CHAPTER 133

NON-CONSERVATIVE WAVE INTERACTION WITH
FIXED SEMI-IMMERSED RECTANGULAR STRUCTURES

by
X 1
Lt. Robert B. Steimer

and 2
Dr. Charles K. Sollitt

¢ Introduction and Scope

Previous attempts to analytically describe wave reflection and trans-
mission at surface penetrating structures have neglected losses due to
flow expansion, contraction, and skin drag along the structure bound-
aries (Black and Mei, 1970; Ijima, et al., 1972). The model described
in this study includes these effects and allows for the inclusion of a
dissipative medium such as rubble or closely spaced piles in the region
beneath the structure.

The problem of a fixed, two-dimensional structure in a train of
monochromatic incident waves is modeled, as shown in Figure 1. The
solution allows for 1) variable structure length and draft, 2) different
depths in the regions fore, aft, and beneath the structure, 3) variable
wave amplitude and period, and 4) turbulent and inertial damping in the
region beneath the structure. An equivalent work technique is applied to
linearize the damping beneath the structure, yielding a potential flow
problem in all three regions. Amplitudes for the resulting series of
eigenfunctions in each region are determined by matching pressure and
horizontal mass flux at the region interfaces, orthogonalizing these ex-
pressions over the depth, and simultaneously solving the resulting equa-
tions to yield complex reflection and transmission coefficients. Complex
horizontal and vertical force coefficients for the structure are also
determined from the integrated Bernoulli equation.

The solution technique is computationally efficient. In general,
five modes in the eigen series provide satisfactory convergence for the
various hydrodynamic parameters. Approximately six-tenths of a computer
system second are required to solve for a single wave-structure condition.
The results compare favorably with variational methods used by others.

The effect of skin friction, expansion, and contraction losses tend
to reduce both reflection and transmission coefficients by only a few
percentage points over a wide range of wave frequencies. The addition
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Figure 1. Definition Sketch

of a dissipative medium beneath the structure, however, causes consider-
able reduction in wave transmission at all wave frequencies while in-
creasing reflection at low frequencies and reducing reflection at high
frequencies. Increased inertial damping and decreased porosity in the
medium below the structure uniformly decrease transmission and increase
reflection.

Comparison with experimental data and other theories is made. New
experimental data are presented. Design curves for various structure
and wave parameters are presented and discussed.

Theory

Equations of Motion

Newton's Law states that the vector summation of forces acting on a
fluid parcel is equal to the resultant vector acceleration of that par-
cel. The significant forces affecting free surface phenomena may be sum-
marized as

acceleration = (pressure + gravity + turbulent friction +
laminar friction + inertial friction) per
unit mass
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In equation form this statement becomes

g—%=—%v(p+w)—slq|q|—qu—63g—2‘ (1
= vector velocity

mass density of fluid

gradient operator

= pressure

= specific weight of fluid = pg

g = acceleration due to gravity

resistance coefficients

where

q
p
v
p
Y

Bl’ 82)63

Convective accelerations may be ignored for small amplitude wave
motions, thereby reducing the substantial acceleration to the local ac-
celeration or

8q _ dq
at at

Combining the local acceleration with the inertial damping term in Eq.
(1) vields

) 1
(1+8y) 5L = -2 v +v2) - 8 ala] -8, q @)
Now let
(l+83) =35 3

where S is an inertial coefficient which includes the effects of local
accelerationg and additional accelerations caused by local obstructions
such ag rubble, piles, abrupt corners on the structure, etc.

