
CHAPTER 133 

NON-CONSERVATIVE WAVE INTERACTION WITH 
FIXED SEMI-IMMERSED RECTANGULAR STRUCTURES 

by 

Lt. Robert B. Steimer 
and       „ 

Dr. Charles K. Sollitt 

Introduction and Scope 

Previous attempts to analytically describe wave reflection and trans- 
mission at surface penetrating structures have neglected losses due to 
flow expansion, contraction, and skin drag along the structure bound- 
aries (Black and Mei, 1970; Ijima, et al., 1972).  The model described 
in this study includes these effects and allows for the inclusion of a 
dissipative medium such as rubble or closely spaced piles in the region 
beneath the structure. 

The problem of a fixed, two-dimensional structure in a train of 
monochromatic incident waves is modeled, as shown in Figure 1.  The 
solution allows for 1) variable structure length and draft, 2) different 
depths in the regions fore, aft, and beneath the structure, 3) variable 
wave amplitude and period, and 4) turbulent and inertial damping in the 
region beneath the structure.  An equivalent work technique is applied to 
linearize the damping beneath the structure, yielding a potential flow 
problem in all three regions.  Amplitudes for the resulting series of 
eigenfunctions in each region are determined by matching pressure and 
horizontal mass flux at the region interfaces, orthogonalizing these ex- 
pressions over the depth, and simultaneously solving the resulting equa- 
tions to yield complex reflection and transmission coefficients.  Complex 
horizontal and vertical force coefficients for the structure are also 
determined from the integrated Bernoulli equation. 

The solution technique is computationally efficient.  In general, 
five modes in the eigen series provide satisfactory convergence for the 
various hydrodynamic parameters. Approximately six-tenths of a computer 
system second are required to solve for a single wave-structure condition. 
The results compare favorably with variational methods used by others. 

The effect of skin friction, expansion, and contraction losses tend 
to reduce both reflection and transmission coefficients by only a few 
percentage points over a wide range of wave frequencies.  The addition 

U.S. Navy Civil Engineering Laboratory, Construction Battalion Center, 
Port Hueneme, California, 93043. 

2 
Civil Engineering Department, Oregon State University, Corvallis, Oregon, 
97331. 

2209 



2210 COASTAL ENGINEERING—1978 

REFLECTED 
WAVE 

77777777777777 

Figure 1.  Definition Sketch 

of a dissipative medium beneath the structure, however, causes consider- 
able reduction in wave transmission at all wave frequencies while in- 
creasing reflection at low frequencies and reducing reflection at high 
frequencies.  Increased inertial damping and decreased porosity in the 
medium below the structure uniformly decrease transmission and increase 
reflection. 

Comparison with experimental data and other theories is made. New 
experimental data are presented.  Design curves for various structure 
and wave parameters are presented and discussed. 

Theory 

Equations of Motion 

Newton's Law states that the vector summation of forces acting on a 
fluid parcel is equal to the resultant vector acceleration of that par- 
cel.  The significant forces affecting free surface phenomena may be sum- 
marized as 

acceleration = (pressure + gravity + turbulent friction + 
laminar friction + inertial friction) per 
unit mass 
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In equation form this statement becomes 

£=_IV(P + Yz)_3iq|q| -e2q-e3ft (i) 

where    q = vector velocity 
p = mass density of fluid 
V = gradient operator 
p = pressure 
Y = specific weight of fluid = pg 
g = acceleration due to gravity 

g, ,g„,B, =   resistance coefficients 

Convective accelerations may be ignored for small amplitude wave 
motions, thereby reducing the substantial acceleration to the local ac- 
celeration or 

la. iSL 
at  at 

Combining the local acceleration with the inertial damping term in Eq. 
(1) yields 

(l+33) ff = - ^ V(p + Yz) - ei q|q| - 32 q (2) 

Now let 

(l+83) = S (3) 

where S is an inertial coefficient which includes the effects of local 
accelerations and additional accelerations caused by local obstructions 
such as rubble, piles, abrupt corners on the structure, etc. 

