CHAPTER 82
NEAR-~BOTTOM VELOCITIES IN WAVES WITH A CURRENT

by W.T. Bakkerl) and Th. van Doornz)

0 Abstract

Bakker (1974) developed a mathematical model concerning the sand
concentration and velocity distribution in an oscillatory turbulent flow,
with or without resultant current,

The flow is assumed to be uniform in horizontal direction. The pres-
ent. paper reports on an experimental verification of this theory.
Furthermore, the numerical accuracy of the model has been 1nvest1gated
and diagrams are presented which enable the computation by hand of global
velocity profiles.

1 Introduction

This paper deals with a numerical theory on the near-bottom veloci-
ty pattern in parallel-directed waves and current and with the compari-
son of theory and measurements. The paper is a sequence to an earlier
paper (Bakker, 1974); the numerical theory concerning the velocity field
developed herein is further refined and, in some respects, revised. For
the sake of physical understanding an additional paper, dealing with an
approximate analytical theory is in preparation (Bakker, 1979).

Furthermore, a Report is in preparation (Bakker and Van Doorn, 1979)
which comprises as well the analytical and the numerical theory, and
which goes further into details. This study has to be placed in a gener-
al scope of investigations, mentioned in the preceding paper (Bakker,
1974) .

The necessary assumptions are mentioned in Ch., 2; in Ch. 3 the math-
ematical formulation is given. Because several aspects differ from those
in the earlier paper, most of the derivations from this paper are repeat-—
ed for convenience. Ch. 4 deals with the investigations on numerical ac-
curacy. In Ch. 5 experiments are described, carried out in the Delft Hy-
draulics Laboratory (DHL). Comparison between theory and experimental
data is made in Ch. 6. The present theory and the theory of Lundgren
(1972) are compared in Ch. 7. After the conclusions (Ch. 8) the acknowl-
edgements (Ch. 9), the literature and the symbols are mentioned.

The theory was developed by the first author; the experimental ver-
ification was carried out by the second author, who also reported on
this subject.

2 Assumptions

The following assumptions are made:
a. Apart from turbulent fluctuations a horizontally directed and hori-
zontally uniform current pattern is assumed. The current u is assumed
to be only a function of the vertical coordinate z and the time t,
but no function of the horizontal coordinate x.
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In the fluid a turbulent shear stress is assumed, according to the as-
sumptions of Prandtl (1931) equal to:
2 3u;du
T =ot" gl M
in which 7 is the shear stress, positive when acting in positive di-

rection from the upper layer on the lower layer, p is the specific
density of the fluid and £ is the mixing length.

c. A reasonable assumption on this mixing length and the distribution of

the shear stress as a function of the height is obtained as follows.
The equation of motion reads:

P53t T %2 T Bx (2)

in which p_ denotes the fluid pressure. A periodical water motion with
period T is assumed. By Fourier analysis, one finds that the left-hand
side of Eq. (2) will be zero when averaged over period T.

Then one finds from (2):

dTreal _ apr 3
dz T 5% 3

The bar above the symbol indicates the averaging over the wave period

T; the subscript "real" of T serves as a distinction from the schemat-

ized T, mentioned later on.

Assuming, that the mean pressure gradient is constant over the height h,

one may write for T:

- P,

Treal = (h=2) X )
If only a stationary and no periodic motion would occur, according to
well-known methods one finds a logarithmic velocity distribution,
starting from a mixing length lreal according to:

]

Z
Kz | -

lreal = h

(5)
where Kk is the Von Karman constant.
For a stationary current, this logarithmic velocity distribution is
found also, if the shear stress T is schematized as a constant (i.e.
uniform over the height):

5z

T =nh _EE (6)
ax

and the mixing length according to:
- % =Kz (7

As the investigated features occur quite near to the bottom, where (4)
and (6) on one hand and (5) and (7) on the other hand look very much
the same, in the following the relationships (6) and (7) will be as-
sumed.