The laminar and turbulent friction terms are replaced by a single
linear friction term which dissipates the same amount of energy over omne
wave period as the actual friction terms. This simplification permits
an analytical solution to the problem without perturbing the equations of
motion yet retains a non-linear dependence on wave amplitude. Then

—Bl q|q| - 82 q is replaced by -fuq “4)
where bid = dimensionless friction coefficient
w = wave angular frequency (renders f dimensionless)

An additional condition is required to evaluate f since Eq. (4) is not
satisfied by a simple equality. This condition is referred to as
Lorentz's Condition of Equivalent Work, and it requires that both
friction laws dissipate the same amount of energy over the region of
interest during one wave cycle. In equation form this reads

fwf av fdt(q°q) = slf av fdt(q-q|q|)
volume Jperiod volume «period

+ Bzf av fdt(q'q) (5)
volume Jperiod
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I3

Then, on the average, the two friction laws are equivalent. Combining
Eqs. (2), (3) and (4) yields

?
s 3% = - %’V(p + yz) ~fuq (6)

A periodic fluid motion is sought for monochromatic waves, hence,
the velocity time dependence becomes )

q(x,2z,t) = q(x,2) exp(~iot)

and

8 ;
3t g %))

Substituting Eq. (7) into Eq. (6) and combining terms
1
w(f~iS)q = ~ -p— V(p + vz) (8)

The curl of the right hand side of Eq. (8) is identically equal to
zero, therefore

Vvxq=20
and since
Y x (Vv anything) = 0

it is permissible to replace the vector velocity q with the scalar
velocity potential, ¢, according to

q = -9 (9
Introducing Eq. (9) into Eq. (8) and combining terms
V[~a(£-18)6 + 1 (o + v2)] = 0 (10)

The gradient of the bracketed term is equal to zero, therefore the term
cannot be a function of spatial location. Requiring that the water sur-
face displacement integrate to zero over one wave length further constrains
the bracketed term, establishing that it must equal zero. Therefore,

the gradient operator may be removed from Eq. (10), yielding the Bernoulli
Equation, which may be solved for the pressure field.

§.= —gz + w(f~18)¢ (11)

Note that Eq. (11) reduces to the linear wave theory Bernoulli Equation
if no damping occurs (£ = 0, S = 1.0).

Water is essentially incompressible in free surface flows. Conse-
quently, conservation of mass reduces to the continuity equation which
may be written as

Veq=0 (12)
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Combining Eqs. (9) and (12) yields Laplace's Equation for irrotational,
incompressible flow.

v’ =0 (13)

Equations (11) and (13) are the appropriate equations of motion for
the general problem of non-conservative, irrotational, incompressible
flow. The velocity field is specified at all times, in all space by
Eq. (13). Substitution of the solution to Eq. (13) into Eq. (11) pre-
scribes the pressure field. In order to solve Eq. (11), however,
boundary conditions are required to specify the integration constants.

Boundary Conditions

Laplace's Equation is a second order homogenous differential equa-
tion requiring two boundary conditions to specify the general solution.
A third boundary condition is required to reference the pressure in
Bernoulli's Equation. The three boundary conditions are determined by
the physical restrictions imposed at the flow field boundaries.

Referring to Figure 1, the bottom boundary condition requires that
the vertical velocity component vanish at an impermeable horizontal
boundary. Thus

L = . - -
w v 0 at z hlf h, and h3 (14)
Similarly, under the bottom of the structure
w = - 2 _0atz=-d (15)
3z

At the free surface, z = n, the pressure must be equal to zero.
Hence,

p=0at z=n (16)

Also, the surface must rise and fall at a rate equal to the vertical ve-—
locity to maintain continuity at the free surface. Hence

dn _ .. _ 3¢ -

v 5z at z = n 17)
Small amplitude wave motions produce negligible convective changes in n
and permit an evaluation of w at the still water level to avoid tran-
scendental functions of n. These simplifications reduce Eq. (17) to

an_ _ 3 =
5t P at z 0 (18)

Combining Eqs. (11), (16) and (18) yields the combined kinematic
and dynamic free surface boundary condition.