The laminar and turbulent friction terms are replaced by a single 
linear friction term which dissipates the same amount of energy over one 
wave period as the actual friction terms.  This simplification permits 
an analytical solution to the problem without perturbing the equations of 
motion yet retains a non-linear dependence on wave amplitude.  Then 

-Pi 3 111 - 2 1  3S replaced by -ftoq (4) 

where    f   =   dimensionless friction coefficient 
10   =   wave angular frequency (renders f dimensionless) 

An additional condition is required to evaluate f since Eq. (4) is not 
satisfied by a simple equality.  This condition is referred to as 
Lorentz's Condition of Equivalent Work, and it requires that both 
friction laws dissipate the same amount of energy over the region of 
interest during one wave cycle.  In equation form this reads 

f 01 f  dV f    dt(q-q)   -   p       f   dV f   dt(q.q|q|) 
Jvolume -"period Jvolume -'period 

+ g2   f   dV        f  dt(q-q) (5) 
Jvolume J period 
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Then,   on the average,   the two friction laws are equivalent.     Combining 
Eqs.   (2),   (3)  and  (4) yields 

S ft = " p V(p + Yz)  "fUq (6) 

A periodic fluid motion is sought for monochromatic waves, hence, 
the velocity time dependence becomes 

q(x,z,t) = q(x,z) exp(-iu)t) 

and 

ff - -l«q (7) 

Substituting Eq. (7) into Eq. (6) and combining terms 

u(f-iS)q = - - V(p + yz) (8) 

The curl of the right hand side of Eq. (8) is identically equal to 
zero, therefore 

V x q = 0 

and since 

V x (V anything) = 0 

it is permissible to replace the vector velocity q with the scalar 
velocity potential, <j>, according to 

q = -V* (9) 

Introducing Eq. (9) into Eq. (8) and combining terms 

V[-u)(f-iS)«j> + - (p + yz)] = 0 (10) 

The gradient of the bracketed term is equal to zero, therefore the term 
cannot be a function of spatial location.  Requiring that the water sur- 
face displacement integrate to zero over one wave length further constrains 
the bracketed term, establishing that it must equal zero.  Therefore, 
the gradient operator may be removed from Eq. (10), yielding the Bernoulli 
Equation, which may be solved for the pressure field. 

E = -gz + u)(f-iS)<f> (11) 

Note that Eq. (11) reduces to the linear wave theory Bernoulli Equation 
if no damping occurs (f = 0, S =>  1.0). 

Water is essentially incompressible in free surface flows.  Conse- 
quently, conservation of mass reduces to the continuity equation which 
may be written as 

Vq = 0 (12) 
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Combining Eqs.   (9)   and   (12)  yields Laplace's Equation for irrotational, 
incompressible flow. 

V2<t> = 0 (13) 

Equations (11) and (13) are the appropriate equations of motion for 
the general problem of non-conservative, irrotational, incompressible 
flow. The velocity field is specified at all times, in all space by 
Eq. (13).  Substitution of the solution to Eq. (13) into Eq. (11) pre- 
scribes the pressure field.  In order to solve Eq. (11), however, 
boundary conditions are required to specify the integration constants. 

Boundary Conditions 

Laplace's Equation is a second order homogenous differential equa- 
tion requiring two boundary conditions to specify the general solution. 
A third boundary condition is required to reference the pressure in 
Bernoulli's Equation.  The three boundary conditions are determined by 
the physical restrictions imposed at the flow field boundaries. 

Referring to Figure 1, the bottom boundary condition requires that 
the vertical velocity component vanish at an impermeable horizontal 
boundary.  Thus 

w=-|i=0atz = -tu.-h. and -h„ (14) 
dZ 1   Z        J 

Similarly, under the bottom of the structure 

w -X = 0 at z = -d (15) 
dz 

At the free surface, z = n, the pressure must be equal to zero. 
Hence, 

p = 0 at z = n (16) 

Also, the surface must rise and fall at a rate equal to the vertical ve- 
locity to maintain continuity at the free surface. Hence 

Q = w = - |i at z = n (17) 
dt        dz 

Small amplitude wave motions produce negligible convective changes in n 
and permit an evaluation of w at the still water level to avoid tran- 
scendental functions of n.  These simplifications reduce Eq. (17) to 

-g=-|±atz = 0 (18) 

Combining Eqs. (11), (16) and (18) yields the combined kinematic 
and dynamic free surface boundary condition. 

fi=-f (f-is)* 
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In regions  1 and  3 of Figure 1,   f = 0 and S = 1.0 so  that 

3<l>       i<f 
3z       g 

at  z 0 (19) 