Starting from a mixing length according to (7), generally it will be
assumed, that the pressure gradient grad (p_) is horizontally direct—
ed, i.e. that the pressure is only a function of x and t.
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€. The mean velocity, when averaged over the water depth and the wave
period is called U an® It is further assumed that the water mass far
from the bottom is in oscillatory motion according to:

+ ... (8)

U =0 sin(we-¥,) + i sin(3wt~¥

osc | 31n(2wt—W2) + U

2 3 3)

ﬁm 0’ 61’ 62’ g R Wl’ Y, and ¥, can be arbitrary chosen. Connected
with the solition, a sma%l paraditary fourth harmonic is found, being
5 to 10Z of the first one.

A solution with U equal to zero can only be found, when also §

. mean . . .

is zero (as all hlgﬁer even harmonics). In this case, a parasitary
fifth harmonic of the order of 5 to 107 of the first ome is found.

A hydraulically rough bottom is assumed. The velocity at a height z
above the theoretical bottom level is assumed to be zero; it is as—
sumed that z, equals 1/33 times the Nikuradse roughness r.

| Fh

3 Computation of water velocities and shear stress

Define a rather arbitrary height z above the bottom, in this-.way,
that the periodical changes of the shear stress_are attenuated at that
height. For z 2 zmax the shear stress T equals T, being assumed constant
over the height (aSsumption c). Thus one finds from (2):

ap
Ju r
P A T TS for z 2 2 ax (9
Let the velocity at z = z be U. Thus Eq. (9) remains valid, when u is

replaced by U; let Eq. (9g7xbe Eq. (9) for u = U.
Define a "defect velocity" u, as:

ug=u - U (10)
According to assumption d, subtracting Eq. (9a) from Eq. (9) yields:
aud
= 2
5% 0 for z - » (1)
In (1), one may replace u by u,, because U is no function of z.
Thus, from (1) and (7) can be derived:

u, = t/p tn ~Z for z 2 2z (12)

d K z max
max

Consider now the area where z < z ax" Subtracting Eq. (9a) from Eq.
(2) and substituting Uy from (10) yielgs:

du
d _ 3(t/p)
3t 9z (13)

This equation can be transferred in an equation with the shear
stress velocity p as independent variable.
Define p as:

p = sign (1) . vVjt/pj 14)

Inversely, this implies:

T = o plp| (15)
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From (1) and (7) it shows:

_ du
P = KZ~a~£ (16)

In (16) one may replace u by ug Differentiation of (13) to z and
multiplying with kz yields:

2
&, Ykl an

ot azz

For method of computation of u from p is referred to Bakker (1974).
The following mainly deals with deviations from this paper. From p, one

can find uy with the aid of (10), which can be written as:

z
_ .1 Jmaxp
uy = < i 2 dz (18)
Eq. (17) can be made dimensionless by introducing the following di-
mensionless variables:

* ~
p* p/B,

= t/T (19)
z* = z/z, with Z = KﬁbIT
u* = u/ﬁbl (see note 1))

in which $ 1 is the amplitude of the first harmonic of the shear stress
velocity a% the bottom (the index '"b" refers to "bottom™).
Thus one obtains from (17):

»* 2 »* *
p* _ L« (P p ) (20)
ot* oz*
As lower boundary condition is assumed:

. _ m . » ¥ . L Py . *_
P, =P, * sin2mt’ + Pro sin(4nt ¢2) S sin(6mt ¢3) (1)

for z* = 0

If Upean equals zero, 5; and ﬁgz are assumed zero; to the choice

of the variables B;, ﬁgz, §g3 , ¢2 and ¢, will be referred. _

The upper boundary condition is deétermined by the fact that T should
remain constant over the height according to (6)2); Averaging Eqs. (13)
and (17) over the wave period (in which case the left-hand side becomes
zero, as can be seen by decomposing Yy and p in harmonics) one finds that

Y

Generally, the velocities denoted by a symbol with an added star have
been divided by ﬁbl'

2)J. van Overeem drew the attention of the author to the fact, that this

condition was not fulfilled by the solution for waves and currents,

given by Bakker (1974). Therefore the solution in the present paper

contains a revision of last-mentioned paper with respect to the case
of waves with a current.
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the solution of these equations fulfills this condition automatically,

if the upper boundary condition is properly chosen. At the upper boundary
the shear stress velocity p should be equal to /T/p:

pt =V Eg_Tﬁg_l for z* = z* (22)

