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ABSTRACT 
We introduce here a numerical two dimensional model for sediment 
transport which permits to compute the impact of a coastal struc- 
ture on the bottom evolution. 
The introduction of current disturbance and some assumptions using 
difference of time scale between current and bottom evolutions per- 
mits to obtain a propagation equation driving the bottom evolution. 
The model has been calibrated in the case of the local scour around 
a jetty. At last, it has been applied to the bottom evolution in the 
vicinity of the new port of Dunkerque. 

INTRODUCTION 
One of the impacts of a large coastal structure is its effect on 
current pattern in the vicinity of the structure. These changes in 
current conditions will induce changes in the sediment transport 
pattern and may disturb an existing equilibrum thus causing large 
changes in bottom topography in the vicinity of the structure. To 
assess the severity and extend of topographical changes induced by 
the structure the interaction of the resulting fluid motion with 
the bottom evolution must be properly reproduced. 
The study of sediment drifting and movable bed evolution is a difficult 
problem from a physical and mechanical point of view. But the sediment 
transport relationship admitted, the problem is reduced to the study 
of a conservative phenomena. 
An other problem is the difference of time scale between current and 
bottom evolution. It is impossible (because of cost), to compute 
simultanously the bottom evolution and the current by the classical 
way. Nevertheless, the interaction between the two is fundamental 
for the bottom evolution. 
This paper presents a two dimensional mathematical sediment transport 
model taking into account the influence of the bottom evolution upon 
the current pattern and shows how this particular aspect of the inte- 
raction drives the ripples propagation. 

THEORETICAL ANALYSES 
Bed continuity equation and sediment transport relationship 
Let T be the sediment transport vector and 5 the bottom elevation ; 
the bed continuity equation may be expressed as 
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f +  div T  =  0 

How express T as a function of the velocity ? That is a real 
problem. Many relations can be found taking into account 
waves or not. For ourselves we have used the Meyer-Peter 
relationship for the sediment transport vector T which is 
supposed in the direction of the current bottom shear stress 
which is evaluated using Chezy's relationship. 

So the bed continuity equation cas be transformed into : 
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T  = A (CD - CD) D    (0,02 < A < 0,06 Shields). Critical 
bottom shear stress 
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u, v are the two components of the depth averaged current 
2   2   2 

W = u + v 

TB,  tn specific weight of water and sediment 

D., mean diameter of sediment. 
M 

Influence of bottom evolution upon the current pattern 
With the initial bottom shape E,Q  and' the new geometric 
conditions the depth averaged flow pattern is (u0, v0). 
This current modifies the bottom shape which in turn 
modifies the current by (uj (t), vi (t)). 
At time t, the current pattern is given by (u0 + uj (t), 
vo + vl (f ' and the bottom level by £(t) (£g = E, -  £,    is 
the bottom evolution). 
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The resulting disturbance (ui, v^) is assumed to be without 

effect upon the surface elevation zQ. This assumption is 

equivalent to neglect the characteristic response time of 

the surface wave propagation compared to the characteristic 

response time of the bottom evolution. 
The resolution of the fluid continuity equation shows that 

the current disturbance (uj, v^) can be written in two 

different terms : 
- the first one (uj, vj) comes directly from the bottom 

elevation £j and expresses the flow conservation along the 

stream lines of the undisturbed field of currents (u v0) 

u = Up 
5o 

- the second one 

the bottom slope. 
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Bottom equation 

These two terms are introduced in the bed continuity equa- 

tion (1) which can be written : 
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Equation (2) governs a ripples propagation in the direction 
of the initial current pattern with the celerity C. This 
phenomena comes directly from the adaptation of current 
disturbance (ui, vj). By neglecting the disturbance it is 
impossible to reproduce the ripples propagation. 
The second member can be divided in two different parts : 
- contribution of the initial current pattern which is 

conserved at time t 

- contribution of the deviation of the flow (uj, v^) which 

drives a ripple deformation. 
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Fluid equation 
To determine the current disturbance (ui, Vj) an other 
assumption is required : an irrotational current disturbance 
pattern (uj + uj, vj + Vj) is assumed. So uj and v^ are 
obtained from the three-dimensional stream function IJJ, 
which yields a Poisson type equation (3). 
So the actual current pattern is defined by : 

h = zQ - 5 actual depth and ty  obtained from 

.,    ,8  ,   ^s,   3  ,   ?s,   ^ 3h  ^ 8h M>  = + h ^ (v0 —) - ^ (u0 —) + Ul _ - Vl ^   (3) 

NUMERICAL MODEL 
A finite difference scheme is used to solve equations (2) and 
(3). The computational grids ip and u, v, £ are shifted. The 
initial conditions (u , v , z„, £_) are obtained with an o  o  °  o 
other numerical model or recorded on a scale model. 
Each time step involves two stages : 
- computation of the bottom level £ ; equation (2) is solved 

by the characteristic method. All functions are explicited 
but the scheme is stable. 

- computation of the new velocities ; only uy, vj have to 
be computed. Equation (3) is solved by an iterative process. 

NUMERICAL EXAMPLES 
Local scour around a jetty 
Several numerical examples have been computed. In figures 1 
and 2, the local scour around a jetty, and the flow pattern 
evolution are shown. The conditions are : flat initial bot- 
tom, far field mean velocity =41 cm/s, water depth = 20 cm, 
width = 46 cm, ratio jetty length over flume width =1/3 and 
particle diameter 4,5 mm. The initial current pattern has 
been computed with an other numerical model. In figure 3, 
comparison between computed and measured scour is shown. 

Study of new port of Dunkerque 
The Port Autonome of Dunkerque has built a new port able to 
receive 22 metters draught ships. Many studies have been 
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Fig.1 _ EROSIONS   AFTER  1,2 AND 3 HOURS 
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Fig.2. CURRENT    PATTERN   AFTER   1,2  AND 3 HOURS 
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EXPERIMENT 

COMPUTATION 

Fig.3.C0MPARIS0N    BETWEEN   MEASURED 

AND   COMPUTED"  EROSIONS 
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carried on during ten years. Particularly, a movable bed 
model have been built to study the bottom evolution due to 
tidal currents near the new port. 
The numerical model has been used in this particular case, 
but to decrease the cost of computation the second kind of 
disturbance has been neglected. Only equation (2) was solved. 
The initial current pattern used for the computation was 
recorded on the scale model. 
The comparison between the computed and mesured erosions and 
accretions is presented on figures 4 and 5. The main diffe- 
rence takes place near the jetties and it probably comes 
from the initial current pattern which was not conservative 
because of the precision of measurements on the scale model. 

CONCLUSION 
A simple kinematical study of the sediment transport equation 
has shown how can the ripples propagation be obtained. It 
has also allowed a numerical integration on a computer. The 
characteristic response time of the surface wave propagation 
compared to the characteristic response time of the bottom 
evolution put a stop to any sort of computation of the 
disturbed current in the classical way. The introduction of 
current disturbance and several assumptions permit the 
computation of the bottom evolution during a long time. 
This kinematical and mathematical aspect almost understood, 
studies are going on a more physical and dynamical point of 
view to determine the influence of the different parameters 
in transport relationship and to find a best dynamical 
approximation of the current disturbance. In the same time, 
a mean of averaging the tide in tidal problems is inves- 
tigated. 
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Fig.A- EROSIONS    NEAR   DUNKERQUE   PORT 
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Fig.5. ACCRETIONS   NEAR   DUNKERQUE   PORT 