Boundary Value Problem 

The boundary value problem for each of three regions fore, aft and 
beneath the structure is summarized in Figure 2.  Each boundary value 
problem is prescribed by Laplace's Equation and the surface and bottom 
boundary conditions.  Flow field boundaries are parallel to the coordinate 
axes, consequently, variable separation techniques may be used to solve 
Laplace's Equation.  The boundary conditions are applied to evaluate the 
integration constants.  The resulting solutions are presented in detail by 
Steimer (1977) and are summarized below.  The incident wave is described 
by a single progressive wave in Eq. (20).  The reflected and transmitted 
waves include a single progressive mode each and an infinite series of 
evanescent modes, as identified in Eqs. (21) and (22).  Beneath the 
breakwater, the solution yields a single wave component corresponding to 
the progressive mode, Eq. (23), and two infinite series of evanescent 
modes, one decaying left to right, Eq. (24), and the other decaying right 
to left, Eq. (25). 

—"• A.  exp i[ki;L(x+b)-ojt] 
cosh K     (z+h  ) 

cosh K -jh 
(20) 

V 

*i+fl**i.o) 

STRUCTURE 
T 

Jt'      dz 

V2*,=0 

REGION 1 

U,=0 
r \s/A/// 

d=DRAFT 

'//.////\//,4\ 

I'Vo   IT 
UITU2 REGION 2 
PITP2  d*2 h2 1   irs(N 

"a2 

r      dz 

u,=o 
///////////. 

iU,=0   o 
i   3     V2*3=0 

P2TP3 

u3*o 

REGION 3 

•777] 

|T .,^-o „ y" dz 

Figure 2.  Boundary Value Problem 
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= T.   ^ArN exp  -i[K1N(x+b)+a)t] 
N=l I 

^t= S f AtNexP  i^x-b)-^] 
N=l 

» - ^ (A  X oai   a ^alf + V exP(-^) 

cosh K1N(z+h1) 
(21) 

cosh K1Nhx 

cosh K_ (z+h.) 
(22) 

cosh K„„h„ 
3N 3 

(23) 

I cos K  (z+h2) (24) 

cos K  (z+h ) (25) 

*a= E —^VrA^expf-K^^b)- 
N=2 w(-l) 

CO 

*b = J>0     , ^N-l *•  e*P[K2N(x-b)-iUt] cos ^(z+h^ 
N=2 (JJ(-1) 

where: AJ. represent wave amplitudes in regions 1 and 3 and pressure 
head amplitudes in region 2; and J^. reprsent separation constants or 
eigenvalue wave numbers in each region.  The first subscript identifies 
the region, while the second subscript identifies the modal number. 

The wave numbers are solved from dispersion equations in each region. 
The dispersion equations result from Eq. (19) in regions 1 and 3 and a 
combination of Eqs. (14) and (15) in region 2.  The appropriate dispersion 
equation in regions 1 and 3 is 

u2 = g K.. tanh (K..h.) (26) 

The K.Q wave numbers are the real roots of Eq. (26) and the K^N wave num- 
bers with N k 1  are the imaginary roots to Eq. (26).  The appropriate dis- 
persion equation in region 2 is 

K2N • -gf^af- for N *2 (27) 

Summarizing, the velocity potential in region 1 is 

^1 = *i + *r (28) 

The velocity potential in region 2 is 

*2 = *o + *a + *b (29) 

The velocity potential in region 3 is 

<f>3 = <f>t (30) 

Orthogonalized Interfacial Boundary Conditions 

Only the incident wave amplitude in Eq. (20) is known.  The remain- 
ing amplitudes are unknowns and must satisfy pressure and mass flux 
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continuity at the interfaces between regions.  Pressure continuity re- 
quires that the pressure field solutions in each region provide identical 
results at common boundaries between regions.  Thus 

P1 =  p2 at x = -b (31) 

p2 = P3 at x = +b (32) 

Referring to Eq. (11) and recognizing that f = 0, S = 1,0 in regions 1 
and 3, Eqs. (31) and (32) become 

<1>1 =   (S + if)   i)2    at x = -b (33) 

<j>3 =   (S + if)  <(>2    at x = +b (34) 

Mass flux continuity requires that mass be conserved as flow pro- 
ceeds from one region to another.  Recognizing that region 2 may be oc- 
cupied by a porous medium, the velocities within the pore spaces must in- 
crease inversely proportional to the porosity to maintain mass flux con- 
tinuity at the interface.  Thus, if e is the porosity in region 2, the 
velocities normal to the interfaces will be related according to 

3*!    3<t>2 

and 

3x   e^T  «x--b (35) 

*3    3*2 
e —      at x = +b (36) 

3x     8x 

Note that mass flux continuity reduces to velocity continuity if no porous 
medium exists. 