In the case of an oscillatory flow without current (22) degenerates

to p* = 0 for z* = Z'ax' In the computer program, initially an approxima-
tion is chosen accorglng to:
p* = /nf)b* /4  for z* = zn:ax (initially) (23)

This approximation follows from analytical considerations (Bakker, 1979).
In the course of the computations, the real value of the right-hand

side of (22) is calculated;after each period the upper boundary condi~
tion is adapted. This condition changes, because after some periods Tg s
ﬁga s ﬁ;} , ¢, and ¢3 are adapted by means of an iterative procedure),
in“this way tﬁat the upper boundary condition (8) (in dimensionless
shape) is fulfilled as good as possible.

In order to check the accuracy of this upper boundary condition, from
the shear stress velocity p* the value of U* is calculated after some
periods by means of numerical integrationl) with the aid of (18), which
clearly keeps its validity in the dimensionless shape.

In the following, some attention will be paid to the results with
respect to the first harmonic and the mean velocity profile. This gives
just a general scope: solutions, which fit rather closely to the wanted
boundary conditions can be found by application of the computer program.

With respect to the first harmonic, the dimensionless relationship
between i ? (the amplitude of the first harmonic of the dimensionless
defect ve?ocity) and z* can be transferred into a dimensionless relation-
ship between a kind of friction coefficient ﬁbl/ﬁ and a /r, in which a,
equals U,T/2T and r the Nikuradse roughness. This can be performed as
follows.

Consider a certain defect velocity field u* , which has been calcu-
lated, starting from certain bottom boundary conditions, defined by har-
monics of p* .

In prificiple every level z* (at which ua has been calculated) can
be taken as a bottom boundary level z* , where u* is assumed zero.
Therefore according to (10) the choice of z; determines U', the dimen-
sionless velocity far from the bottom (at z* = z* ). Thus one computa-
tion of u* determines a great number of velocit$a¥ields u* with various
upper boundary conditions and various values of z* . Neglecting (just
for the general scope) non-linear interactions befween the harmonics of
p*, in fir%t approximation the relationship between_dimensionless first
harmonic U, and z; can be investigated by taking p; . 5;2 and ﬁ;} in

1)z:f.Bakker (1974) and Bakker and Van Doorn (1979)
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(21) equal to zero and calculating u* under these conditions!)On the ef-

fect of non-linear interaction will ge returned in Ch. 4.
From assumption f and (19) the following relationship can be deter-
mined: -
a

1 _ 1 *
T T 0y /7% (24)
which in turn can be written, using (10):
a
kl o 1 - . *
r 66TK udl(zo)/zo (25)

~

where 47 (z%) denotes {J; at the height z}.

Now the ratio ﬁb /Ul’ relating the amplitude of the first harmonic
of the bottom shear s%ress velocity to the amplitude of the first har-
monic of the oscillatory motion U far from the bottom, equals 1/0* R
according to (19) which in turn can be written as 1/8Y (z* ). Accoréing
to a similar reason, the phase lag ¥, between p,, and eguals minus
the phase lag between p’] and u"l tz’ . Thus, from the computer re-
sults with the mentioneH bottom goundary conditions, the choice of a
value of z% gives a relationship between a value a,/r and the belonging
values of P l/ﬁl and ¥.. By using z* as a parameter, the general rela-
tionship be%ween a,/r and the last mentioned parameters can be obtained;
this is shown in Fig. 1. The same results are plotted in another way in
Fig. 2, giving ﬁ; (= Ggl at z;) and ¥, as a function of z*.

