
CHAPTER 139 

A MODEL LAW FOR WAVE IMPACTS ON COASTAL STRUCTURES 

by 

C. Ramkema 

ABSTRACT 

For the design of the storm surge barrier in the Eastern Scheldt, a study 
has been carried out on wave impacts against coastal and marine structures. 
First a review was made of relevant literature, including both wave impacts 
on coastal structures and slamming of sea-going vessels. From this, the 
so-called Bagnolds piston model emerged as most appropriate to describe 
the wave impacts caused by standing waves against protruding elements. 
This model was then further elaborated to include both adiabatic and iso- 
thermal compression of the air cushion and to allow for the compression 
of the water. Moreover, amodel was developed to determine the spatial 
pressure distribution. Finally, experiments were performed, the results of 
which were in satisfactory agreement with the mathematical models. Based 
upon the results of these studies, a scaling law is presented here, from 
which the pressure magnitude and the time history of the impact in nature 
may be determined. 

1 Scope of the Study 

As part of the preliminary investigation for the development of the storm 
surge barrier in the Eastern Scheldt (Figure 1) tests were carried out to 
study the wave impacts on the sluice gates in this barrier. As a possible 
solution caissons placed on a rubble foundation were examined (Figure 2). 
Wave impacts induced by breaking waves were not observed here because of 
the relatively large foreshore depth; however, wave impacts might occur 
locally if the standing wave in front of the gate is impeded by protruding 
structural elements. Due to the specific shape of the structure, a volume 
of air is trapped between the protrusion and the rising water level which 
acts as a spring, resulting in a typical oscillating pattern of the im- 
pact pressure history. A literature study was made to find a suitable 
mathematical model which, after experimental verification, could be used 
for the conversion of these impacts to an impact in nature. 

2 Review of Literature 

The first effort to measure wave impacts on maritime structures was made 
by Stevenson [^53] in Scerryvore Rocks 150 years ago. Until 1935 the measure- 
ments were performed with instruments unsuitable for these fast phenomena. 
The first excellent measurements with a high frequency range were executed 
in Dieppe by Rouville et al QA9J and in a laboratory by Bagnold [_5~\ . 
The development of mathematical wave impact and slamming models started 
with von Karman's model (_31_|. Because of the resemblance between the 
slamming phenomenon and the wave impact a historical review of investigations 
of both subjects is presented here, showing the relations between the 
various models (Figure 7). 
The various mathematical models for wave impacts and slamming can be corn- 
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bined into one general model (Figure 3), in which Mc is the mass of the con- 
struction; M^, is the equivalent hydraulic mass; andl^, k^ and kc are the 
spring constant of water, air and the construction respectively. For civil 
engineering constructions Mc is mostly much larger than Hy,  whereas for 
ships and gates Mc and H^  are about equal. 
The mathematical models in civil engineering can be divided into the way 
they take into account the importance of the compressed air layer with 
regard to the elasticity of the structure and the compressibility of water. 
Bagnolds model apparently is most appropriate to describe the impact 
against the protrusion, due to the specific air layer between the struc- 
ture and the equivalent hydraulic mass. 
The need for models in naval engineering first became apparent with the 
evident high pressures on V-shaped seaplane floats during landing. Later 
on, when the number of seaplanes decreased, impact pressures on high-speed 
ships stimulated reasearch, as the calculated pressures on V-shaped wedges 
with the model developed by von Karman j^3Q were too conservative for 
these ships. Sellars [[50,51] tried to explain the difference by accounting 
for the elasticity of the ship structure, whereas Verhagen [[55J explains 
the difference by the elasticity of the air layer; the thickness of which 
is calculated by air flow between ship and water until the velocity of 
sound (C^) is reached. For the subsequent stage he uses a Bagnold type 
piston model, with an air flow determined air layer thickness, for the 
determination of the impact pressure in which is accounted for the finite 
structure mass. However, the observed air layer between the caisson's pro- 
trusion and the water mass is mostly due to the specific shape of the 
protrusion and the water surface, so only the last part of Verhagen's 
model is appropriate for the description of our problem. Verhagen as well as 
Bagnold are supposing an adiabatic compression of the air layer. 
Many experiments have been performed on civil and naval engineering struc- 
tures, the results of which are generally expressed in the stagnation 
pressure: \   p v2, where p is the density of the water and v is the impact 
velocity. This is not further considered here, as in the impact process com- 
pressibility and air are certainly more important than the gravitational 
acceleration. Specially worth mentioning are the excellent experiments of 
Gerlach Q 21 ,22,23] inwhich the influence of liquid and gas properties and 
model shape on impact pressures of blunt rigid bodies is investigated. 
A more detailed literature description is in preparation by the author [[44]. 

