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ON   LONG-TERM STATISTICS   FOR OCEAN  AND COASTAL WAVES 
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ABSTRACT 

This  paper discusses   the statistical   properties  of   long-term ocean 
and  coastal  waves   derived   from analysis  of available data.      It was 
found  from the  results of the  analysis  that  the statistical   properties 
of wave height and period obey  the bi-variate  log-normal   probability 
law.     The  method   to determine  the  confidence  domain   for a specified 
confidence  coefficient  is  presented so that   reliable  information   in 
severe  seas where  data  are  always   sparse  can  be obtained   from a   con- 
tingency table.     Estimation of  the extreme significant wave height 
expected   in   the   long-term  is   also discussed. 

INTRODUCTION 

For  the design  of ocean  and coastal   structures,   it  is  very   impor- 
tant  to obtain   information on wave  characteristics over a period of 
time  sufficiently   long  to  cover  the   lifetime  of   the  structures.      Col- 
lection  of data on wave height and  period has  been  made by  several 
researchers   through  either visual   observations  or measurements,   and 
their  results  are usually presented  in  tabular  form  [1 ] [2] [3] [4] [5]. 
Although considerable attention  has  been given to statistical   informa- 
tion of   long-term wave height, we have  as  yet   little   information  on  the 
combined properties  of wave height  and period  for the   long-term. 

A statistical   contingency  table on wave height  and period  provides 
valuable  information  for the design  of ocean  and coastal   structures. 
However,  data for severe seas, which  are  indeed necessary  for design, 
are  unreliable since  such  data are, without exception,  sparse.     One way 
to solve  this   problem  is   to  represent wave statistical   data by  a 
certain  probability   law which  governs  the data,  and  then obtain neces- 
sary  information  for design  from the probability  function. 

The purpose of  this  paper  is   to provide  solutions   to the problems 
cited   in  the  foregoing discussion.     For  this,  the joint  probability 
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distribution  of wave height  and  period   for data accumulated  over many 
years   is  derived,  and a method  to establish  the  confidence domain  for 
a specified confidence  coefficient  is  presented.     A method  for pre- 
dicting   the extreme  value of significant wave height  from the   long-term 
accumulation  of data  is   also discussed. 

LONG-TERM WAVE  STATISTICS 

Long-term wave statistics   as  defined   in   this  study   is   the  statis- 
tical   information  of wave characteristics  such  as wave height  and 
period accumulated over a sufficiently   long period of time.     In  accumu- 
lating data for   long-term wave statistics, wave observations  are usually 
made  for 20-30 minute   intervals.     Wave  height  and period  are expressed 
in  terms  of significant wave height   (or average wave height)   and zero- 
crossing period   (or average wave period),   respectively,  and the accumu- 
lated data are usually presented  in  tabular form known  as  a contingency 
table. 

Examples  of a contingency  table  for  long-term wave statistics  are 
shown   in Tables   1   through 3.     Table   1,  taken  from Reference   [1],  shows 
the  tabulation of significant wave height  and zero-crossing period, 
both  analyzed from  records obtained at Weather Station   I   (59°N,   19°W) 
in   the North  Atlantic.     The numbers   given   in   the  contingency   table  are 
those per  1,000 observations.    Table 2 shows  an example of data on 
significant wave height and period observed during 20 months   (from 
November  1961   to March   196*0   at Port Hueneme,  California, presented  in 
Reference   [2].    Table 3,   taken   from Reference   [3],  shows  an example of 
a contingency  table on   significant wave height  and modal   period where 
the wave spectrum has  a peak value.    The table provides   information 
based on  a  total   of 2,30*1 measurements   in  one year   (from March   1972  to 
February   1973)   at Tiner Point,  New Brunswick,  Canada.     There  are many 
other examples of contingency  tables  similar to those shown   in  these 
tables,   Reference   [A]   and   [5]   for example. 

Needless  to say  all  of these   long-term wave statistics  are ex- 
tremely valuable  in providing  information  for the design of ocean  and 
coastal  structures.     However,  a problem always exists   in  the  use of 
this   information  for design.    That  is,  data  in severe seas  are  unre- 
liable,  since  they are, without exception,  sparse.     For  instance, 
information  above   10  ft   (3.05 m)   significant wave height  in  the example 
shown   in  Table 3 are  few;  only   15  cases  are observed  in  a total  of 
2,30^ observations which   is  equivalent  to about 0.7 percent.     This 
implies  that  it   is not  appropriate  to use the numbers  given   in  this 
sort  of table  in  practice. 

