
CHAPTER 107 

ON THE GEOMETRY OF RIPPLES DUE TO WAVES 

by 

M.S. YALIN1 and E. KARAHAN 2 

ABSTRACT 

The present paper is an attempt to determine a single curve 
for the prediction of the length of ripples forming due to wind 
waves in shallow waters.  The curve is revealed by normalising the 
field and laboratory data supplied by various authors. The concept 
of the unified plot embodied by the single curve mentioned is 
developed by using dimensional methods and by considering the fact 
that the specific weight and the density of the cohesionless bed 
material do not affect the length of ripples in a detectable 
manner.  It is shown that the present formulation of the length of 
ripples due to waves satisfies the requirement of transition into 
the corresponding formulation of the unidirectional flow ripples 
when the period and the amplitude of the oscillatory motion 
increase indefinitely, while their ratio (implying "the velocity") 
remains finite. 

INTRODUCTION 

The occurrence of ripples alters the roughness of the movable 
bed and thus exerts a considerable influence on the mechanical 
structure of the flow and on sediment transport. Hence it is not 
surprising that the formation of ripples has attracted the attention 
of many researchers for many years.  In spite of this, however, our 
knowledge of the origin of ripples and our methods of predicting 
their dimensions is far from complete, and therefore some further 
contributions on the topic cannot be regarded as superfluous.  The 
present paper concerns the prediction of the length  (A)  of ripples 
generated by short waves (wind waves) in shallow waters. It is 
assumed that the initial surface of the horizontal movable bed is 
flat, that the granular material is cohesionless, and that the 
oscillatory motion of the two phases (transporting fluid and 
transported sediment) is two-dimensional. Furthermore, it is assumed 
that this oscillatory motion is completely symmetrical, i.e. that no 
"not drift" is present. 

DIMENSIONLESS FORMULATION OF RIPPLE LENGTH 

If the internal geometry of a granular material (i.e. the 
shape of its grains and the shape of its sieve curve) is specified, 
then, under the conditions stated above, the oscillatory two-phase 
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motion in the vicinity of the bed is determined by the following 
dimensionless variables (Refs. [1] and [2]) 

Y D" 
s 
2 

pv 

PD z = w = (1) 

Here   p = fluid density 

V = kinematic viscosity 
fluid 

Ys = 

D  = 

T = 

a = 

density of grains 

specific weight of grains in fluid 

typical grain size (usually D•) 

period of the oscillatory fluid motion 

orbit length of fluid motion at the 
boundary layer level 

granular material 

fluid 
kinematics 

The dimensionless variables (1) ensure the possibility of 
determining any quantitative property of the oscillatory two-phase 
motion. This, however, does not mean that all four of these 
variables must necessarily be present in the expression of every 
property.  The number of variables that must be present and the 
form of their appearance vary depending on the property under 
consideration. 

The graphs produced to date for the prediction of ripple 
length A , or of its dimensionless version A/D , are in the 
form of a family of curves plotted versus the orbit length a or 
Z = a/D .  (See e.g. Figs. 1 and 2 reproduced from Ref. [3] and 
[2] respectively.) Thus, contemporary practice is to treat A/D 
as a function of two variables, i.e. as 

£ = f(z>Q) (2) 

say, and to plot it 
parameter different 
corresponding to a 
agreement that Z 
of A/D . There is 
the "parameter 0 " 
remaining variables 
that in Ref. [2] th 
Y , whereas in Ref. 
grain size D). The 
expression of 0 . 

by using Z as the abscissa and 0 as a 
iating individual curves (each curve 
constant value of 0 ). There is general 
is the most important variable in the expression 
, however, no agreement yet as to what is exactly 
, i.e. how it should be expressed in terms of the 
X , Y and W ; (see e.g. from Figs. 1 and 2 

e parameter 0 is identified with the variable 
[3] the curves are classified simply by using the 
next section is an attempt to reveal the 
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PARAMETER    9 

Consider the information supplied by experiment. 

