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MATHEMATICAL MODELING OF SHORELINE EVOLUTION 
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ABSTRACT 

A mathematical model for long term shoreline evolution is developed. 

The combined effects of variations of sea level, wave refraction, wave 

diffraction, loss of sand by density currents during storms, by rip 

currents and by wind, bluff erosion and berm accretion as well as 

effects of man-made structures such as long groin or navigational 

structures and beach nourishment are all taken into account.  A com- 

puter program is devloped with various subroutines which permit modi- 

fication as the state-of-the-art progresses.  The program is applied 

to a test case at Holland Harbor, Michigan. 

I.  INTRODUCTION 

The purpose of this paper is to establish a mathematical model for 

shoreline evolution and to calibrate it with a test case, located at 

Holland Harbor, Michigan.  The present mathematical model includes many 

of the characteristics already covered in the literature.  In addition, 

it presents an integrated approach covering a large number of phenomena 

previously neglected.  It is extracted from a more general investiga- 

tion on three dimensional modeling of shoreline evolution. 

It is recalled that three time scales of shoreline evolution can be 
distinguished: 

(a) Geological evolution taking place over centuries; 
(b) long-term evolution from year-to-year or decade; and 
(c) short-term or seasonal evolution and evolution taking place 

during a major storm. 
Associated with these time scales are distances or ranges of influ- 

ence over which changes occur.  The geological time scale deals, for 
instance, with the entire area of the Great Lakes.  The long-term 
evolution deals with a more limited stretch of shoreline and range 
of influence; e.g., between two headlands or between two harbor en- 
trances. , The short-term evolution deals with the intricacies of the 
surf zone circulation; e.g., summer profile-winter profile, bar, 
rhythmic beach patterns, etc. 

For the problem under consideration, long-term evolution is of 
primary importance, the short-term evolution appearing as a super- 
imposed perturbation on the general beach profile.  Evolution of the 
coastline is characterized by low monotone -variations or trends on 
which are superimposed short bursts of rapid development associated 
with storms. 
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The primary cause of long-term evolution is water waves or wave- 
generated currents.  Three phenomena intervene in the action which 
waves have on shoreline evolution: 

(a) Erosion of beach material by short period seas versus 
accretion by longer period swells; 

(b) effect of (lake) level changes on erosion: and 
(c) effect of breakwaters, groins, and other structures. 

II.  MATHEMATICAL FORMULATION 

Let us consider a coastal zone limited by boundaries at a small 
distance from the surf zone (Figure 1). The bottom topography is 
defined in a three coordinate system, oxyz  , by a function 
ZK = f(x,y,t)  where the axis,  ox  , is parallel to the average 
shoreline direction, the axis, oy , is perpendicular seaward and, 
oz  , is positive upward from a fixed horizontal datum. The angle 
of the shoreline with the axis,  ox , is small. The shoreline is de- 
fined by y = ys  ,  z = zs = zb (x, ys, t) which also defines the 
sea level as function of time. 

The deepwater limit of the beach is, y = yc  ,  (This limit de- 
fines the contour line where the sand is no longer moved by wave 
action). The water depth at y = yc is Dc  .  It will be assumed 
that Dc remains constant as sea level and beach profiles change. 
Therefore 3zs/3t = 3zc/3t. 

B is the height of the bluff in case of erosion (i.e., when 

ir»     ) .   /. 
3t   < 0 /, and the height of the berm in case of accretion, (i.e., 

3ys      \ V 

when ry— > 0 1, 

The quantity of sand over a stretch of shoreline,  Ax  , unity and 
bounded by the datum,  z = o , y = o  , and the beach profile z, 

at time, t  , is: V(t) =1    zfe (x,y,t) dy  . 

Let us assume that, for some reasons, the beach profile changes 
during an infinitesimal amount of time, dt.  Let us further assume that 
the initial beach profile which is considered at time, t = tj, could 
be the normal "equilibrium profile".* The departure and modification 
from this initial beach profile can be characterized by: 

(a)  A translation in the yz plane defined by an elementary 
vector of components. 