3 Theory 

The observed air layer between the protruding element and the water mass 
gave evidence for the choice of Bagnold's piston model (in the tests Mc »MW). 
Whether the compression of the air layer is adiabatic, isothermal or some- 
where between depends upon such different factors as characteristic time 
of the phenomenon, the pressure magnitude, the air-water surface with re- 
gard to the air layer or bubble layer volume (the heat exchange by evapo- 
ration is much more important than by conductivity), the acceleration of 
the air-water surface and the irreversibility of the process. The signifi- 
cance of this question for model pressure conversion is evaluated in 
Paragraph 6. 

Bagnold's model 
The shape of the caisson and the protrusion is such that the phenomenon 
may be schematized as shown in Figure 4. A two-dimensional mass of water 
(M„) with width 2 L is travelling upward with a velocity v. For z =6 the 
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air layer is blocked from the atmospheric pressure p0; if the hydraulic 
mass of water per unit length is approximated by p L2 L->8j the equation 
of motion can be written as: , 

M = p 2 L - 
df 

p  2 L. 
o (1) 

Here, forces due to the acceleration of gravity are neglected because in 
the time intervals under consideration the weight of the water mass will 
be small in general compared with the impact load. Moreover, the weight is 
compensated by the hydrostatic pressure. 
the air compression is assumed to vary between adiabatic and isothermal, so: 

Po 4>Y. (2) 

where Y is the ratio between the specific heat at constant pressure and 
that at constant volume. For a linear compression, |l -z/6| «1, and with 
the initial conditions z=S and z=-v, the following expressions can be 
derived for the maximum pressure: 

1 + i P v L 
'2 Y p <S ro 

= P„ 1 + JTT (3) 

The frequency of  the oscillation  is: 

f--L    /YP° 
2ir   V 6 p L (4) 

where S is defined as the impact number. The general solution for the di- 
mensionless peak pressure pmax - p0> which satisfies Equations (1) and 
(2) with the mentioned initial conditions, is shown as a function of S in 
Figure 9. The graph for adiabatic compression is equivalent toMitsuyasu's 
(38J and Lundgren's graph [[36] . For a more detailed description of this 
derivation, see Ramkema et al [_43J . 

Bagnold's model with compressible water 
One of the basic criticisms of Bagnold's piston model is that for high im- 
pact numbers the pressure exceeds pvcw (where c^, is the velocity of sound 
in water). The one-dimensional mathematical model given below takes into 
account the compressibility of water. The impulse equation formulated in 
Lagrange coordinates with the centre on the air-water surface is: 

3t2 • 3a  p 3a  U' 

and the continuity equation is: 

3z 
p "3a- = po> 

(5) 

(6) 

where a is the position of the water particles at t =0, p0 is the local 
density of water at t =0, p is the local density of water, and p^  is the 
pressure distribution in the water column. After some rearrangements and 

2 "Pw 2  2 • 
the supposition that p -5— can be approximated with p0 cw, the equations 
can be written as: 
32z 
9t2 

2 32z 
C -Tr—x- 
w da"1 0, (7) 
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with the initial conditions z=a and -^ =vfor-L<a<0 and the boundary- 
conditions p = pQ for a =-L and pw= p (pressure in the air layer) for a= 0. 
The results of this piston model with compressible water are shown in Fi- 
gure 8. The dimensionless maximum impact pressure pmax/Po» 

tne dimension- 
less impact period v T/<5, and the shape parameter T2/T are given as a 
function of the impact number S and the compressibility number g=vL/6cw; 
the ratio of the characteristic time interval for the impact pressure <5/v 
and the characteristic time interval for the compression wave L/cw. For 
3 < 0.1 and S <2, compressibility of water can be neglected as can be seen 
from Figure 8. More detailed information is given inRamkema et al |_44J . 