In Ref. [4] the measurements of the ripple length were carried 
out for three different granular materials:  quartz  (Ys/Y = 1.65) ; 
coal  (Ys/Y = 0.50)  and steel  (Ys/Y = 6.6) . No influence of Ys 
or ps was detected in the behaviour of the curves representing the 
variation of the ripple length A with the orbit length a .  (See 
e.g. the three curves corresponding to the same grain size 
D = 0.36 mm in Fig. 1 of Ref. [4]). 

Similarly from Fig. 3 of Ref. [1] it can be seen that the 
variation of A/D with Z for sand  (Ys/Y = 1.65) and perspex 
(Ys/Y = 0.19)  is almost the same if the period is the same 
(T = 1.82s)  and if their grain size is comparable.  (Compare e.g. 
the patterns of the points corresponding to D = 0.52 mm sand 
and D = 0.48 mm perspex in Fig. 3 of Ref. [1] (last two lines in 
the table on this graph)). These are only a few of the examples 
which indicate that the length A of ripples does not depend on 
the nature of the granular material, i.e. on its specific weight 
Ys and density ps .  But the quantities Ys arld Ps  can only 
disappear from the expression of A if W is excluded, while 
X and Y appear in the form of the product 

2       yT   "  2^2 
pv /  V s /    V T 

(or any power thereof).  Accordingly, the relation determining A/D 
can be expressed in the form 

£ =  f C Z , *  ) (4) 

From the comparison of (4) and (2) it follows that 

9 = ^    =  (X-Y)"1/2 (5) 
D 

DISCUSSION 

(i) The parameter 9 which reflects the influence of T in 
conjunction with v is, at the same time, an indicator which shows 
how the viscous effect (at the bed) compares with that of turbulence. 
Indeed, let 5V and 6t be the boundary layer thicknesses of 
viscous and fully turbulent flows respectively.  If the flows are 
oscillatory and the bed is flat, then 

5 
v 

VvT (6) 

and       6t ~ K  ~ D (7) 
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Thus Q    ~        7T W 

(If the "geometry" of the oscillatory motion over the flat (initial) 
bed is given (by Z = a/D) then the subsequent wave-like deformation of 
this bed appears to be dependent only on the comparative degree of 
turbulence.) 

(ii)  In the field of unidirectional flows it is well known that the 
length (A) of sand waves does not depend on Ys or Ps • Indeed, 
none of the expressions produced to date for the length of ripples, 
dunes or antidunes contain Ys or Ps '>   (these quantities affect 
only the speed of their development).  In particular the length of 
ripples forming in a (two-dimensional) unidirectional flow is 
determined only by the parameters v4 , D and v  (Ref. [5]) : 

A 
D " r \     v 

Consider now an oscillatory flow having 

v^D 
(9) 

( a -*• °° , T -> » )  but  ( Y   finite ) (10) 

Suppose that the (finite) mean orbital velocity U = 2(a/T)  of this 
flow is as sufficiently large as to induce the transport of 
sediment and consequently to generate ripples.  Clearly the ripples 
generated by such an oscillatory flow must be virtually the same as 
those of a unidirectional flow.  But if so, then the function (4) 
(of two variables) must in the limit (10) reduce into the function (9) 
(of one variable).  In other words, the function (4) must possess the 
property 

lim 
a-x» •— 
T-*» 

f(Z,0) 
v.D , 

(11) 

If a and T are very large, then their individual influence 
vanishes and they affect the phenomenon in the form of the ratio 
a/T meaning "the velocity"  (u ~ a/T).  But the ratio a/T can only 
appear in the expression of A/D if two variables Z and 0 of the 
function (4) merge into a single variable Z/0 , which means that 

lim 
a-**> 
T-*» 

f(Z,0) I ) ^ 

must also be valid.  From comparison of (11) and (12) it follows that 
the necessary expectation in the limit (10) can only be satisfied if 
Z/0 has the same meaning as the Reynolds number v*D/v . Observe that 
this is indeed so 
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I    -       O/D)     _     (a/T) -D UD ^ f     . 
6    "     (VT/D2)   " V ~    V       ~       V "3) 

(An analogous transition into the Reynolds number v^D/v  (which does 
not contain Ys or Ps ) cannot be achieved by any other expression of 
0 (other than (5)), as any combination of X , Y and W (other than 
(X Y)n)  will inevitably contain Ys and/or ps ). 