Now the attention will be turned to the mean velocity profile u as
function of z. From (10) and (18) for the upper part of the mean velocity
profile is found:

T/0gn for z > z (26)

K 2 max
max

where U is the mean velocity at z = z X Averaging (16) over the wave _
period and integrating, one finds in bt vicinity of the bottom, where p

u=70U+

= pb: _

- Py z

U= 2n - (near the bottom) 27

o

Therefore, plotting u on the horizontal scale versus #n z on the verti-
cal scale, the upper part will be a straight line with a gradient arctan
(k/V/T/p), where the curve tends to a straight line with gradient arctan
(k/P,) near the bottom. The last-mentioned gradient is larger than the
firs%—mentioned one: the ratio P, /VT/owill be called B_, and equals ap-
proximately vmp* /4 (for P.* << 1J; this follows from sggstitution of2)3)
Py = ﬁb + ﬁbl sinwt into (?5) and approximating in an analytical way .

l)This has been done earlier by Bakker (1974). In the present paper the

conception is left of a coefficient "f ", occurring in the former paper,
which relates the top-bottom shear stréss to the top-orbital velocity.
Because of the effect of higher harmonics, this coefficient obscures
rather than enlightens the mechanism,

2)

3)

This result has already been used for the transition from (22) to (23).

Bakker (1979); Bakker and Van Doorn (1979).
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Thus it shows, that the velocity profile consists of two logarithmic
parts with a transition zone between.

With respect to this transition between the bottom and z = Zhaxs A0
analytlcal approx1mat10n1) suggests the occurrence of a universal func-
tion £(2*) in this way, that for small values of z* the following rela-
tionship holds:

=2 o £(2") - £(2) (28)
Pb o

When z* is plotted on a vertical, logarithmic scale and ku/p. on a
linear horizontal scale so that | on the horizontal scale corresponds.
with £n e on the vertical scale, the lower part of the curve f£(z*) degen-
erates to a line under an angle of 45 . Thus this part corresponds with
the lower 1ogar1thm1c part of the velocity profile mentioned before. The
curve f(z*) also gives the transition zone; the upper logarithmic part
of the velocity proflle can be found by drawing the tangent to f(z*)
with a gradient v7mp* /4 with the horizontal (imset Fig. 3).

From the computer results the curve f£(z*) can be found. Starting
from certain values of p and assuming p' and p equal to zero, the
velocity field u? , and hus ar , can be calculated} starting from a
certaln, rather arbltrary value of z* , one can f1nd G*, and thus
Ku /p ,» equal to KG/P,. Indeed it shows, that the lower part of the re-
sultant curves for various values of p¥ coincide, and that the lower
part gives a straight line under 45° , whereas the upper parts show a
gradient Vﬂﬁ; /4 (Fig. 3a).

The question remains how P, can be determined from U n’ the veloc—
ity averaged over the period as well over the depth h.

Without an oscillatory motion, the relationship would exist:

KU
- _ mean . . .
b 73;7TUEE;T (without oscillatory motion) (29)

which can be derived in the same manner as the Chezy relationship3).

With oscillatory motion, an approximate, calculation of U -from
b (or 1nverse1y:'of p. from Upeapn ) could be msde sy neglecting the ef-
féct of the transition zone and the lower logarithmic curve on the mean
velocity and extrapolating the upper logarithmic curve in downward di-
rection (Fig. 4). However, this extrapolated line will intersect the
(vertical) line of zero-velocity, in a point higher than z = z , say z =

(Fig. 4). Thus it shows, that the effect of the oscillatory motion
is an enlargement of the apparent roughness with a factor o. Furthermore,
ﬁb in (29) should be replaced by VT/0, which makes a difference of a
factor B ., as stated before in this Chapter. Thus, in case of oscilla-
tory flow, (29) changes into:

_ B. kU
ob mean (30)

P, = Tn (h/e azo)

1)Bakker (1979); Bakker and Van Doorn (1979)
2)

Only should be conditioned, that z* is so small, that it gives a point
on the lower straight section (undér 45°) of the £(z*)-curve.

3)Thls can be easily seen by multiplying both sides of Eq. (29) with

(1/k) fn (h/ezo).
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in which Bob x VTpX /4 1) and in which o is derived with the aid of the
computer program in the following way.