3%

W
52" " g (f - i8)¢
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In regions 1 and 3 of Figure 1, £ = 0 and S = 1.0 so that

W _ib ., o 9)
3z g

Boundary Value Problem

The boundary value problem for each of three regions fore, aft and
beneath the structure is summarized in Figure 2. Each boundary value
problem is prescribed by Laplace's Equation and the surface and bottom
boundary conditions. Flow field boundaries are parallel to the coordinate
axes, consequently, variable separation techniques may be used to solve
Laplace's Equation. The boundary conditions are applied to evaluate the
integration constants. The resulting solutions are presented in detail by
Steimer (1977) and are summarized below. The incident wave is described
by a single progressive wave in Eq. (20). The reflected and transmitted
waves include a single progressive mode each and an infinite series of
evanesgcent modes, as identified in Eqs. (21) and (22). Beneath the
breakwater, the solution yields a single wave component corresponding to
the progressive mode, Eq. (23), and two infinite series of evanescent
modes, one decaying left to right, Eq. (24), and the other decaying right
to left, Eq. (25).
cosh Kll(z+hl)

cosh K, .h

¢, = ig'A. exp il[k,., (x+b)-wt]
w i 11 1101

i (20).
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Figure 2. Boundary Value Problem
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io:i& coshK (z+h)
¢ = A exp ( -i[K,, (x+b)+wt] e 21)
r N=1 © N 1N cosh KlNhl
o0 cosh K, _(z+h,)
3N 3
¢ = E: }B-A N eXP ( i[X (x—b)—wt]) —_— (22)
t N=1 w 3N cosh K3Nh3
= 1 X _
¢o " (Aal 5 + Abl) exp (-iwt) (23)
.Y g i} »
¢a E: 1 AaN exp| KZN(x+b) iwt] cos KZN(Z+h2) (24)
N=2 w(-1)
.Y i byei
¢b 2: NI AbN exp[KZN(x b)-iwt] cos KZN(Z+h2) (25)
N=2 w(-1)
where: . represent wave amplltudes in regions 1 and 3 and pressure

head ampll%udes in region 2; and K;: reprsent separation constants or
eigenvalue wave numbers in each reglon. The first subscript identifies
the region, while the second subscript identifies the modal number.

The wave numbers are solved from dispersion equations in each region.
The dispersion equations result from Eq. (19) in regions 1 and 3 and a
combination of Eqs. (14) and (15) in region 2. The appropriate dispersion
equation in regions 1 and 3 is

2
w' =g Kij tanh (Kijhi) (26)

The K;q1 wave numbers are the real roots of Eq. (26) and the Kiy Wave num-
bers with N 2 2 are the imaginary roots to Eq. (26). The appropriate dis-—
persion equation in region 2 is

_ (N - D

K. =
2N (h2 - d)

for N > 2 27

Summarizing, the velocity potential in region 1 is

o = 4 + 0, (28)
The velocity potential in region 2 is

= +

by =0t b, + o, (29)
The velocity potential in region 3 is

¢y = ¢, (30)
Orthogonalized Interfacial Boundary Conditions

Only the incident wave amplitude in Eq. (20) is known. The remain-
ing amplitudes are unknowns and must satisfy pressure and mass flux
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continuity at the interfaces between regions. Pressure continuity re-
quires that the pressure field solutions in each region provide identical
results at common boundaries between regions. Thus

P; = Py at x = -b (31)

Py = Py at x = +b (32)

Referring to Eq. (11) and recognizing that £ = 0, S = 1.0 in regions 1
and 3, Eqs. (31) and (32) become

~-b (33)

it
1

¢1 (S + if) ¢2 at x

03 +b (34)

1]
#

(s + 1if) ¢2 at x

Mass flux continuity requires that mass be conserved as flow pro-
ceeds from one region to another. Recognizing that region 2 may be oc~
cupied by a porous medium, the velocities within the pore spaces must in-
crease inversely proportional to the porosity to maintain mass flux con-
tinuity at the interface. Thus, if ¢ is the porosity in region 2, the
velocities normal to the interfaces will be related according to

3¢ 3%
1 2
" € m at x = -b (35)
and /
3¢ EL
3. .2 -
= = € % at x = +b (36)

Note that mass flux continuity reduces to velocity continuity if no porous
medium exists.