One way to solve  this  problem is  to apply the statistical   infer- 
ence  concept  and establish   the  confidence  domains   from the data,   taking 
into account  the  correlation between significant wave height  and 
period.     For this,   it  is  necessary to find  the joint probability dis- 
tribution which  is  applicable to significant wave height  and period. 
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PROBABILITY   DISTRIBUTION   FOR LONG-TERM WAVE  STATISTICS 

In  order  to derive the  combined statistical   characteristics  of  the 
two  random variables,   significant wave height,   Hs ,   and  zero-crossing 
period,  TQ, we may  first consider  the marginal   probability  distribution 
of significant wave height.     It   is noted here  that,  although  consider- 
able  attention  has  been  given  to statistical   information  of significant 
wave height,   the probability  function which   is  applicable  to signifi- 
cant wave height   is   the  focus   of much  criticism.     Some  claim that  the 
log-normal   distribution   is  appropriate   [6] [7] [8], while others  believe 
the data can  be better  fitted by   the Weibull   distribution   [9] [10].     The 
results  of  the  present analysis,   however,   illustrate  that   significant 
wave height appears   to follow the   log-normal  probability   law over  the 
range  for the  cumulative distribution up  to 0.99.     This  conclusion 
appears  to be valid  for both  ocean  and coastal waves.    To support this 
statement,   the   following discussion will   be  given: 

Figure   1   shows   the  cumulative  distribution   function  of significant 
wave height of ocean waves.     The data are  taken  from the contingency 
table given   in Table   1,  and are plotted on   log-normal  probability paper. 
As  can  be seen   in  the  figure,  the data follow the   log-normal   distribu- 
tion   for the  cumulative  distribution   up   to 0.99.     On   the  other hand, 
Figure 2 shows   the same  data plotted  on Weibull   probability paper. 
This  figure shows   that  the data may  also be  represented by  the Weibull 
probability  distribution  except   for small   significant wave height.     Thus, 
one  may  have   the   impression   that  there   is  no significant   difference   in 
representing the statistical   characteristics  of significant wave height 
by  the   log-normal   or Weibull   probability   law.     However,   if  comparison   is 
made between  these  two probability density  functions  and histograms, 
then  the difference becomes  pronounced. 

Figure   3 shows   a  comparison  between   the histogram,   log-normal   and 
Weibull   probability  density   functions.     As   can  be  seen   in  the   figure, 
the   log-normal   probability density  function   agrees   reasonably well 
with  the histogram over  the entire   range  of significant wave heights. 
On  the other hand,   the Weibull  probability  density  function  agrees well 
with  the histogram  for   large significant wave height,  but  the  agreement 
is   rather poor for small   significant wave height.    This   is   the general 
trend observed   in   the  analysis  of  the significant wave height  data. 

Examples  of statistical   analysis  of significant wave height   for 
coastal  waves  are shown   in  Figures  h through  7.     The cumulative  dis- 
tribution  function  of  the significant wave height measured  at Tiner 
Point,  Canada   [3]   is plotted on   log-normal  probability paper  (Figure 
*t)   as well   as  on Weibull  probability paper  (Figure 5).     On  the other 
hand,  comparison between   the  two probability density  functions  and the 
histogram  is  shown   in   Figure 6.     As   can  be  seen   in   these  figures,   the 
same  conclusion  derived  from analysis  of   the significant wave height 
for ocean waves may  also be  applicable  to the significant wave height 
for coastal  waves. 
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As  another example  for coastal waves,  Figure 7 shows  a comparison 
between   the histogram and the   log-normal  distribution of the signifi- 
cant wave height obtained  at Port Hueneme,   California   [2].     Thus,   it 
may safely  be  concluded that   the   log-normal   probability  distribution 
represents   reasonably well   the histogram over the entire  range of 
significant wave height   for ocean  as well   as  coastal  waves. 

In   regard  to the marginal   probability distribution  of zero- 
corssing wave period  (or modal  wave period),   it was   found  through  the 
present  study  that  the wave period  appears   to follow the   log-normal 
probability   law for both  ocean   and  coastal  waves.     Although   an   attempt 
was   made  to  represent   the wave period data by  the Weibull   probability 
distribution,   the  representation was extremely poor for all  examples. 
Figures   8  through   10 show examples  of a comparison  between  histograms 
and  the   log-normal  probability density  functions.    The  figures  pertain 
to comparisons made  for data observed at Station   I   in the North Atlantic 
(Figure  8),  at Tiner Point,  Canada  (Figure 9),  and at Port Hueneme, 
California  (Figure   10),   respectively.     As  can be seen   in these  compari- 
sons, wave  period  appears   to be   represented by the   log-normal   probabil- 
ity   law. 