Analogous to the case with the first harmonic, each level z* can be
considered as a lower boundary condition z* , which determines al/r. Fig.
4 shows that o can be found from the following relationship:

;ax BobK
fn o= fn —= - S ﬁ; (z") (31)
b

where @ (z*) denotes @¥ at the level z*. In this way, with one computer
calculation -starting from a bottom boundary condition with a certain
value of §* and assuming $*, and $*, equal to zero- one may find the
value of o for a great numbe¥ of values a]/r. Fig. 5 shows o as a func-
tion of aj/r and ﬁ; .

Now the following rough way of calculation of the mean velocity
profile is advised:
a. Determine a]/r, using a; = ﬁ]T/2n
b. Determine Py; from the ratio P, ,/Uj, found in Fig. I

c. Calculate ﬁﬁ from (30), which may be written as:

- i Umean 2 2) (32)
Py ~ % (ﬁbl/K) 2n (h/eazg) (see note ™)
Here o has to be determined iteratively: assuming for instance first
o =1, finding p* from (32), finding a better estimation of o from Fig.
5 until the wanted accuracy of P* 1is reached.
d. The lower part of the profile is a straight line on single-logarithmic
paper under an angle arctan (K/ﬁb) through the point (u,z) = (o,zo)
. the upper part is a straight line on single-logarithmic paper under
an angle arctan (Bo K/ﬁb) or, approximately arctan (KVN/(4§b ﬁb]) )
. the transition can Be found from Fig. 3a.
As mentioned, more accurate results can be obtained by using the
computer program directly; in this case a first estimation of ﬁg follows
from (32).

4  Numerical accuracy

A number of computations has been carried out in order to check the
numerical accuracy. For the details is referred to Bakker and Van Doorn
(1979); here the following results may be mentioned.

a. In the computer program an initial condition can be introduced, which

~ may be different from the one, following from the periodical bottom
boundary condition. After 4 periods running, the effect of this ini-
tial condition vanished up to 1°/oco of By 3). .

b. The effect of the upper boundary condition on the ratio ﬁbl/U] is
small, as long as zfax is 1.5 at least.

])For 5; > ., 5 this approximation becomes inaccurate, in which case is
referred to Bakker (1979) or Bakker and Van Doorn (1979).

2)In (32) the denominator between the brackets shows a hypothetical

mean velocity over the profile, which would occur when the bottom shear
stress velocity would have been Py, instead of (a mean value of) VT/o.
and when the roughness would have been ar instead of r.

3)The ratio between P and Gl can be found from Fig. 1.
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c. The greatest traceable source of numerical error in the program is
found to be caused by the fact, that the present iteration procedure
does not extend up to the fourth and fifth harmonic; when the real
fourth and fifth harmonic of U are zero, the error is of the order of
20% of Pp]. Because of this error, the accuracy is not effectively
enlarged by taking more than 6 grids (using z&ax = 1.5). The differ-
ences in U, between the use of respectively 3, 4, 5 grids compared
with using 6 grids is respectively 4, 2, 1, 0.3% of U, when aj/r =
129 1), The raising of the grid number by | increases the computer
time about a factor 2.

Considering the case without resultant current, the effect of a third

harmonic of Pb (being so large, that U, becomes zero) on the first

harmonic Uj is small (about 1% of il -

e. The effect of By, (i.e. resultant current) on the first harmonlc udi
is relatlvely small for large values of al/r (2.57 of Ul when aj/r =
129 and p = ,23). For smaller values of aj/r the effect is larger
(6% of Ul when,a /r = 3.5 and pb = ,23).

leu

5 Experiments

The bottom boundary layer under periodic progressive water waves,
without and with a superimposed current has been investigated at the
Delft Hydraulics Laboratory (DHL). The results of these experiments on
the velocity distribution are compared with the present theory. In the
theory, assumptions are made for the case of a horizontally oscillating
flow such as can be realized in a horizontally pulsating water tunnel.
The results of the present investigations, with free surface waves, will
in future be compared with results from similar tests in the Oscillating
Water Tunnel of the DHL.

Water surface elevation (n) and horizontal water velocity component
in the direction of wave propagation (u) have been measured simultaneous-
ly in the same cross-section in a 30 m long, 0.5 m wide and 0.5 m high
glass-walled flume of the DHL (Fig. 6).