Each interfacial boundary condition includes an infinite series of
terms. The terms within the series may be separated to generate 4N equa-
tions to solve 4N unknown amplitudes by utilizing the orthogonal behavior
of the z dependent separable functions. The boundary value problems in
Figure 2 are all linear, homogenous, second order differential equations
with linear, homogenous boundary conditions. Accordingly, they are pro-
perly posed Sturm-Liouville problems with orthogonal solutions having the
useful property that products of two modal solutions, integrated between
boundaries having homogenous boundary conditions, vanish unless the modes
are identical (Hildebrand, 1965). Thus

_hi
.j; ¢iM ¢iN = 0 unless M = N (37)

Equation (37) applies equally well to derivatives of ¢.

This behavior is utilized by multiplying Eqs. (33) and (34) by ¢,
and integrating from z = -hy to z = -d. Similarly, Eq. (35) is multi-

3 .
plied by Sil-and integrated from z = ~h; to z = 0; and Eq. (36) is multi-
3¢3
plied by Y and integrated from z = -h3 to z = 0.
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Note that —a;l and Py equal zero above z = -d and below z = -hj.

Evaluating these integrals provides the six equations listed below.

i . K, cosh Kllhl", sinh K (h -d)-sinh K (b -h,)
rN | K

1IN1L 2
Nel 1y cosh KlNh]:J sinh K;, (h -d)-sinh K ; (h;-h,)
i -
v -c ) (s 1f)(h2 d) Kll cosh Kllhl - 38)
al bl sinh Kll (hl—d)—51nh Kll (hl—hz)
« 1y M1, A s _ 2., 2
}: c cosh Kllhl KlN (-1) sinh KlN(hl d)-sinh KlN(hl h2) Kll +K2M

= “rNlcosh K, .h | K M-1) _ . 2 2
N=1 IN 1 11 | (-1) sinh Kll (hl d)-sinh Kll(hl h2) KlN +K2M

(h,~d) ($+if) (cosh K h )(K112+K 2y

- [CaM+CbM exp(—ZKZMb)] 11 }]i M = -1
2Kll[51nh Kll(hl—d)+(—l) sinh Kll(hl—hZ)]
for M > 2 (39)
i . Kll cosh Kllhl sinh K3N(h3—d)—51nh K3N(h3—h2)-l S € )
=l tN K3N cosh K3Nh3 sinh Kll(hl—d)—s1nh Kll(hl—hz)J al bl
(S+if) (h2—d)(Kll cosh Kllhl) o “0)
sinh Kll(hl—d)—sinh Kll(hl—hz)
w 1y (1) Ay _ 2 2
Z c cosh Kllhl K3N -1) sinh K3N(h3 d)-sinh I<31\](h3 hZ) Kll +K2M
No1 tN jcosh K h.} K

TP s _ i,
N s3] K11 | 0 M sinh k) (h=a)-sinh K (hy-h) |{Ky FHo

— $ 2 2
(h2 d) (8+if) (cosh Kllhl) (Kll +K2M )
—[CaM exp (—2K2Mb)+CbM] v =0
2Kll (sinh Kll(hl—d)+(—l) sinh Kll (hl—hz)
for M > 2 (41)

cosh K hy [ZKthl + sinh 2K b

rM | cosh Kthl 2Kllhl + sinh 2Kllhl

‘e -4ie cosh Kllhl[51nh KlM(hl—d -sinh KlM(hl—hz)]
al b KlM(ZKllhl + sinh 2Kllh1)

o K. K
+ ¥ [-C_4C _ exp(-2K, b)] | —2n M
&y Ay N w2 2
w oy

c h K h, =d)+(- nh K h.~h
-4i€ K in :
4i€ cosh llhl[81 lM( 1 d) ( 1)7si lM( 1 2)] = § (42)
2 1171 si 2 1171 '
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cosh K. _h 2K, . h., + sinh 2K__h