Spatial pressure distribution 
By supposing an homogeneous pressure field in the direction perpendicular 
to the draft (Figure 6), it is evident that for a wave impact against the 
whole length of the protruding structural element (2 L) the pressure dis- 
tribution over the gate will be almost uniform for large 2 L/h values. 
For a small ratio 2 L/h, however, the pressure distribution over the gate 
will decrease exponentially with increasing z. To quantify this supposi- 
tion, a mathematical model was used to describe the phenomenon L43_] . Sup- 
posing a two-dimensional pressure field, zero viscosity, an irrotational 
motion and an incompressible fluid, this problem is solved by determining 
the following velocity potential <f> which satisfies Laplace's equation and 
the boundary conditions: 

7T = 0 at z = h, x > 0 and at z = 0, 0 < x < Li 
3z 

|£=0at0<z<h,  x = 0 3x 

p = p     cos  2lTft  at  z =  0,  Li   < x <  2 L. m 

The condition on the free surface (z = 0) is generally 

8t 
8F + iJ--;^. (8) 

3z  ~v2    P 3t 

where g is the gravitational acceleration. For high frequencies, g -5-*- can 
824> 

be neglected with regard to vrr • Tne ratio of the pressure amplitude at 

z=h and at z=0 is shown inFigure 10 as a function of 2 L/h for different 
(2 L - Lj)/2 L values. 

4 Experimental Set-up 

To verify the frequency behaviour of Bagnold's piston model and the spatial 
pressure distribution over the gate, a variety of tests has been made. 
The tests were performed with random waves in a 95 x 0.90 x 1.0 m3 wind 
wave flume (Figure 11) provided with a flap-type wave generator. 
A scale model (1:50) was constructed from stainless steel (thickness 20 
mm), representing a vertical face fronted by a rectangular protrusion 
with different lengths (figures 12 and 13). In this model wave impacts were 
measured at four locations to determine the frequency behaviour, and at 
six locations for the spatial pressure distribution. The unused holes 
were filled up with screw bolts flush with the front face of the wall. 
The wave impacts were measured with Statham PM 131 TC pressure cells. The 
overall accuracy of the amplitude response of the total measuring system 
was about 90% for a frequency range of 0-2400 Hz. A general impression 
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of the instrumental equipment for the tests is shown in Figure 6. The du- 
ration of each test was about 1000 zero crossing waves. However, the sen- 
sibility for wave impacts fluctuates strongly with the length of the pro- 
trusion and the water level with regard to the level of the protrusion. 
That is why the number of analysed impacts per test is not equal. Besides, 
only impacts >2000 N/m2 were analysed. The tests for the spatial pressure 
distribution were limited to about 30 analysed wave impacts. 

5 Experimental Results 

In the investigation over 100 tests were made, a few of which had a geome- 
try which could be used (see Tables 1 and 2) to test the given mathematical 
model. However, some general remarks based upon all the tests can be made: 
1 The time history of the wave impact pressure caTi generally be des- 

cribed as a damped harmonic vibration. The impact frequency (f) is the 
reciprocal of the characteristic time of the vibration (Figure 14). 

2 The impacts in the separated compartments AB and CD are uncorrelated 
for the frequency and the magnitude of the impact. However, the pro- 
bability density functions for frequency and magnitude in the separated 
compartments are equal. 

3 The pressure distribution in y-direction is about homogeneous in a 
compartment, with only a slight increase (about 10%) in the angles. 