Periodic waves were generated by a flat wave board oscillating hor-
izontally with adjustable amplitudes at the lower and upper side. The
wave trains applied in the experiments, obtained by starting the wave
generator always from the same position were very well reproducible. In
all experiments, the still-water depth (h) was 0.30 m, the wave period
(T) with respect to a fixed point 2.0 s and the wave height (H) at the
measuring station 0.12 m. Steady currents can be generated by circulating
the water (Fig. 6). In view of the presence of secondary waves, the meas-
uring stations were chosen so that the ratio of the amplitudes of the
first and second harmonic components of the surface waves approximately
showed a maximum. In order to obtain a turbulent boundary layer at the
bottom, two-dimensional roughness elements (2 mm high at 15 mm centers)
were applied (Fig. 6).

D

In the present program z; may differ from Az*. This is a facility,
plugged in the computer program after Appendix A of Bakker (1974) was
written. In this way the value of Ul belonging to an arbitrary

value of a|/r can be calculated, independent of the number of grids.
For details, cf. Bakker and Van Doorn (1979).
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The experimental study has been performed in two phases. In the
first phase 1), waves without a current were considered. The inflow pro=-
vision in the flume was covered. The artificial bottom roughness was ap-
plied only over a distance of !.5 m at the measuring section.

In the second phase of the experiments 2), roughness elements were ap-
plied over a distance of 15 m next to the water inlet and currents were
generated in the same direction as the wave propagation. The mean current
velocities (averaged over the height) were approximately 0.10 m/s (test
code V10) and 0.20 m/s (test code V20). In this second phase, tests with-
out a current (test code V00O), but with open inlet were repeated for com-
parison,

For each condition, velocities in two verticals have been measured
viz. in between two roughness elements (code RA) and just above one (code
RB). In this way, tests series were performed with codes RA, RB (first
phase) and VOORA, VOORB, VIORA, VIORB, V20RA, V20RB (second phase).

Figure 3b shows the distribution along the vertical of measured cur-
rent velocities (time average values). It is noted that in the experi-
ments the speed of the pump was the same for the current only and for
current with waves, whereas the theory on oscillatory flow with resultant
current starts from a given gradient of the mean water level which is sup-
posed to be the same for "current only" and for "current with waves'.

For the analysis, only the waves from a wave train were used after
the start-up transients and before the first reflected wave reached the
measuring station. Three wave trains were applied for every level at
which velocities have been measured, from which as an average a more ac-
curate orbital velocity could be determined. In the case of waves with a
current, n and u are measured also without waves.

The water surface elevation was measured with a resistance-type
wave gauge. The velocities were measured at a series of successive levels
above the bottom with a laser-doppler velocity meter (LDV). The applica-
tion of this technique with its general advantage of measuring accurately
and contactless in very small measuring volumes, was highly satisfactory.
The error in positioning the level of the LDV was less than +/- 0.1 mm.
The reference distance to the bottom, determined.by means of a measuring
rule is less accurate; the error is estimated less than +/- 0.3 mm.

The signals from the wave gauge and the LDV were recorded simulta-
neously on paper and on an analog magnetic tape. From the tape recorder
the signals have been processed in two steps:

a, Digitization by synchronized sampling, exactly 72 times per wave peri-

~ od, i.e. a sampling frequency of 36 Hz. From every wave train, the
measured signals have been sampled over the same time interval after
the start of the wave generator, so phase relations between velocities
measured at different levels could be maintained. In the first phase
of the experiments, the accuracy of digitizing was +/- 0,025 cm and
+/- 0.15 cm/s for the signals of the surface waves and the velocities
respectively. In the second phase, these values were 10 times smaller,

b, Harmonic analysis of the digital signals. The results obtained from

harmonic analysis of the average wave (i.e. also velocities) of the

three wave trains were used for comparison with theory.

Table 1 shows the most important parameters deduced from the tests.