From the  foregoing discussion,   it has  been  concluded that  signifi- 
cant wave height   follows   the probability distribution   given  by, 

f(Hs)  - A(yHS,cHS) (1) 

where, AJvi^g.a^g)   is  the  log-normal   probability density  function with 
parameters  u^g  and 0^$.     Similarly,  the zero-crossing wave period 
follows   the probability distribution  given  by, 

f(TQ)  - A(uT0,aT0) (2) 

The modal  period also obeys  the same distribution   law as  given   in 
Equation   (2)   but with different parameters. 

Then,  from the properties of the   log-normal   probability distribu- 
tion,   it can  be derived that  the  combined statistical  properties of 
significant wave height  and period  follow the bi-variate   log-normal 
probability   law which may be written  as, 

f(Hs,TQ) ~ A(yHS,aHS,pTO,0TO,p) (3) 

where, p is a correlation coefficient between two random variables, 
H and T , and its value can be determined from the data, s     o' 

Various statistical properties of significant wave height and 
period can be derived based on Equation (3).  First, it is possible 
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from Equation   (3)   to evaluate  the  confidence domain  for a specified 
confidence  coefficient which will   provide   reliable   information   for 
severe  seas where data are  always   sparse   in  the  contingency   tables. 
Also,   the statistical   properties  of  the zero-crossing period   (or modal 
period)   for  a specified  significant wave  height  can  be obtained  as   the 
conditional   log-normal   probability  distribution   given   by, 

f(Ts|Hs)  .  A(uT0 + P^(&Hs-uHS),   /^aT0) (4) 

DERIVATION  OF CONFIDENCE   DOMAIN 

Derivation  of  the  confidence domain  for a specified  confidence 
coefficient  may be  made around  the  modal   value which   represents   that 
combination  of significant wave height  and zero-crossing  (or modal) 
period  most   likely  to occur.     For  the   log-normal   distributions   given   in 
Equations   (1)   and   (2),   the  modal   value   (H.,,,T.,.)   is   given   by, 

VU-O-M    uT-c£ 
(H.,TJ  .   (e  H     H,e  T    T) (5) 

Next, let us transform the joint probability density function 
given by Equation (3) into the following two new random variables, r 
and 9, shown in Figure 11. 

H = H, + r Cos 
s 

T = T.v + r Sin 
(6) 

By   carrying out   the  transformation  of   random variables   given   in 
Equation   (6),   the joint  probability  density  function of   r and  6, 
f(r,6)   becomes, 

f(r,9) 

x   exp 

a1a2(2TT)/l-p2    (H+rcos6)(T +rsin6) 

| 1        r/£n(Ho+r cos 9) - uR\ / £K(H + r cos 9) - uR \ 

\    2(l-p2)L\ aH / P\ Z / 
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2 
/£H(TO+ rsin9)  - pT \       / £n(Tp+ rsine)-u\- 

V aT '       ^ ax ' 

In order to determine the confidence domain around the modal value 
(Hj.,T.v) , consider the conditional probability density function of r for 
a given 9.  That is , 

f(r|6) =  f(r>9)  (8) 

ff(r.e) 
-.J 

dr 

Then,' a point r. which yields a contour curve whose enclosed area 
is equal to a specified confidence coefficient, y> can be determined 
from the following relationship: 

{ 
o 

r. 
i 

f(r|9)dr = Y (9) 

Figure  12 shows  an example of a thus  derived confidence domain 
using  Draper's  data obtained  in  the North Atlantic  [1].    The black 
circle  in  the  figure  represents  the combination  of significant wave 
height and  zero-crossing period which   is  most   likely  to occur.     The 
closed curves  given   in  the  figure outline  the statistical   confidence 
domains   inside of which  the probabilities  of occurrence of the wave 
conditions  are the specified values.    The numbers   in  the  figure  refer 
to the number of observations  given   in Table  1.    These numbers,  how- 
ever,  for convenience sake,  are  regrouped  and are divided by   1,000 so 
that  the total  number  is  equal  to  1. 

Figures   13 and  14 show two examples of such  confidence domains 
derived using data on  coastal waves.     Confidence  domains  using the 
data obtained at Tiner Point,  Canada,  are given   in  Figure  13, while 
those using the data obtained at Port Hueneme,   California,  are  given 
in  Figure  14.    The numbers   in  these figures   refer to the frequencies 
of observations  given   in Tables 2  and  3,   respectively.     As  can be seen 
in   Figures   12  through   14,  the domain  for a confidence  coefficient of 
0.99 sufficiently  covers  the measured data.     The significant benefit 
of drawing  the confidence domains   is that  information   in severe seas 
where data are always sparse can  be clearly estimated  from the overall 
data given  in  the contingency  tables. 
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ESTIMATION   OF EXTREME  S I GNI Fl CANT WAVE  HEIGHT 

One of  the most   important pieces  of   information   concerning   long- 
term wave  statistics   is   the   largest value   (extreme  value)   of signifi- 
cant wave  height.     The   information   is  of particular  importance   for the 
design  of ocean   and coastal   structures. 