Each interfacial boundary condition includes an infinite series of 
terms.  The terms within the series may be separated to generate 4N equa- 
tions to solve 4N unknown amplitudes by utilizing the orthogonal behavior 
of the z dependent separable functions.  The boundary value problems in 
Figure 2 are all linear, homogenous, second order differential equations 
with linear, homogenous boundary conditions. Accordingly, they are pro- 
perly posed Sturm-Liouville problems with orthogonal solutions having the 
useful property that products of two modal solutions, integrated between 
boundaries having homogenous boundary conditions, vanish unless the modes 
are identical (Hildebrand, 1965).  Thus 

r-bi 
Jo   *1M *iN = ° UnleSS M = N (37) 

Equation (37) applies equally well to derivatives of <(>. 

This behavior is utilized by multiplying Eqs. (33) and (34) by <|>2 
and integrating from z = -ho to z = -d.  Similarly, Eq. (35) is multi- 

3*1 
plied by -r—— and integrated from z = -hj_ to z = 0; and Eq. (36) is multi- 

3<t>3 
plied by —— and integrated from z = -h-j to z = 0. 
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Note that -— and -— equal zero above z = -d and below z = -ho. 
9x     3x *• 

Evaluating these integrals provides the six equations listed below. 

oo 

N=l 

+ (C 

rN 

K  cosh K h 

K1N C°Sh KlNhl 

al Cbl} 

sinh K (h -d)-sinh K  (h..-h ) 

sinh Kn(h -d)-sinh K11(
h
1"
h2) 

(S+if)(h2-d) Kn cosh K11h1 

sinh K  (h -d)-sinh K^Oy-b^) 

N=l 
rN 

cosh K11h1 

cosh K.„hn IN 1 

= -1 

IN 

hi 

'(-1)(M 1}sinh K1N(h1-d)-sinh K^Oy-h^,) 

(38) 

k 

^bM^"2^1 

(-1)(M 1)sinh K11(h1-d)-sinh &    (b-f^l 

(h2-d) (S+if) (cosh Knh1) (K1;L
2+K2M

2) 

2   2- 
11 +K2M 

K1N2+K2M2. 

= -1 

for M > 2 

L2Ku[sinh K11(h1-d)+(-l) sinh K^h -h^Jj 

(39) 

N=l 
tN 

K      cosh K _h 

K3N COSh K3Nh3 

sinh K     (h -d)-sinh K     (h -h2) 

sinh K .(h -d)-sinh K .. (h -h„) al    bl 

(S+if) (h2-d) (Kn cosh K11h1) 

sinh K    (h1-d)-sinh \A\~^2) 
(40) 

£   C 
N=l 

tN 

cosh K -h 

cosh Lh 
3N 

hi 

.[CaM exP(-2K2Mb)+CbM] 

(-1)(M 1)sinh K3N(h3-d)-sinh K3N(h3-h2) 

(-1)(M "^sinh K    (h -d)-sinh K    (h -h  )j 

(h2-d) (S+if) (cosh K^h^) (K^+K^) 

. 2K     (sinh K     (h -d)+(-l)   sinh K
1i(

n
1-

h
2) 

2 2 
Kll +K2M 

2 2 
K,.T +K„M . 3N       2M . 

for M >  2 

C 

=  0 

(41) 

rM 

+ C 

.cosh L.h 

cosh K.„h. 
1M 1 

al 

N=2 

2K.  h    + sinh 2K.,   h 
1M 1 1M 1 

2Knh1 + sinh 2Kuh1 

-4ie  cosh K    h   [sinh K     (h -d)-slnh K     (h -h  ) ] 

b K1M(2K11h1 + sinh 2K    h  ) 

-CaN-K:bNexP(-2K2Nb)] 

K2NK1M 
2 2 

K1M +K2N J 

-41 e cosh B^hjTsinh K^flydHC-l)   sinh K^Oyb^)] 

2Kllhl + sinh 2KHhi 
«MT     <42> Ml 
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tM 