. 1171 | a3 M3
tM | cosh K3Mh3 2Kllhl + sinh 2Kllhl
‘e -4ie cosh Kllhl[Slnh KBM(h3—d)—sinh KBM(h3_h2)]
al b K3M(2Kllhl + sinh 2Kllhl)
© K,. K
2N "3M
+ ééé [--CaN exp(—ZKZNb) + CbN] " 2+K 5
3M 2N
- : - ~1)Ng -
4ie cosh Kllhl[slnh K3M(h3 d)+(-1)%sinh KBM(h3 hz)ﬂ

=0 (43)

2K11h1 + sinh 2K11h1

Six equations result, rather than four, because orthogonalizing
pressure continuity with respect to the inner modes generates two ad-
ditional unique equations, one at each interface, for the propagating
mode beneath the structure. Each equation is summed on N but is re-
peated for each Mth eigenvalue. Equations (38) and (40) apply to the
M=1 mode beneath the structure while Eqs. (39) and (41) complete the
pressure continuity requirements for M > 2. Equations (42) and (43)
are statementsof mass flux continuity, orthogonalized with respect to
the outer modes of regions 1 and 3, and apply to all M > 1. Thus 4M
equations are produced to solve for 4M unknown amplitudes: M reflected
waves, M transmitted, and M waves in both the +x and -x directions under
the structure.

In Egqs. (38) through (43), the complex amplitudes Ajj have been ren-
dered dimensionless by division with the incidental wave amplitude Aj
and are denoted as Cj:. The Kronecker delta appears as 8y;. The system
of 4M equations becomes finite by establishing a finite upper limit for
the N summation. The amplitude coefficients, Cij’ become smaller as j
increases and experience with this set of equations, for most practical
structural configurations, has demonstrated that summing on five modes
is sufficient. Errors due to this finite summation are on the order of
a few percent or less. Up to 20 modes have been utilized for unusual
configurations such as thin plates.

The 4M system of linear algebraic, complex equations is solved via
the IBM Scientific Subroutine SIMQ, modified to accept complex coef-
ficients. Amplitudes and phases for each modal amplitude are deter-
mined by calculating the modulus and argument, respectively, of each
Cij. The reflection and transmission coefficients for the propagating
mo&es are simply |Crl]and Ictl" respectively. Approximately six~tenths
of a computer system second are required to solve for a single wave-
structure condition described by a five mode series.

Theoretical Behavior

Predicted wave response, quantified as reflection and transmission
coefficients, is presented for a hypothetical structure as a function of
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dimensionless wave number in Fig. 3-a, b and c. The results show

that shorter waves experiencé more reflection and less transmission at
the structure. In addition, as the resistance beneath the structure is
increased via an increase in the friction coefficient, f, inertial coef-
ficient, S, or decrease in porosity, e, reflection is increased, attenu-
ation is increased and transmission is decreased. Figure 3-d demonstrates
that increased frictional resistance beneath the structure leads to in-
creased energy dissipation. However, an upper limit for energy dissi-
pation is reached at 1/2 the available incident wave energy. Further
increases in frictional resistance simply cause 50 percent of the wave
energy to be reflected rather than completely absorbed and dissipated be-
neath the structure.

The results of the present analysis compare favorably with those
predicted by other investigators utilizing altermative solution tech-
niques. Sample comparisons are presented in Figs. 4 and 5. Reflection
and transmission coefficients results are compared in Fig. 4-a, b, c and
d for various structural configurations. The variational technique of
Black (1970) in Figs. 4-a, c and d displays essentially identical results
to the present theory with negligible resistance (f=0, $=1.0, e=1.0).
John's shallow water dock theory (Ippen, 1966) also concurs. The matched
asymptotic expansion theory of Tuck (1971) for a narrow slit in a thin,
infinitely deep plate also agrees well with the present theory i1f finite
values are used for the depth and plate thickness. Even the long wave
behavior is reproduced well, contrasting the variational results in Fig.
4-b.