Although   the  significant wave height  follows   the   log-normal   proba- 
bility   law,   this   holds  only  for the  cumulative probability  distribution 
up  to 0.99 as was  discussed   in  the previous  section.     Therefore,   it   is 
not   appropriate  to estimate  the extreme significant wave height based 
on   the   log-normal   distribution,   since   the  value  of  the  cumulative 
probability distribution will  be greater than  0.99  for  the extreme 
value.     Instead,   it may be evaluated by applying the  concept of asymp- 
totic distribution  of extreme  values which   is  applicable  for  any 
probability  distribution   if  certain   conditions  are met.     For  this 
purpose,   let  us  assume that   the  cumulative distribution   function   can  be 
expressed asymptotically   in  the  following form: 

F(x)   =   1   -  e"q(x) (10) 

Then, it can be derived that the probable extreme value in n 
number of observations, denoted by Y , satisfies the following condi- 
tion when n is large: 

-q(Yn>  1 
-1 (11) 

This in turn, implies that the probable extreme value can be 
evaluated from, 

(12) 

F(7) n 

As  an example,   Figure  15 shows  the  left-hand side of Equation   (12) 
(often  called  the  return  period)   in   logarithmic form using  the signifi- 
cant wave height data obtained at Tiner Point,   Canada.     Since a total 
of 2,300 observations  of significant wave height were made  in one year, 
the probable extreme significant wave height expected   to occur   in 20 
years,  for example,  can be estimated  from the  figure as   the wave height 
for which  the ordinate   is £n(2,300  x 20)   =   10.Jh;  namely,   18.0   ft 
(5.5 m). 

Figure  16 shows  the  results  of a similar analysis   to that shown 
in   Figure   15 but  using data obtained at Port Hueneme,   California.     A 
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total   of  3,^00 observations of significant wave  height were  made   in  20 
months  for  this example;  hence the probable extreme significant wave 
height expected to occur  in 20 years   can  be estimated  from the   figure 
as   the wave height   for which  the  ordinate   is   10.62;  namely,  9.7  ft 
(2.96 m). 

CONCLUSIONS 

This  paper discusses  statistical   properties  of  the   long-term ocean 
and  coastal  waves  derived  from analysis  of avai lable data.     In  the 
analysis,   correlation between wave height   and  period   is   taken   into con- 
sideration,   and data on  ocean waves   accumulated   in  the North  Atlantic 
as  well   as   data  on   coastal   waves   obtained  at  Tiner Point,   Canada,   and 
Port Hueneme,   California,   are  analyzed. 

It   is  found from the  results of analysis   that  statistical  proper- 
ties  of both wave height and period are approximately  represented by 
the   log-normal  probability   law,  and  that  the joint probability of wave 
height   and period  obeys   the bi-variate   log-normal   probability   law. 
This  conclusion  appears  to be valid for both  ocean  and  coastal  waves. 

The  confidence  domain of wave height  and  period   for a confidence 
coefficient of 0.99 sufficiently  covers  the measured data.     A signifi- 
cant  benefit of drawing the  confidence domains   lies   in obtaining 
information   in severe seas where  the data are always  sparse  in  the 
contingency  table. 

The estimation  of the   largest significant wave height  (extreme 
value)  expected  to occur  in  a specified   long period of time  is  dis- 
cussed  by  applying the  concept  of asymptotic statistical   distribution 
of extreme values. 
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Table 1: Statistical data on wave height and period 
obtained at Weather Station I in the North Atlantic 
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Table  2:   Statistical   data on wave height   and  period 
obtained  at Port Hueneme,  California   [2] 
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Table 3: Statistical data on wave height and 
period obtained at Tiner Point, Canada [3] 

15 

14 

13 

12 

1- 
111 
w 
u. 

11 

z 10 

•- 
X o 
X 

9 

8 

i • < 
o s. 