The "equilibrium profile" may never exist under varying prototype con- 
ditions (similarly two-dimensional wave never exists), but it is a 
convenient idealized concept which could be approached in two-dimen- 
sional wave tank experiments.  In the present case, it could be de- 
fined as the statistical long term average beach profile which exists 
under a given wave climate. The model presented herewith is actually 
independent from this definition. 
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dD is the rate of change of sea level. *J* dD _ 
3t  '  dt dt 

Note that this translation is independent from the beach profile 
and in particular, if the beach profile normally exhibits a number of 
significant bar formations, under normal conditions, this translation 
will reproduce this characteristic at the same water depth. 

(b)  A perturbation characterizing the departure or variation 
from the initial profile.  Since the rate of the vertical component of 

translation is -j~ , the perturbation can be defined by only a hori- 
zontal displacement. This effect is neglected in the present layer 
and will be presented in a sequel at a later date. 

Note that this 
translation is in- 
dependent from the 
beach profile and 
in particular, if 
the beach profile 
normally exhibits 
a number of signi- 
ficant bar forma- 
tions , under 
normal conditions 
this translation 
will reproduce 
this characteris- 
tic at the same 
water depth. 

F1gur» t Notation 

The variation of sand quantity in the considered domain is: 

dV 

dt 
°h "~b    dv 

3v  dt 3x  dt 
)  dy 

•Qn which if one neglects the variation of z with respect to x yields: 

dV 
dt 

Sy 
"S 

(B + D } 
C  o t "   <yc - V 

dD 
dt 

This variation of volume 
is due to the variation 

of littoral drift along the ox axis and the onshore-offshore motion. 
The following terms are included: 

(a)  The discharge of sand leaving the beach per unit of width 
which includes: 

1. Q^ due to loss of sand by wind. 
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2. Q   (x) due to the quantity of silt contained in the hluff 

and which tends to move offshore by suspension.  This loss occurs 

9ys 3y 
only in case of erosion T— < o  and is equal to Q  • = K B   s 

St vys   s   y— 
where K is the percentage of silt in the bluff. 

3. Q . due to the loss of sand from the beach by density current 

during storm.  Q  is a function of the size distribution and density 
of material.  A beach of fine material (< O.l11•) will tend to erode 
more rapidly than beach made of coarse material (> l1•) .  The coarse 
material tends to move along shore while the fine sand moves offshore. 

The determination of these three quantities are given from sand 
budget investigations. 

(b) A general term M(x,t) expressing the local variation in the 
sand budget due to 

1. loss of sand by rip currents along groins. 
2. sudden dumping of sand in case of beach nourishment or flood. 

(c) The variation of littoral drift along the axis ox which is 

% (s) - Q
x 

(x + dx) - - ^rdx 

3 3/ 
Q = 7.5 x 10 P where Q  is in yd   year.  P is in ft - lbs/sec/ft 

of shoreline and is expressed by the relationship: 

_ Pg   2   2 
P0 

=     H T K„ sin 2a, where K_. is the refraction coefficient from 
*  64ir  o   R      b       R 

deep water to the line of breaking inception:  T is the wave period, 
H is the deepwater wave height, a    is the angle of the deep water 
wave with the shoreline, a, is the angle of breaking with the shoreline. 

b 
This formula will be assumed to hold in case of gentle beach curvature. 
The refraction coefficient K^ and angle a    can be determined as func- 
tions of the deep water wave characteristics H , T, a  (or a) and the 

3y    o'  '  o 
angle of the shoreline at breaking, „  S.      At x •> — °°  the deep- 

3x ' 
water wave angle a with bottom contours is equal to a  since the shore- 
line has the same direction as the axis ox.  In the general case, i.e., 
for any value of x . . 