The horizontal and vertical forces induced by waves acting on the
structure are evaluated by integrating the pressure distribution on
vertical and horizontal structure surfaces, respectively. The vertical
dynamic wave force component is

Jr+b +b
F. = pdx = pw(f-iS{[' ¢ dx
vD b -b 2

Substituting for ¢, and evaluating the integral yields

) l-exp(-ZKZNb)
Fop = v (S+1if) exp(-iwt) {2b Abl + z:{——~7{———————} (AaN+AbN)
N=2 2N
(44)

The horizontal dynamic wave force component is the difference in forces
on the two sides of the structure.

~d -d -d -d
FH = f pldz —f p3dz =f pi¢l(@x=-b)dz +j pid>3(@x=b)dz
o o o o

Substituting for ¢l and ¢3 and evaluating the integrals yields
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B = yexp(ciuD) Ai[31nh Kll(hl-d)-s1nh Kllhl]
H Kll cosh Kllhl
53 ArN[sinh KlN(hl—d)-sinh KlNhl}
+ K cosh K. h
=1 1IN IN 1
) 2: AtN[51nh KBN(h3—d)-51nh K3Nh3] 45
Ne1 KBN cosh K3Nh3

Dimensionless force components from Eqs. (44) and (45) have been
graphed in Fig. 5-a and b. Results taken from Black (1970) include com-
parisons with the work of Garrison and Haskind. The comparisons are quite
favorable, with only slight differences for very thin plates.

Experimental Results

A small scale experimental program was conducted at Oregon State Uni-
versity to supplement the available data on wave reflection and trans-
mission at rectangular structures. The experiment apparatus is described
in Fig. 6-a and the geometric configurations tested are identified in Fig.
6-b. Each model was exposed to a variety of wave amplitudes and frequen-
cies. Incident and reflected waves were resolved with a traversing wave
gauge from measurements of the partial standing wave envelope. Trans-
mitted wave measurements were acquired with a stationary wave gauge.

Transmission coefficient results are displayed in Fig. 7. Four
combinations of draft, depth and step height are shown with results ex-
pressed relative to dimensionless wave numbers. Theoretical results are
expressed for frictionless conditions. In general the agreement between
experiment and theory is quite good. In Figs. 7-a, b and ¢, the theory
tends to slightly overpredict the transmission coefficient. A non-zero
value for the friction coefficient would tend to improve this correlation,
indicating that real fluid effects may be modifying the experimental re-
sults. Figure 7-d shows the theory underpredicting transmission slightly
for long waves. This model configuration has zero draft so that the long
wave trough passes under the model without surface contact. The theory
does not allow for the separation of the water and model surfaces, a con-
dition which is unlikely to occur in the prototype.

Experimental and theoretical reflection coefficients are presented
in Fig. 8-a and b. 1In general the theory tends to overpredict the meas-
ured reflection coefficients. Again, this correlation can be improved
by utilizing a non-zero value for the friction coefficient, f, to account
for real fluid effects. Small increases in f tend to decrease both the
reflection and transmission coefficient as indicated in Figs. 3-a and
8-c. The frictional condition displayed in Fig. 8-c evaluates energy
loss due to skin drag over the structure surface and expansion/contraction
losses at the abrupt corners of the structure. The corrections indicated
improve the correlation with the experimental data, however, larger losses
need to be identified to further correct the predicted reflection
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coefficients. Evidently the steady flow relationships for skin friction
and expansion/contraction losses are not adequate for addressing the same
condition instantaneously in unsteady flows. A more complete discussion
of friction coefficient evaluation is presented by Steimer (1977).

Design curves for various drafts and step heights have been prepared
for the frictionless condition. A sample curve is presented in Fig. 8-d.

Conclusions

The theoretical analyses presented in this study correlates well with
other rigorous analytical procedures and with available experimental data.
The theory can accommodate a variety of rectangular structural configura-
tions and it provides a rational method for incorporating real fluid losses.
The solution technique is numerically efficient in providing reflection,
transmission and force coefficients. Additional experimental work is re-
quired to validate force predictions and to suggest alternative friction
laws to evaluate real fluid effects.
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