3 - 

2 

1 - 

3 1 

14 4 12 2 

3    10 7 1 3 1      1 

14    3 2 4 4 11 

5    23   11 5 5 1 4 5 

17   47   12 5 15 8 6 1 4 

10   49   45   24 14 13 20 5 10 1 

2    70 151 95   52 32 35 31 13 10 6 

69 206 125 107 74 66 75 68 15 13 4 

54   65   46   59   59 60 76 45 15 10 8 

I      I T- 1 1       I       I       I       I       I       I       I       I       I 

2     3     4     5     6     7     8     9    10   11    12   13   14   15   16   17   20 

PEAK   PERIOD   IN   SECONDS 



STATISTICS AND WAVES 69 

0.999 

0.995 
0.99 

z 
o 
(- 
Z) 0.9b 
CO 
oc 0.90 
1- (/) 
Q 0.80 
UJ 
> 
h- 0.60 
3 -> 
5 0.40 
3 
O 

0.20 

0.10 

0.05 

SIGNIFICANT WAVE HEIGHT IN FT. 
10 20      30   40 50 

—• 

2 4        6     8  10      15 
SIGNIFICANT WAVE HEIGHT IN M. 

Figure   l:   Cumulative dis- 
tribution  function of 
significant wave height 
plotted  on   log-normal 
probability  paper   (Data 
from Reference   l) 
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Reference   l) 

J.999 I I I I       ' I \9\ T- 

0.99 

0.95 
0.90 

0.80 
A 

0.60 

0.40 

_/• 

• 

2 4 6       8    10 
SIGNIFICANT WAVE HEIGHT IN M. 

15 



70 COASTAL ENGINEERING—1978 
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Figure 3: Comparison between histograms of signifi 
cant wave height and log-normal and Weibull proba- 
bility  density   functions   (Data  from Reference   1) 

SIGNIFICANT WAVE HEIGHT IN M. 

0.5                        1                           2             3 4 

I I I I 
• 

C
U

M
U

L
A

T
IV

E
 D

IS
T

R
IB

U
T

IO
N

 
o

   
   

   
  ©

   
   

  ©
   

   
   

   
   

   
o

   
   

   
   

   
   

  
©

 

8 
   

   
8 

   
 8

   
   

   
   

S 
   

   
   

   
 |

 

0.60 

0.40 

0.20 

2 4 6 8 

SIGNIFICANT WAVE HEIGHT IN FT. 

Figure  b:   Cumulative  distribution   function  of sig- 
nificant wave height  plotted on   log-normal   proba- 
bility paper  (Data from Reference  3) 
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Figure  5:   Cumulative  distri- 
bution   function  of signifi- 
cant wave  height  plotted  on 
Wei bull   probability  paper 
(Data  from Reference  3) 
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Comparison  between histogram > 
of significant wave height | 
and   log-normal   andWeibull £ 
probability density  functions £0.2 
(Data  from Reference  3) s 
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Figure   7: 

Comparison  between  histogram 
of significant wave height 
and   log-normal   probability 
density  function   (Data from 
Reference 2) 
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Figure  8:  Comparison  between 
histogram of zero-crossing 
period and   log-normal   proba- 
bility density  function 
(Data from Reference   1) 
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Figure 9:   Comparison between ° 
histogram of modal  period 3 
and   log-normal   probability § 
density   function   (Data g 
from  Reference  3) 

,^N» 
TOGRAM 

/ k s LOG 
DIS 

NORM 
RIBUT ON 

J 
*-+ x1: 

/ 

\ 

4 6 8 10 12 14 

WAVE MODAL PERIOD IN SECONDS 

0.16 

LOG- NIORM 
1 

AL DISTRIBU riON 

u 

/ 
/   s / 

/HI ITOGRAM 

z 

£ 0.10 
« z 
Q 0.08 

t 
2^.06 
< 
00 

/ \ / 
/ 

/ 
\ 

r- 
/ \ 

0. 

/ 
V 

\ 

V 
/ 

Figure   10:   Comparison  between 
histogram of wave period and 
log-normal   probability  densi- 
ty  function   (Data from Refer- 
ence 2) 
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j /(r|0) dr = y 
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Figure   11:  Pictorial   sketch   illustrating 
transformation of  random variables 
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Figure   12:   Comparison of domains of significant wave 
height  and zero-crossing period  for various  confidence 
coefficients   (Data from Reference   1) 
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Figure   13:   Comparison of domains of significant wave 
height  and modal   period  for various  confidence 
coefficients   (Data from Reference  3) 
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Figure   1*»:   Comparison  of domains  of significant wave 
height  and period  for various  confidence coefficients 
(Data from Reference 2) 
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Figure   15:   Probable  extreme 
significant wave  height  at 
Tiner Point,   Canada   (Data 
from Reference  3) 
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Figure   16:   Probable extreme 
significant wave  height  at 
Port Hueneme,   California 
(Data  from  Reference 2) 
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