-1 3y 
a = a  - tan     s 
o ^r— 

3x 
The breaking waves characteristic:  wave height, H, , water depth d, , 
and the angle breaking a , can be obtained from the deepwater wave 
characteristics, H , T, and a .  a is given by the previous equation o   '      o    o J v 

3ys 
in terms of a and — which takes into account the curvature of the 

3x 
shoreline.  The following equation is valid provided the bottom con- 
tours are parallel along a wave ray, (Le Mehaute and Koh, 1967) 
(Figure 2): 

a,  s a 
b     o 

0 . 25 + 5.3 H /L 
o  o 

where L = gT" 
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Therefore, the refraction coefficient, 

-i 3ys 
cos (a- - tan   7—-   ) 

K R 
cos 

-1 3v ~>  -1 
tan    r— )  (0.25 + 5.5  ' o) 

dx —5- 

Now it is possible to formulate the variation of littoral drift: 

[" 

1/2 

3Q        ,  7 
~-£ = A H  K/ 2 COS 2a 
3x       o  R D 

3_% 
3x 

3KD 
+ A H 2K„ sm 

where A = 7.5.103 §|~ T 
64TT 

On the other hand one also has 

0.; 3 .3 _0 

L 
r^   32 

3x 
1 + (W 3x 

In case of wave diffraction, the 
wave height varies significantly 
along a wave crest.  Then the 

previous refraction coefficient K has to be replaced by a combined 
coefficient, say K^ K . Also, in a diffraction zone, a is due to 
the sum of variation of shoreline direction 

-l3ys 
tan    .     and because of diffraction, the rotation of the wave 

crest around the end of the groin: 0 (Figure 3).  0 is 
the angle which has the end of the groin as apex and extends from the 
limit of the "shaded" area to the considered location defined, there- 
fore, 

OL = tan r- a b        3x    o 
-  -1 x -tan — , 

3j3 
3x 

30' 
3x l+(f)2 

An empirical formulation for 
determining the combined 
effect of diffraction and 
refraction is more suitable 
to quantitative analysis of 
a real sea spectrum than 
more exact theories of wave 
diffraction which are valid 
for periodic waves over a 
horizontal bottom and are 
represented by Fresnel in- 
tegral. 

FIGURE 2EFFECTSOFWAVE REFRACTIONS ON A CURVE BEACH 
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For this, it will be assumed that the energy travels laterally along 
a wave crest as well as along a wave ray.  This lateral transmission 
of energy results into a decrease of wave energy from the exposed area 
to the shaded area, ,_..x 

rc    2 r
E 

/   H dx = / 
/A        Jo 

ds 

In the case where the long 
groin is in the previously 
defined wave diffraction 
zone as in Figure 3, it is 
assumed that the wave energy 
which reaches the groin 
is absorbed by friction. 
It is assumed that the 
combined effects of diffrac- 
tion refraction of a wave 
spectrum can simply be re- 
presented by a sinusoidal 
variation of wave height 
along the breaking line. 
(Mobarek and Weigel,1966). 

Figurt 3 Diffraction 2ona Natation 

One has finally 

v  r ,    / V2~ C°S (2a°} \ 1/2   • KD (x) =   (  ~ ^—-  I       3ln sin a. 

IT cos f2i ) 
 v cr 

41 

(x + I  tan (45 - a ) ) 

Inserting this value in the littoral drift formula previously described 
permits us to complete the mathematical model. 

III. TRANSFORMATION OF THE PHENOMENOLOGICAJL 
EQUATION AND NUMERICAL SCHEME 

Now that all the phenomenological equations have been established we 
will find it more convenient to express them in dimensionless form. 
The general equation expressing the sand budget balance can still be 
written.  (The loss terms have been dropped for sake of simplicity and 
can easily be included whenever necessary). 

3y„ dD  3Q 

(B(x,t) + D )   + (y -y ) _ = — 

ot dt  3x 
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For purposes of analysis we consider this  equation in dimensionless 
form. 

i        /•, i_\* Length       _ ,        , , let   (length)     » - B    to be chosen later 
B + D         Uo   L 

0       c 

At 

o        c 

A „2V2     . 
Q =    2 'XT) *"-" ~"b 

The general equation is thus  transformed to: 

B + Dc       3yg dD       3       K^ sia 2a, 

BQ+Dc      8t C      b      dt       3x 2 

a.   = function of a   ,   say f   (a ),   (the  function f depends  only on b o o 
H  /L     as   previously   shown).     The hats and subscripts will be dropped 
from all variables from this point on. 

Therefore    j K^KR sin 2c*b = K*  cos c^  sin a. 