+ C 

cosh K    h 

cosh K_„h. 
3M 3 

2K.li, + sinh 2K„ h, 
3M 3 3M 3 

2K    h    + sinh 2K    h 

al 

-4ie  cosh K.   h   [sinh K,M(h,-d)-slnh K.M(h -h„)] 
 11  1 3M     3 3M     3     I 

b KQl/t(2K11h1  + sinh 2Knlhn) 
3M      11  1 11 1 

+ E2 I-CaN exp(-2K2Nb) + CbN] 
K2NK3M 

2   2 
L K3M +K2N 

-4ie cosh I^h.Jsinh K3M(h3-d)+(-l)
Nsinh K3M(h3~h2)] 

2Kllhl + Sinh 2Kllhl 
0  (43) 

Six equations result, rather than four, because orthogonalizing 
pressure continuity with respect to the inner modes generates two ad- 
ditional unique equations, one at each interface, for the propagating 
mode beneath the structure.  Each equation is summed on N but is re- 
peated for each Mth eigenvalue.  Equations (38) and (40) apply to the 
M=l mode beneath the structure while Eqs. (39) and (41) complete the 
pressure continuity requirements for M > 2.  Equations (42) and (43) 
are statements of mass flux continuity, orthogonalized with respect to 
the outer modes of regions 1 and 3, and apply to all M > 1.  Thus 4M 
equations are produced to solve for 4M unknown amplitudes: M reflected 
waves, M transmitted, and M waves in both the +x and -x directions under 
the structure. 

In Eqs. (38) through (43), the complex amplitudes A-H have been ren- 
dered dlmensionless by division with the incidental wave amplitude A-j_ 
and are denoted as C^j.  The Kronecker delta appears as <%i-  The system 
of 4M equations becomes finite by establishing a finite upper limit for 
the N summation.  The amplitude coefficients, C.^, become smaller as j 
increases and experience with this set of equations, for most practical 
structural configurations, has demonstrated that summing on five modes 
is sufficient.  Errors due to this finite summation are on the order of 
a few percent or less. Up to 20 modes have been utilized for unusual 
configurations such as thin plates. 

The 4M system of linear algebraic, complex equations is solved via 
the IBM Scientific Subroutine SIMQ, modified to accept complex coef- 
ficients. Amplitudes and phases for each modal amplitude are deter- 
mined by calculating the modulus and argument, respectively, of each 
CJJ.  The reflection and transmission coefficients for the propagating 
modes are simply I Cr-^ I and |Ctj_j , respectively. Approximately six-tenths 
of a computer system second are required to solve for a single wave- 
structure condition described by a five mode series. 

Theoretical Behavior 

Predicted wave response, quantified as reflection and transmission 
coefficients, is presented for a hypothetical structure as a function of 
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dimensionless wave number in Fig. 3-a, b and c.  The results show 
that shorter waves experience more reflection and less transmission at 
the structure.  In addition, as the resistance beneath the structure is 
increased via an increase in the friction coefficient, f, inertial coef- 
ficient, S, or decrease in porosity, e, reflection is increased, attenu- 
ation is increased and transmission is decreased.  Figure 3-d demonstrates 
that increased frictional resistance beneath the structure leads to in- 
creased energy dissipation.  However, an upper limit for energy dissi- 
pation is reached at 1/2 the available incident wave energy.  Further 
increases in frictional resistance simply cause 50 percent of the wave 
energy to be reflected rather than completely absorbed and dissipated be- 
neath the structure. 

The results of the present analysis compare favorably with those 
predicted by other investigators utilizing alternative solution tech- 
niques.  Sample comparisons are presented in Figs. 4 and 5.  Reflection 
and transmission coefficients results are compared in Fig. 4-a, b, c and 
d for various structural configurations.  The variational technique of 
Black (1970) in Figs. 4-a, c and d displays essentially identical results 
to the present theory with negligible resistance (f=0, S=1.0, e=1.0). 
John's Shallow water dock theory (Ippen, 1966) also concurs.  The matched 
asymptotic expansion theory of Tuck (1971) for a narrow slit in a thin, 
infinitely deep plate also agrees well with the present theory if finite 
values are used for the depth and plate thickness.  Even the long wave 
behavior is reproduced well, contrasting the variational results in Fig. 
4-b. 