4 In general, the exceedance distribution for the impact pressure can be 
approximated, by a straight line, on logarithmic-linear paper. However, 
impacts smaller than 2000 N/m2 are not taken into account (Figure 16). 

To predict a maximum impact pressure it is necessary to know the maximum 
impact velocity, the minimum air layer thickness and the minimum protru- 
sion length involved, but as a result of the mutual interactions this is 
extremely difficult. It is easier to predict the theoretical minimum im- 
pact frequency, which is a function of the maximum protrusion length in- 
volved and the maximum air layer thickness. 

The impact frequency__behaviour has been tested with four different lengths 
of the protruding element (Table 1). The analysed impacts did not exceed 
an impact pressure of 10,000 N/m in model and the maximum air layer thick- 
ness could be visually estimated during the tests,being 1/10 of the length 
of the protrusion. From each impact registration the impact pressure mag- 
nitude and the impact frequency were measured (Figure 15); the minimum 
and maximum value of the impact frequency are shown in the Table 1. With 
the visually estimated maximum air layer thickness and the length of the 
protrusion the theoretical minimum impact frequency can be calculated 
with Equation (4) for adiabatic (y = 1.4) and isothermal compression (Y = 
1.0). The linear approximation will be acceptable for impact pressures 
smaller than 10,000 N/m2. The results of the comparison between the theo- 
retical and the measured minimum impact frequency values is shown in Fi- 
gure 18. It is evident that Bagnold's piston model is satisfactory for 
the prediction of the minimum impacts frequency, but whether the compres- 
sion is adiabatic or isothermal cannot be concluded from this result. 

The theory for the soatialj^ressure distribution over the gate was tested 
with the results of 7 tests carried out with 6 pressure cells, several of 
which were located in the protrusion. Depending upon the length 2 L, about 
30 impacts of each test were analysed (as an example see Table 3 and Fi- 
gure 17), and the coefficients, whose range is given in Table 2, were de- 
termined. The result of the comparison between the theoretical and the 
experimental maximum ratio Pg/pBB is shown in Figure 19. As the theoreti- 
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pressure  on the 
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(s-1) 

coefficient 

1 2 3 4 6 

', 20.5 10.5 8.0 7.0 24.5 150 0.34 

2 27.0 12.5 9.0 7.5 29.0 150 0.38 

3 33.0 14.5 14.5 11.5 47.5 200 0.35 

4 18.5 8.5 6.0 i.s 9.0 260 0.30 

5 14.5 9.0 7.0 6.0 17.0 V60 0.41 

6 8.0 6.5 5.5 4.5 11.5 ;   250 0.56 

7 29.0 14.0 10.0 8.5 36.0 150 0.29 

8 17.0 12.5 9.5 9.0 15.0 175 0.53 

9 25.0 14.0 11.0 9.5 31.0 180 0.38 

10 14.5 4.0 4.0 3.0 7.0 240 0.21 

]] 10.0 3.0 3.0 2.0 7.0 220 0.20. 