3 
Note — cos a   srn a, « 3x o b 

3f cos a   cos a,    -— -  sin a   sxn a, o b   3a ob o 

b 

3a        3a 
o  „, ,   o 
   » F(a ) r  
ax      o  3x 

The general equation then becomes (after some rearrangements) 

.2 3y       B + D 
o  c y 

3t       B + D 1 +/3vr    3x 

W 
B +D 3K 

where R(x,y,t) = ^-  F(aQ) ^ - (yc-yb) ^ + 2KD — cos «o sin afe 

c 

a = a (x) in the diffraction zone 

The above equation is the general dimensionless form which gives 
us the time dependent sand budget.  This general equation is nonlinear 
and appears to be impossible to solve analytically.   Some numerical 
results are presented 

The uniform depth theory of Penny and Price is used as an approxi- 
mation (not substantiated) for diffraction about the end of the break- 
water.  The shoreline is calculated for various multiples of a fixed 
At (Figure 4a).  Of interest is to note that the undulatory patterns 
of the shoreline seen in Figure 4a disappear in Figure 4b.  Hence, 
diffraction induced undulations in natural shoreline probably rarely 
appear since offshore wave climates are usually multi-directional. 
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INCOMING WAVE 
DIRECTION 

INITIAL SHORELINE 

FIGURE 4a SHORELINES AT SUCCESSIVE TIMES 5At, Wat. 15At 

FIGURE 4b SHORELINES FOR TIME 2at 

The numerical scheme generally used to solve this problem is 
based on the use of implicit finite differences.  Such schemes, 
whether implicit or explicit, or both, are commonly used to efficiently 
solve parabolic problems.  However, even in the case where only re- 
fraction is considered, the boundary condition 

3X 
3t 

tan a at x = 0 numerically gives a solution which initially 

may not conserve mass, i.e., the integrated transport equation 

3t  ! 
ydx = Q(L)  may not be satisfied.  Unfortunately this 

feature is unavoidable for most such schemes 
(the exceptions will be discussed below) as the 

following will demonstrate.  Shown on Figure 5 is an initially straight 
shoreline.  In any finite difference scheme, after 1 time increment 
At the shoreline is bounded below by the solid shoreline of Figure 5. 
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This shoreline has the least possible area A, where 
2 

cos a 

tan a 

sin a, >,  A 
b 

The conservation of mass equation requires At Q (L) 
Thus, At must satisfy the inequality 

sin a  Ax        „.    ^, ,  , .    •,..,_ 
   ——^      Since the accuracy (and in explicit 
sin a,  cos a     schemes, stability as well) depends 

«» i 

on the ratio A = 
At 

Ax2 
the above inequality places a lower bound on the 

accuracy of the solution which may be unacceptable in practice.  The 
finite difference form of the equation for the conservation of mass 
may be incorporated directly into the numerical scheme.  In this case 
a solution exists which is similar to the previous case but shows a 
small erosion throughout the reach.  For engineering applications the 
primary quantity of interest is the amount of sand on a given shore- 
line.  It is then more important to conserve mass than to satisfy 
the shoreline boundary condition as written in the present form.  The 
general equation will now be used to derive an equivalent equation 
for the transport Q which, even though subject to similar numerical 
problems, will satisfy the transport boundary conditions exactly. 

Consider, for the moment, the situation in which only refraction 
is important.  The general equation then becomes JLZ = Ji9. 

i. 3t  3x where Q- ~   ~ I) = cos a sin a. 
o b 

ra. = f (a  ) 
b 

ni 
_ a + 

0 
tan -1 iz 

o dx 
Differentiating by x gives 

3_ 3y_ 
3t 3x 

32 

3x' 
The transport function Q can be considered as a function of a which 
may be solved for a , say a = g(Q). 