The horizontal and vertical forces induced by waves acting on the 
structure are evaluated by integrating the pressure distribution on 
vertical and horizontal structure surfaces, respectively.  The vertical 
dynamic wave force component is 

r+b /-+b 
FyD = 1   Pdx = pw(f-iS) J   <(>2dx 

Substituting for <j>2 and evaluating the integral yields 

l-exp(-2K2Nb) 
F  = Y(S+if) exp(-iut)  2b A, , + £ 
• bl  N=2 

K2N 
(AaN+AbN} 

(44) 

The horizontal dynamic wave force component is the difference in forces 
on the two sides of the structure. 

f*-d r~d f-d r-c* 
FH = /   pldz ~ /   p3dz = /   Pi<t>1(@x=-b)dz + /  pi<|>3(@x=b)dz 

Jo Jo Jo Jo 
Substituting for <j>.   and <f>„ and evaluating the integrals yields 
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A±[sinh K    (h -d)-sinh ^l;L\] 

K  cosh K11h 

+ E 
ArN[sinh K1N(h1-d)-sinh K^] 

N=l        K1N C0Sh KlNhl 

z A [sinh K3N(h3~d)-sinh 
K
3N

n
3] 

N=l       K3N C0Sh K3Nh3 
(45) 

Dimensionless force components from Eqs. (44) and (45) have been 
graphed in Fig. 5-a and b.  Results taken from Black (1970) include com- 
parisons with the work of Garrison and Haskind.  The comparisons are quite 
favorable, with only slight differences for very thin plates. 

Experimental Results 

A small scale experimental program was conducted at Oregon State Uni- 
versity to supplement the available data on wave reflection and trans- 
mission at rectangular structures.  The experiment apparatus is described 
in Fig. 6-a and the geometric configurations tested are identified in Fig. 
6-b.  Each model was exposed to a variety of wave amplitudes and frequen- 
cies.  Incident and reflected waves were resolved with a traversing wave 
gauge from measurements of the partial standing wave envelope.  Trans- 
mitted wave measurements were acquired with a stationary wave gauge. 

Transmission coefficient results are displayed in Fig. 7.  Four 
combinations of draft, depth and step height are shown with results ex- 
pressed relative to dimensionless wave numbers.  Theoretical results are 
expressed for frictionless conditions.  In general the agreement between 
experiment and theory is quite good.  In Figs. 7-a, b and c, the theory 
tends to slightly overpredict the transmission coefficient. A non-zero 
value for the friction coefficient would tend to improve this correlation, 
indicating that real fluid effects may be modifying the experimental re- 
sults.  Figure 7-d shows the theory underpredicting transmission slightly 
for long waves. This model configuration has zero draft so that the long 
wave trough passes under the model without surface contact.  The theory 
does not allow for the separation of the water and model surfaces, a con- 
dition which is unlikely to occur in the prototype. 

Experimental and theoretical reflection coefficients are presented 
in Fig. 8-a and b.  In general the theory tends to overpredict the meas- 
ured reflection coefficients. Again, this correlation can be improved 
by utilizing a non-zero value for the friction coefficient, f, to account 
for real fluid effects.  Small increases in f tend to decrease both the 
reflection and transmission coefficient as indicated in Figs. 3-a and 
8-c.  The frictional condition displayed in Fig. 8-c evaluates energy 
loss due to skin drag over the structure surface and expansion/contraction 
losses at the abrupt corners of the structure.  The corrections indicated 
improve the correlation with the experimental data, however, larger losses 
need to be identified to further correct the predicted reflection 
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coefficients.  Evidently the steady flow relationships for skin friction 
and expansion/contraction losses are not adequate for addressing the same 
condition instantaneously in unsteady flows. A more complete discussion 
of friction coefficient evaluation is presented by Steimer (1977). 

Design curves for various drafts and step heights have been prepared 
for the frictionless condition. A sample curve is presented in Fig. 8-d. 

Conclusions 

The theoretical analyses presented in this study correlates well with 
other rigorous analytical procedures and with available experimental data. 
The theory can accommodate a variety of rectangular structural configura- 
tions and it provides a rational method for incorporating real fluid losses. 
The solution technique is numerically efficient in providing reflection, 
transmission and force coefficients.  Additional experimental work is re- 
quired to validate force predictions and to suggest alternative friction 
laws to evaluate real fluid effects. 
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