12 17.5 10.0 7.0 6.0 19.5 140 0.34 

13 12.0 5.5 4.0 4.0 16.5 200 0.33 

14 17.0 4.0 2.5 2.0 11.5 400   • 0.12 

15 22.5 12.0 9r0 7."5 26.0 140 0.33 

16 22.5 12.5 10.0 8.5 26.0 260 0.38 

17 19.5 4.5 3:0 2.0 6.0 1000 0.10 

18 21.0 11.5 8.0 7.0 23.0 130 0.33 

19 8.0 6.0 5:0 4.5 12.5 ' 400 0.56 

20 22.5 10.0 7.5 6.0 17.0 160 0.27 

21 32.0 14.5 13.5 10.5 36.0 280 0.29 

22 12.5 9.0 7.0 6.5 14.5 640 0.52 

23 18.5 10.5 7.5 7.0 20.5 130 0.38 

24 14.5 6.5 4.5 3.5 20.5 180 0.24 

25 12.0 4.5 3.5 2.5 7.0 215    . 0.21 

26 18.5 8.0 6.5 5.0 14.5 190 0.27 

27 14,5 7.5 5.5 4.5 12.5. 180 0.31 

28 39.0 24.0 18.5 16.0 46.5 150 0.41 

29 25.5 16.0 12.0 10.0 28.5 130 0.39 

30 24.0 12.0 8.5 8.0 28.0 130 0.33 

31 14.0 8.0 6.5 5.5 16.5 260 0.39 

32 8.5 4.5 3.0 2.0 12.0 240 0.24 

1 = 125 N/m2 with regard to the quasi static wave pressure 

coefficient ° pressure on cell 4 

Table 3    T97:   Spatial pressure 

distribution of wave  impacts 
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cal curve hardly changes for 0<—x-j—-< 0.125, only one curve has been 
drawn for these values. The second curve in this figure describes the si- 
tuation in which the whole protrusion is struck by the standing wave, but 
this situation does not give the maximum coefficients. Due to the limited 
dimensions of the pressure cell, the mentioned ratio will be slightly larger 
than the theoretical p(h)/p(o) ratio, but the comparison is still very sa- 
tisfactory. However, for 2 L/h> 1, the experimental values are substantial 
smaller than the theoretical values. This was confirmed by the observations, 
where two impacts could be distinguished: one in front of the gate and a se- 
cond at the end of the protrusion. The pressure on the gate as a result of 
this second impact was negligible and difficult to separate from the first. 
The results presented are spatial pressure distributions for impacts in 
front of the gate which, consequently, do not confirm the theoretical model. 

6 Model Law 

Although the agreement between the model experiments and the linear piston 
model was satisfactory, non-linear effects cannot be neglected for full- 
scale processes. Therefore the non-linear adiabatic and isothermal com- 
pression models have been elaborated (Paragraph 3). In order to use these 
mathematical models for the conversion of model-to-nature impact character- 
istics, the type of thermo-dynamic process, the influence of compressibility 
and the scaling factor of the impact-number Shave to be determined. 
Because the shape of caisson and water surface is determinant for the air 
layer thickness and the hydraulic mass involved, the scaling factor for 6 
and L is linear (nj = n-] ; n_ =n^). The external water movement obeys Froude's 
law, so nv = / n-^' where the atmospheric pressure is equal in model and na- 
ture (np = 1). This results in a linear scale for the impact number S, or ng = nj. 
The thermodynamic similarity is difficult to evaluate. Due to the larger 
air volume and the higher pressure, the process in nature will be more a- 
diabatic, whereas as a result of the larger air-water surface, the longer 
characteristic period and the state of the water surface the process in 
nature will be more isothermal than in model tests. However, in general the 
non-linear isothermal conversion is a little (10% for pmax <10 p0) more 
conservative, so this model was chosen. 
The influence of the compressiblity can be evaluated with the compressi- 
bility number ($ = v L/6 cw). For the model investigation v<lm/s, 2L<0.40m 
and cw = 1540 m/s; the minimum air layer thickness will be estimated with 
Verhagen's L55J first approximation for one-sided outflow 6=v.2L/c^, 
where c^ is the velocity of sound in air (= 340m/s). So the compressibili- 
ty number in model (1:50) has a maximum value of 0.11 and a minimum value, 
for 6 = 1/10.2 L, or 0.007. In nature this value will vary between 0.11 and 
0.05. As can be seen from Figure 8, the influence of compressibility can 
be neglected, for B < 0. 1 and Pmax/Po

<1^" ^ne isothermal compression model 
law is presented in Figure 20 for g < 0.1 and Pmax/Po 

<  10- 
If a similar time history of the impact in model and nature is supposed, 
the time scale can be related to the pressure scale if the total momentum 
obeys Froude's law. However, in general the full-scale time history is 
not similar to that in model due to the effect of the atmospheric pres- 
sure p0, which is equal in model and nature. Pressure amplitudes in model 
will generally be small with respect to the atmospheric pressure whereas 
in nature minimum values may approach zero pressure. Therefore the shape 
of the pressure fluctuation in full-scale may show sharp crests and flat 
troughs contrary to the sinusoidal fluctuation in model. Elaboration of 
the dimensionless fluctuation period v T/6 with Figure 21 shows that 
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iiyj/g = rig 2 for practical impact pressures (pmax < 10 p0). 
With the help of Figure 20, pmax, Pmin> T2/T 

an^ T °f tne given model im- 
pact pressure can be converted to an impact in nature. See as an example 
Figure 21 for ns = 50. 
The spatial pressure distribution over the gate in nature will be geomet- 
rically similar to the impact in model. 