Thus the above transport equation becomes 

3 •t     tan   (ao-a)       =    —    tan(g(Q)-s)    = Mf 

>'**&--     cos2   (g(Q)-cO     *-% 
3x 

but sg(Q) . dg(o)   ia  • 
3t dQ 3t 

at 
cos   (g(Q)- a) 

dg(Q)/dQ ax2 

Assuming a solution for this 
equation is known, the shoreline 
y can be calculated from the 
equation 

y(t,x) = y(o,x) +Jl ^ 
o 3x 

(t,x) dt 

ax2 

MINIMAL SHORELINE 

COMPUTED SHORELINE 

FIGURE   5    COMPUTED AND MINIMAL SHORELINES FOR FINITE 
DIFFERENCE SCHEME OF TIME - 1A t 
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I - a25+5.5Ht/L(J 

In practice the 
equation for Q is 
not solved in the 
above form. Implicit 
in the above formu- 
lation is the 
assumption that the 
function g exists. 
However, as is 
illustrated in 
Figure 6, g is not 
single valued if 
the maximum range 
of the angle a0 is 
greater than approx- 
imately 41 degrees. 
This difficulty may 
be removed by con- 
sidering the equa- 
tion for Q and y 
as a system sub- 
ject to the bound- 
ary conditions for 

20 30 40 

INCOMING WAVE ANGLE (DEGREES) 

Figure 6; Transport function Q(a ) 
values of z. 

cos a sin za for selected 

Note that .Pos CB(Q)-q)  . dfi I 
dg(Q)/dQ     da/ 

Hence, the equation for Q becomes 

1 + 

3t 

2-1 

da 
3x2 

This together with the equation -r~ = r-* is solved in a cyclic scheme. 

One possible method is the centered Crank-Nicolson type implicit- 
explicit scheme discussed in the following.  Suppose y is given for 
all x at a given time t, and that from time t the wave climate is 
specified by the (constant) triple (a, H , T) 

Let L(t,x) - f 

A -±£ 

o 

1 

1 + /3v\ 'i 

Ax 

L(t,x) = an approximation to L(t,x) 



MODELING SHORELINE EVOLUTION 

Integrating the Q equation gives 

At 
Q(t+At,x)   = Q(t,x)   + -r- 

1173 

L(t,x)  ^-2 
3x t. 

+ L(t+At,x) - 
320 

3X
2 t + At_ 

where    l_fi    =    Q(x+Ax)   -  2Q(x)   + Q(x-Ax) 

3x2 Ax2 

Integrating the y gives 

y(t+At,x) = y(t,x) + -jp 12 
3x 

30 
3X t+At 

where ^ = Q(x+ Ax) - 0(x- Ax) 
3x 2 Ax 

The equations are solved numerically, subject to the appropriate bound- 
ary conditions, by the cyclic algorithm: 

1) Let L(t+At,x) = L(t,x) ¥x 
2) Calculate Q(t+At,x)  ¥x subject to the appropriate boundary 

conditions 

3) Calculate y(t+At,x) ¥ x 
Calculate L(t+At,x), set this equal to Li,t+At,x) 
Calculate new Q 

4) If new Q compares with old Q stop, if not go to step 3 

Tests with this scheme have shown that it converges to its limit after 
one application of step 3. 

This method can easily be modified to solve the equation where 
both diffraction and variations in lake level are allowed, i.e.,(s is 
the beach slope) 

3v   3  ,r 2        .        1  dD 
3t    3x T>      o     b     s dt 

For convenience let Q = cos o sin a 
o    b 

Q = KJ Q 

As before 

3    Sy_  _ 3_ 
3t  3x ~ 1ft 

tan (g(Q)-a) 

dg(Q)  3Q 

^ = K^ + 

cos  (g(Q)-a) 

3K„ 
Ais° t? = KD n + 2KD ?r * 

3a 

cos (g(Q)-a) 3t 
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The second term in each of the above two equations are negligible 
in physical situations of usual interest, where the distance between 
the shoreline and the tip of the breakwater is large compared to the 
distance the shoreline changes during a time At. 

Therefore, the transport equation becomes 

K 2 2~ 
AS -   -B- •Jr<,(rt-r,   ^       ^-4   and ^-   cos2(g(Q)-a )  ^f 
3t       dg/dQ 8x 

AZ  = AS 
3t    3x 

1    dD 
s  dt 

This system is solved using the same type of algorithm as previously 
employed. 