1)Van Doorn and Godefroy (1978)
2)Van Doorn (1979)
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= p = = —T—
U, U | sy | &/t 2 by | Py Bob | Poz | Pb3 ¥ ¥ ¥
TEST ) 2y | 3 ) | (5) | (&) (€] (8) 9 | Q0 1) 12 (13)
(c/s) [(cm/s)| (mm) (mm) |(cm/s) {(cm/s) |(cm/8) | (degr.)|'(degr.)| (depr.)
RA 2 29.83 | -2.6 | 95.0| 4.11| 49.8| 6.22 [~0.054 1.33 | 1.03 | 49.5 [191., 0.2
RB
VOORA 2 26.5 | -3.0 | 84.5| 3.65| 45.8] 5.72
VOORB
VIORA E 25.7 | 9.6 | 81.8| 3.54| 44.7 5.58 [0.0315{0.095 | 1.46 | 1.18 | 53.1 |196.7 |343.7
Vi0RB
V20RA E 26.3 | 22.7 | 77.3] 3.35| a1.5| s.19 |0.1807]0.329 | 1.35 | 1.23 | 52.7 {1931 |am.3
V20RB
JONSSON ('63)] 5, 0.5 (2850 [112.8 [697.8(20.79 |0.0121 0.96 | 1.49 | 25.4 |30s.6 | 76.3
(cf. Ch. 6)
) gl = amplitude of the lst harmonic of the velocity just outside the boundary layer
(2) U = mean velocity at z = z,,, = 1.5 2

3 ap = 03T/2m; (4) r = 33 755 (O) Z = k Py, T
(6)~(13) These values have been adopted from the numerical solution
® 8,y = Fy/YT/P

Table 1 Test parameters

6 Comparison between theory and measurements -

Comparison is made between the theory and the measured mean velocity
profiles VIORA and V20RA. The results are plotted in Fig. 3b.

The theoretical curves (found from the computer program) differ from
the ones which can be interpolated, using Fig. 3a, because of the effect
of the strong second harmonic U (about 1/3 of the first harmonic Uj) on
T, which is not taken into account in the derivation of Fig. 3a.

With respect to the comparison of the first harmonic, apart from the
experiments, mentioned in Ch. 5, also the measurements of Jonsson (1963)
(see also Jonsson and Carlsen, 1976) will be taken into consideration for
the comparison between theory and measurements. The experimental data, as
derived from the literature are added to Table 1.

For the various experiments, the dimensionless amplitude and the
phase of the defect velocity have been calculated and plotted against the
dimensionless height above the bottom. The results are shown in Fig. 2.
With respect to the amplitude of the defect velocity there is a rather
good agreement between measurements and theory, whereas the phases still
show discrepances.

The comparison between the instantaneous velocity profiles according
to the theory and the measurements (starting from a given upper boundary
condition) is given in Figure 7.

The general trend is rather well predicted, although the "overshoot"
velocity tends to be higher according to the measurements than according
to theory. Fig. 8 shows o(u)/ﬁbl as function of the dimensionless dis-
tance z* above the bottom for the various tests, 0(u) being the standard
deviation between the theoretical and measured values of the instantane-
ous velocities at a certain height. The mean value G of o(u), averaged
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over the considered levels within the boundary layer, has also been given
in Figs. 7 and 8.

7 The mean velocity profile according to the present theory and according
to Lundgren

Lundgren (1972) defines a shear stress velocity’"Uf" (Eq. (19) of his
paper), equal to T,./p, in which "t1.," is the period—average of the bottom
shear caused by waves and current. Thus "Ug" equals pb/Bob in the present
notation.

Lundgren's equation ((23) of his paper) for the mean velocity profile

reads, in the notation of the present paper:
U = ——(= 0 — - A) (33)
o

in which he calls A the "velocity defect".
In the present theory, the upper part of the velocity profile is given
by:
y _ Py
u = in — (z >> zo) (34)

BobK 0tzo

Therefore "A" equals (fna)/x. In his Fig. 2 Lundgren presents as re-
sult of his calculations the value of A as function of T /pUb R belng 1n
the present notation T/pUl, or 1n dimensionless notation pb/ bUl)

In the computer program, D /Bob is known from the upper boundary con-
dition (22). In the computer program for given values of Pb as well A as
T/(pU ) can be calculated as function of al/r' therefore Fig. 2 according
to the lay-out of Lundgren may be reproduced according to the present the-
- ory. In Fig. 9 the lines of constant "A" as function of a;/r and T/pU ac-
cording to Lundgren and the present theory are drawn together.