7 Discussion and Comments 

As a result of the fact that the minimum impact frequency can well be pre- 
dicted withBagnold's linear piston model anon-linear isothermal compression 
model law is presented.The conversion of model impact pressures can easi- 
ly be done with the help of Figure 20. However, it is questionable whether 
the described model law for an impinging standing wave against the pro- 
trusion is comparable, for example, with a breaking wave against a compo- 
site breakwater. 
A striking feature of the described impact pressures was the damped os- 
cillation, but this phenomenon was also seen by Bagnold [5J, Mitsuyasu [38J 
Rouvilleet al \jt§} , Ross [48], Gerlach [2Q, Chuang [12] and many others. The 
observed combination of an air layer and a maximum impact pressure at the 
same location was also observed in investigations from Richert [_45j,Ross 
[48], Gerlach |_2y, etc. However, the observed damping of impact pressures by 
breaking waves against breakwaters is much larger, which can be explained 
by the larger pressure radiation for flat structures like a breakwater 
front compared with the "hollow" structure used for the present tests. 
The conversion of a wave impact of breaking waves against a breakwater is 
dominated by the question: which part of the wave height (H) is involved 
in the process in nature compared with that in model? Supposing the break- 
ing wave in a scale model (Mc 

>>MW) has all the features (geometrical and 
kinematic) of the wave in nature, then the wave height involved is on a 
linear scale and so is the thickness of the air layer resulting from the 
concave part of the breaking wave front. At the limit (but hardly imagin- 
able) the thickness of the air layer is determined by the air flow (see 
Verhagen Q>5J). The flatness of the water surface (parallel to the break- 
water front) required for this air flow process, however, has a very low 
probability of occurrence, especially in breaking wave fronts and has 
therefore been neglected. So the scale factor for the impact number S is 
nj, under the supposition of a linear scale for the involved wave height 
and the air layer thickness. The measured impact on the breakwater model 
can now be converted to an impact in nature as far as peak pressure, 
characteristic time and shape of the impact are concerned. With the help 
of Weggels' or Richert's mathematical model, or with the model presented 
here with modified boundary conditions, the spatial pressure distribution 
can be calculated. The response function of the structure will finally 
determine the response to this impact force. 
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NOTATION 

CA 
°w 
f 

g 
h 

kA 
kc 

K 
Li 

2 L 
Mc 
"w 
ni 
nl 

positions of the water particles 
at t = 0 
velocity of sound in air 
velocity of sound in water 
frequency of the pressure oscil- 
lation (1/T) 
gravitational acceleration 
distance between the protruding 
element and the bottom 
"spring constant" of air 
"spring constant" of the con- 
struction 
"spring constant" of water 
length of the water column 
part of the protruding element 
(Figure 19) 
length of the protruding element 
mass of the structure 
equivalent hydraulic mass 
scale factor of parameter i 
scale factor of length 

P 
Po 

Pw 

S 
t 
T 

z,x 

pressure in the air layer 
atmospheric pressure 
(100,000 N/m2) 
extreme pressure in the air 
layer 
pressure in the water column 

u   ! Pv!  L impact number -£—£  . -r 
time 
period of the impact pressure 
oscillation 
peak time of the impact pres- 
sure oscillation 
velocity of the water mass 
vertical and horizontal coordinate 
water compressibility number 
v  I. 

°w ' 6 
ratio between the specific heat at 
constant pressure and that at 
constant volume 
thickness of the air layer 
density of water 
velocity potential 
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