In the present situation where only refraction is important several 
approximations are possible which produce problems having analytic 
solutions.  The most direct approximation, and essentially the assump- 
tion of Pelnard-Considere, is to approximate 

iz. = 
3t 

z cos a  cos a,   -  sxn a  sxn 
o     b       o 

(subject to the boundary conditions 
°bKs) 3x 

= -tan a 

3x 
y(x,t) = 0   for x 

,2 

2 

) 

3 v        3 v 
by  at  =  a —9       wnere a is a constant.  For the standard 

3x   breakwater problem, the most logical choice 
for this constant is given by 

1 + tan a 
since the shoreline in this case 
is principally governed by its 

behavior at the breakwater.  This problem has solution 

y(x,t) = 2 tan a %.   e ~
X /4at - tan a x erfc/ -i- 

\V4Tt 

y(x,.t)dx = z sin a cos a # sin za cos a 

which is exactly the same as that of Pelnard-Consic'ere excent that the 
constant a has been changed.  This problem however doesn't conserve 
mass since 

3t 
'o 

When this approximation is used in the transport equation for Q, 
the problem becomes 

¥• = a 4 3t       3x2 
subject to the boundary conditions 

Q(x=o) = 0 
Q(x=°°) = cos a sin a 
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which has  solution 

Q(x,t)   =  cos  a  sin 

Integrating   the   equation 

1175 

•> i^) 

3t 3x 

jives  y   (x,t)   =  cos  a  sin a,   /VY""   t       e~X '4at  - x  erfc, 
b 

which is of the same form as the previous solution. 

IV. APPLICATION 

The evolution of the shoreline at Holland was studied using the 
present model.  The relevant physical data as well as the estimates 
of offshore sediment losses were used in the analysis (Figure 7). 
The historical shorelines were interpolated to give the shoreline 
every 100 feet along the baseline. The results of these computations 
are not given.  The height of the berm is assumed to be 10 feet.  The 
depth to no sediment motion was estimated at 30 feet, based on visual 
consideration of the offshore bathemetry as well as the use of the 
method of Weggel (private communication).  An offshore line loss of 
3.2 yd /yr/ft of beach is also included. 

3.IS cu yd /ll irodad from tlwt'Ui* 

Figure    7 ::       Summary of aatid budget: north of Holland,  Michigan. 
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Choice of wave climate is the remaining input parameter to be deter- 
mined, and is the most controversial.  The wave climate most desirable 
for the study of shoreline evoluation is a time series giving wave 
height H, period T, and direction D.  Unfortunately, this is almost 
never available and hence statistical summaries must be used.  The 
monthly statistical summaries given by the SSMO for Lake Michigan South 
previously described are chosen for use.  One possible employment of 
these summaries is to construct monthly times t for each possible 
(H,T,D) triple, i.e., t (H,T,D), and then calculate the evolution of 
the shoreline as the (H,T,D) triples are chosen in some deterministic 
order or at random.  This method would be computationally very expen- 
sive and is not used.  The most simple approach is to assume that 
these are but 2 (H,D,T) triples representing the gross transport north 
and south, each occurring for some length of time per month.  The 
entire shoreline is alternately calculated for an incremental time 
assuming the direction of the incoming wave is positive, then negative. 
The period T used is taken to be the average T, i.e. 

f = ^/H'IN1  where the p(H,Tl are the (H,T) probabilities given 
V(   ' ;    in the SSMO (       ).  The choice of (H,D) for 

north and south, denoted (H«,.,DVJ) and (HgDg) respectively, must now be 
made.  This choice is subject to the condition that the actual 
northerly transport, as calculated using the statistics and given a 
straight shoreline for the reach of interest, be preserved, i.e., that 

2 — 2 
V1 NT C0S °o sin ab = V P(T|H)p(H,D)TH COS or sin ab 

H,T 
D giving north 
transport 

holds where 

t.    = number of hours in a given month 
h 
p(T|H) = conditional probability T occurs given H 
p(H,D) = probability of (H,D) pair, using SSMO Table 18 as a 

data base 
a     = D„T - shoreline orientation o      " 
a,    = f (a ) 
bo 

t     = number of hours the "average" wave condition exists 
N 

H     = "average" wave height 

a    = D - shoreline orientation 
o      N 

D     = "average" direction 

And similarly for the directions giving southerly transport. 

