 
Whereas all the hydron rays do not reach shore all the monochromatic 
rays do. Note that the wavelet direction at each point along a hydron 
path in Figure 5 is the same as the direction of the corresponding mono- 
chromatic ray at the corresponding water depth. 
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Figure 5.  Hydron trajectories for a 20 s wave period for waves be- 
ginning in deep water.  The water depth contours are parallel, the 
scale of the plot is 1 cm = 4.87 km, and the sounding depths are in 
meters.  The initial hydron direction is shown for each ray and is 
the angle between the hydron velocity vector and the normal to the 
depth contours. 
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Figure 6.  Monochromatic rays for comparison with the hydron rays in 
Figure 5. 
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It is interesting to compare the values of G and U when they differ due 
to refraction. As an example, for gravity water waves which begin in 
deep water it is found that 

tanh kh (23) 

U = (1+ .2^h9.. ) v (24) 
r      sinh 2kh   r 

where h is the water depth. When (23) and (24) are substituted into 
(22) and the result is substituted into (2) it is found that 

G = U 
(kh sin y.   sech  kh) 

1+ —  
1 - (sin y.tanh kh)2 

(25) 

The ratio of the geometric group speed to its initial deep water value 
is presented for several incident angles in Figure 7.  The initial hy- 
dron directions are defined as in Figure 5.  The curve for y.   = 0° is 
the same as obtained for the ratio of U to the value of U in deep water. 
The amount by which the other curves differ from it is a measure of the 
difference between G and U. 

Inspection of Figure 7 shows for a given y.   that the maximum of G/G. 
occurs at a greater value of kh than does the minimum of G/U.  An in- 
crease in Y^ causes a shift in both the minimum of G/U and the maximum 
of G/Gi to larger values of kh.  Further, the maximum peak tends to get 
flattened out.  The curve for yj = 74.8° is seen to stop abruptly at 
the maximum value of G/G-^. 

When y. = 30° the maximum percentage difference of G from V is 2.70%. 
When Yi = 45° the value is 5.91%, for y. = 60° it is 10.03%, and for 
y±  = 74.79° the value is 14.27%.      1 

4.2      Reflection Points 

To obtain a reflection point is is necessary that the waves propagate 
into deeper water and that the initial direction of the hydron (6^ = Yi) 
exceed a critical angle.  The reflection point occurs at an intermediate 
water depth when, through refraction, the wavelets are turned parallel 
to the wave speed contours. 

In Figure 8 two rays are shown in which the wave period is 20 sec and 
the initial water depth is 15 m.  For this case a reflection point oc- 
curs if 9^ £ 22.2 .  Ray number 1 reaches deep water since 6^ = 15°. 
For ray number 2, 9^ = 23 , and a reflection point occurs at a water 
depth of 200 m. The variation of the hydron and wavelet directions 
with water depth for this ray are shown in Figu're 9.  The wavelet angle 
increases continuously with water depth and becomes parallel to the 
water depth contours at the reflection point. The hydron angle first 
increases, goes through a maximum, and then becomes perpendicular to 
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Figure 7.  The variation of the geometric group speed with kh for 
hydrons beginning in deep water.  The initial value of the geomet- 
ric group speed is G..  The hydron directions are defined as in 
Figure 5. 
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the water depth contours at the reflection point. This is clearly seen 
in Figure 8. 

Plots of how G and U vary with water depth in approaching the reflection 
point are shown in Figure 9. Both speeds have a maximum value. However, 
there is a marked contrast between G and D at the reflection point where 
the geometric group speed is zero. 

In Figure 10 the ratio of the packet ray curvature to its initial value 
is sketched as a function of the wavelet direction for ray number 2 in 
Figure 8.  The most striking feature of this curve is*that within about 
2 of the reflection point the packet ray curvature suddenly goes to in- 
finity. 

It is interesting to observe that the velocity of the wave packet goes 
to zero at the reflection point. This is exactly what the velocity of 
a particle should do when there is reflection.  Therefore, in water 
waves, as in quantum mechanics, the wave-particle duality is encounter- 
ed. 

5 CONCLUSIONS 

Directional gravity water wave data obtained simultaneously at two field 
stations were used to test the refraction laws for the wave packets 
(hydrons) and wavelets.  It is found that the constancy of Snell's laws 
is established with equal precision for both the wave packets and wave- 
lets.  From the results it is concluded that the wave packets refract 
according to Snell's law with the geometric group velocity while the 
wavelets within a packet refract according to Snell's law with phase 
velocity. 

Refraction causes a hydron trajectory to become directed either parallel 
or perpendicular to the water depth contours.  In either case the packet 
ray curvature will vanish. For hydrons propagating toward deep water, 
if the initial direction exceeds a critical angle total reflection oc- 
curs. At the reflection point the wavelet direction becomes parallel to 
the wave speed contours, the hydron direction becomes perpendicular to 
the contours, the geometric group velocity goes to zero, and the packet 
ray curvature becomes infinite. 
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Figure 10.  The ratio of the hydron ray curvature to its absolute 
initial value as a function of the wavelet direction up to the 
reflection point for ray number 2 in Figure 8. 
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