8 Summary and conclusions

a. Bakker (1974) presented a numerical mathematical model of the turbulent
bottom boundary layer in periodic waves with (or without) resultant cur-
rent in the direction of wave propagation. This model starts from the
Prandtl assumptions with respect to the relationship between shear
stress and the instantaneous velocity gradient. Non-linear interactions
are taken into account.

b. In the present paper the mathematical model has been improved and has
been compared with experimental investigations at the Delft Hydraulics
Laboratory (DHL). Velocities at a series of successive levels above the
bottom under free surface waves without, respectively with resultant
current in a wave flume were measured with a laser-doppler velocity
meter.

c. The mathematical model predicts reality rather well although the phases
of the first harmonic of the "defect velocity" in model and reality show
discrepances. With respect to the resultant velocity is referred to Fig.
3, with respect to the amplitude and phase of the first harmonic of the
defect velocity to Fig. 2 and with respect to the instantaneous velocity
profiles to Fig. 7. In Fig. 8 the standard deviation between measure~
ments and theory is given as a function of the height above the bottom
in a dimensionless graph. ror this, Pbl has been used as reference ve-
locity (the ratio between Pbl and the amplitude Ul of the first har-
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monic of the velocity outside the boundary layer is given in Fig. 1)
and xp T as a reference height.

The shear stress, exerted at the bottom according to this model and ac-
cording to the investigation of Lundgren (1972) appears to be of the
same order of magnitude (Fig. 9), although the problem is approached
from a different angle.

In the future, the mathematical model will be improved by including
higher harmonics than the third in the upper boundary conditions; the
measurements will be continued with similar tests in the Oscillating
Water Tunnel of the DHL; a (less accurate) analytical theory will be
presented, giving more insight in the physics of the matter.
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LIST OF SYMBOLS

!

e
f(z*)

—Sl O A

real

¢2.(3)
¥1,2),(3)

w

stroke length ﬁlT/Zﬂ

basic number of neperian logarithms

universal function, from which Ku/pb can be found (vide (28))
water depth

mixing length (schematized according to (7))

more realistic value of mixing length

internal shear stress velocity (vT/p) in the fluid
(instantaneous value of the) water pressure

Nikuradse roughness

time

wave period

horizontally directed water velocity (uniform in horizontal
direction), after averaging turbulent fluctuations

velocity u at z = z

""defect velocity" u - U

mean velocity, averaged over both wave period T and water depth
h

oscillatory water motion above the boundary layer (assumed uni-
form over the height), i.e. u - 4 for z 2> 2z
horizontal coordinate

vertical coordinate

r/33, the theoretical level where the velocity is assumed to be
zero

height, at which the variations of the internal shear stress
are attenuated

multiplication factor of the apparent roughness, caused by the
addition of the oscillation to the current

ratlo between p and /%75 (about equal to Vﬂﬁg/A if 5; << 1 and
if Uz << Ul)

Von Karman constant

specific density

internal shear stress in the f£luid

more realistic approximation of the shear stress averaged over
the wave period than T (vide (4))

phase angle of harmonics of the shear stress velocity p

phase angle of harmonics of the velocity U at height z = zpay
above the boundary layer

angular frequency of first harmonic of oscillation (27/T)

max

Other symbols added to a variable x:

X
*
X

Xb
*1,(2),(3)

x|
sign(x)
X(x)

average value of x durlng perlod T

""dimensionless varlable , i.e. velocity divided by pbl’ or
height divided by KpblT, or time, divided by T

value of x at the bottom (z = 0)

subscript applies to first, (second), (third) harmonic of x
amplitude of harmonic x (always in combination with subscript
1, 2 or 3)

absolute value of x

M1 if x is positive, "~1" if x is negative

value of variable X at height x