The average directions of the shoreline at the breakwater are cal- 
culated using the historical records.  The directions are chosen for 
the incoming wave angles since the complex geometry of the harbor 
breakwater shields the nearby shoreline from waves arriving from most 
directions. At present, the time duration of waves arriving from the 
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north is assumed to be the same as from the south. Hence, t^-ts-0.5^. 

The conservation of transport equation is then used to calculate the 
average wave heights H and H . 

A computer program was used to calculate the evolution of the shore- 
line from September 1967 to May 1968.  The historical 1967 and 1968 
shorelines, as well as the computed 1968 shoreline, are shown on 
Figure 8.  The calculation assumed that Ax = 100 feet with X-y  which 
gives a value for At which varies from 8 to 20 hours depending upon 
the month and wave characteristics.  The principal discrepancy between 
the predicted and actual 1968 shoreline occurs in the vicinity of the 
breakwater.  While the shapes agree there is an erosion in the cal- 
culated shoreline which is probably due to the approximations used in 
calculation of the diffraction coefficients, and incoming wave angles 
which are functions of x in the shadow region of the diffraction zone. 
The unaltered theory of Penny and Price was incorporated into the 
numerical scheme since most breakwaters can be represented as line 
barriers, and hence is almost always useful.  However, for the case 
of Holland Harbor a universally valid prediction of the shoreline 
would require the detailed calculation of the diffraction effects due 
to the geometry of the breakwaters.  Also, the convenient choice of 
incoming wave direction obscures the fundamental problem of how to 
properly use the statistical wave summaries. 
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V.  CONCLUSION 

The basic idea of Pelnard-Considere, i.e., to investigate shore- 
line evolution by concentrating on conservation of mass as a spacial 
one dimensional problem, has been generalized to essentially its limits 
of applicability.  These physical processes of refraction and diffrac- 
tion (where applicable) have been incorporated, as have deterministic 
variations in lake level, bluff height and beach slope.  The inclusion 
of refraction makes possible the proper use of the known physical 
relationships between wave energy and littoral drift on a priori basis 
without necessarily determining these as results from the past recorded 
shorelines at a given location.  Accurate determination of the behavior 
of the shore in the lee of a breakwater requires inclusion of diffrac- 
tion in some form.  This could be done in a heuristic manner, as pre- 
sented here either in the global approximation described in a previous 
section or in the use of the constant depth theory of Penny and Price. 
It could also be done in a more rigorous manner which would include 
the effects of a sloping beach.  Thus quantitative predictions of the 
shoreline can, in theory, be attempted in situations where on-offshore 
transport of sand in either negligible or as known from other sources 
of information. 

The resulting theory is presented in several equivalent forms, one 
in terms of the behavior of the shoreline y(x,t) alone, the other 
expressed explicitly in the longshore transport Q(x,t) and implicitly 
in y(x,t).  The former has the advantage that numerical schemes, such 
as that of Crank-Nicolson described earlier, can qualitatively indicate 
the behavior of the shoreline in regions of rapid change.  However, the 
conservation of mass is difficult, if not initially impossible to 
achieve since any approximation of a transport derived term (i.e. a 
term arising from 3Q/3x) will alter the transport balance.  On the 
other hand, the later form allows employment of analytical or numerical 
approximations in the transport equation which will not disturb the 
total sand content of the system, but only its local distribution. 

The most severe and unavoidable limitations to the engineering 
application of these methods is the use of the statistical wave 
summaries.  While one possible use of these was attempted, many others 
are possible.  Efficient and accurate employment of the offshore wave 
statistics is endemic to the problem of large scale shoreline predic- 
tion, and must be achieved before any theory, whether one line, multiple 
lines, or grid can successfully produce accurate results. 

Also, the problem of shoreline evolution sensitivity to time step 
in the input wave climatology would require further research. 

Despite this limitation, it is felt that by taking into account 
effects of wave refraction, wave diffraction and change of lake level, 
as done in this paper, a mathematical model with multiple bottom con- 
tour lines could be formulated which will, if the problem of wave 
statistics input is solved, permit us to calculate the evolution of the 
complete bottom topography. 

It is important to point out that wave refraction effect on shore- 
line evolution have been found particularly important.  It is particu- 
larly necessary in order to determine a planform stability criteria, 
which can be established from the present formulation. 
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