NORMALISED PLOT 

When the values of A/D corresponding to a constant value of 
0 are plotted versus Z , then the experimental points first follow 
a common 45c-straight line S , then they diverge from it and form 
some curves (Figs. 1 and 2).    These curves (point patterns) are 
rather similar to each other and it is very likely that each of them 
is in fact "the same curve shifted in the 45°-direction".  Let m be 
the point (location) where an individual curve diverges from the 
common straight line S , and a0 and A0 be the coordinates of m 
(Fig. 1).  If the individual curves are indeed the shifted versions of 
each other, then one can normalise the curve family (i.e. one can 
make all the curves collapse into a single unified curve) by 
plotting A/A0 versus a/a0 .  Estimating the locations m from the 
data available (Refs. [2], [3], [4], [6], [7]) such a normalised 
plot was produced and it is shown in Fig. 3. The scatter is 
considerable (especially that due to the field data) and yet the 
points (symbols) do not tend to form some patterns of "their own". 
Thus the idea of a normalised plot appears to be feasible.  It would 
certainly be desirable if some further (laboratory) measurements were 
carried out in the range 

-     2    <    -      <    -     20 
a 
o 

(in order to reveal more clearly the position of the curve in this 
region). 

The graph in Fig. 3 can only be used for the prediction of A 
if one knows the values of a0 and A0 . Since the divergence 
points m lie on the straight line S  (Figs. 1 and 2)  a0 and A0 
are interrelated by the simple proportion 

a  =  (const)-A (14) 
o ^  o 

where        '-    0.75 <  (const)  < -  1 (15) 

(In fact it is only the curve family of Ref. [2] which yields 
(const) - 0.75 .  The curve families of the rest of the authors quoted 
yield (const) = 1 , and therefore with regard to practical purposes it 
would be only reasonable to adopt simply a0 - A0 ). 

Thus it remains to reveal the value of A0 . Since the 



1784 COASTAL ENGINEERING—1978 

divergence point m is displaced together with the curve (Figs. 1 and 
2), and since the position of each curve is determined only by the 
parameter 0 , the value of A0/D must also be determined by G only. 

A 

02 = * ( 0 ) (16) 

Plotting the ordinates A0/D of the points m  (estimated from the 
data available) versus the corresponding values of 0 = vT/D^ one 
arrives at the graph in Fig. 4.  (Note from this graph that the points 
corresponding to different Ys an<i Ps do n°t tend to form 
different patterns). 

Hence, knowing D , v and T  (and consequently 0 )  one 
determines from Fig. 4 the value of A0 , and then from Eqn. (14) 
the value of a0 .  Knowing a  (and thus a/a0 )  one can predict 
A/A0  (and thus A ) from Fig. 3. 
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LIST OF SYMBOLS 

p fluid density 

v kinematic viscosity 

p density of grains 

Y specific weight of grains in fluid 

D typical grain size (usually D ) 

T wave period 

a orbit length of the oscillatory fluid motion 
due to waves at the boundary layer level 

U = 2a/T   mean orbital velocity at the boundary layer level 

K height of the granular roughness of the 
(initial) flat bed 

v*        shear velocity of the unidirectional open channel flow 

A        ripple length 

6        boundary layer thickness of the viscous 
oscillatory flow 

6 boundary layer thickness of the fully turbulent 
oscillatory flow 

X,Y,Z,W    dimenslonless variables of the two dimensional 
oscillatory two-phase motion at the mobile bed, 
as defined by Eqns. (1) 

2 
G = vT/D   dimensionless combination reflecting the influence 

of period (in conjunction with viscosity) 

a and A   upper limits of the proportionality between 
a and A which correspond to a given 
0 = const 


