
CHAPTER 192 

DISPERSIVE TRANSPORT IN RIVER AND TIDAL FLOWS 

by 

R. B. Taylor 

ABSTRACT 

Analytical results are presented which describe the mechanisms of 
longitudinal dispersive mass transport in rectangular channels of finite 
and infinite widths for both unidirectional (river) and oscillatory (tidal) 
flow regimes. Emphasis is placed upon the discussion of results and the 
characteristics of longitudinal dispersive mass transport revealed by the 
analytical treatment. Expressions presented for the dispersion coefficient 
were obtained from solutions to four sets of boundary value problems for 
the velocity and concentration variation components u" and c". Examination 
of these expressions reveals that in oscillatory flow the dispersive mass 
transport is described by a type of resonant interaction between the period 
of oscillation and the time scales of vertical and lateral mixing. The 
analysis also shows that for oscillatory flow regimes the effect of lateral 
shear becomes negligible for very wide channels and the three dimensional 
solution collapses to the two dimensional case in which vertical shear 
and mixing effects dominate. It is shown analytically that this is not the 
case in unidirectional flows. For this case the lateral shear and mixing 
effects dominate the corresponding vertical effects and dispersive mass 
transport increases without bound with increasing channel widths. 

INTRODUCTION 

Previous efforts (Bowden 1965; Holley et al_. 1970; Fukuoka 1973) to 
describe the mechanism of dispersive mass transport in oscillatory flows 
have generally assumed that it is reasonable to describe this process 
through comparison by analogy to a similar process in a steady unidirectional 
flow. As will be seen from the results presented here, this assumption 
is misleading and can lead to erroneous results and conclusions. This 
is due to the fact that the dispersion process in oscillatory flow behaves 
quite differently from the corresponding process in unidirectional flow. 
Thus, unless the basic characteristics of dispersion are clearly understood 
for both types of flows, the interpretation of results can vary greatly 
depending upon the basis used for the comparison. 
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The mechanisms of dispersion in unidirectional flow are better under- 
stood. The most useful analytical treatment of this problem and the one 
which appears to provide the best results was developed by Fischer (1967). 
However, to apply Fischer's results one must have a detailed knowledge of the 
variations in the velocity field within the flow cross section. Moreover, 
his analysis assumes that the vertical effects of viscosity and diffusivity 
are small when compared to the same effects acting laterally across the 
channel. While this seems reasonable and has provided good results, it 
does not provide an analytical basis for examining those conditions under 
which either the vertical or lateral effects would play a dominant role 
in the dispersion process. Results presented in this paper allow for 
this comparison and are generally supportive of Fischer's work. 

STATEMENT OF THE PROBLEM 

The approach used to obtain expressions for the longitudinal dispersion 
coefficient generally follows the methodology devised by Taylor (1953) 
and applied later by others which defines the dispersive flux as the 
correlation over space- and/or time of the velocity and concentration cross- 
sectional variation components by means of the following relationships: 

r 3c (unidirectional flow) (1) 

-<Ex>T|| = <u
1Tc,r>T   (oscillatory flow)   (2) 

where the overbar denotes the spatial average of the variable over the flow 
cross section, and the notation < >T denotes an average over the period of 

oscillation, T. The variables u" and c" are defined by: 

u" = u - u     (3) 

c" = c - c     (4) 

where u and c are the velocity and concentration variables, and u and c are 
the corresponding cross-sectional mean values. In carrying out the analysis, 
strict adherence to the use of companion solutions to the equation of motion 
and the transport diffusion equation was followed to obtain solutions for u" 
and c" which most nearly reflected the kinematic structure of the flow field 
of the particular problem being investigated. This is particularly important 
for the case of oscillatory flow regimes where, as illustrated by Figure lb, 
flow reversals occur in the lower momentum regions of the channel which 
significantly affect u" during portions of the tidal cycle. These phenomena 
have been preserved here and represent a departure from the work of 
previous investigators in which temporal phase differences in the velocity 
field over the flow cross section have not been included (Holly and 
Harleman 1965; Okubo 1967; Holley, et al^ 1970; Fukuoka 1973). 
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(a)    RIVER 
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FIGURE 1 - DESCRIPTIVE FLOW REGIMES AND ASSOCIATED DISPERSIVE MASS TRANSPORT 
RELATIONSHIPS 
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Expressions for the longitudinal dispersion coefficient were 
developed for the four combinations of flow and channel geometries 
previously mentioned. The analytical procedure was begun by solving the 
prescribed equation of motion for the velocity u for the particular flow 
regime and channel geometry under consideration. From this, an expression 
for u" was obtained which in turn was used to force the companion form of 
the transport diffusion equation. Solutions to the transport diffusion 
equation then yielded expressions for the concentration variation component, 
c". Expressions for the longitudinal dispersion coefficient were obtained 
from Equations (1) and (2) by averaging the product Re(u") • Re(c") over 
the flow cross section, and for oscillatory flow by averaging again over the 
period of oscillation. 

Boundary Value Problem Formulation 

Several assumptions must be introduced to obtain forms of the governing 
equations that can be solved in a reasonable manner. These are described 
as follows: 

(a) The Boussinesq approximation is applied to the viscous terms ir^ 
the equation of motion and the eddy viscosity coefficients, e    and e , 

are introduced. These coefficients are considered to be constant and 
equal to their spatial and temporal mean where appropriate. 

(b) Eddy diffusivity coefficients, K and K , are used to formulate 

the turbulent diffusion terms in the transport diffusion equation in 
a manner similar to that described for the viscous terms. 

(c) For purposes of the simplification of results and physical interpre- 
tation it is assumed that the eddy coefficients of viscosity and diffusivity 
are of equal magnitude. Thus, K = e , and K = E . 

(d) For steady unidirectional flow the pressure field is independent 
of time. If the flow is uniform then it can be assumed that 

where K is constant. 

(e) For oscillatory flow the pressure field is assumed to be temporally 
periodic, thus 

Ifl-aM  (6, 

where a  is the angular frequency of oscillation and t is time. 
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(f) The velocity and    concentration variables in oscillatory flow are 
assumed to be temporally periodic and of the form 

iat /-M u = u.e (7) s 

cse (8) 

where u and c" are complex variables of the spatial coordinates defining 

position within the flow cross section. This formulation allows for 
temporal phase differences of u" and c" within the flow cross section. 

The forms of the transport diffusion equations presented in all four 
boundary value problems are consistent with those used by previous investigators 
(Taylor 1953, 1954; Fischer 1967; Bowden 1965; Hoi ley, et al_., 1970) in which 
the concentration variable is viewed from a Lagrangian frame of reference 
traveling with the cross-sectional mean velocity. This transformation is 
accomplished by the introduction of the variable 5 defined as follows: 

5 = x - ut   (unidirectional flow)  (9) 

5 = x -( u(t')dt'  (oscillatory flow)  (10) 

The first two sets of boundary value problems (BVP #1 and BVP #2) 
describe the dynamics of fluid motion and the transport diffusion of a 
substance in which only the vertical effects of shear and eddy diffusivity 
are considered. As shown by Figure 2, the x coordinate has been chosen to 
act along the principal flow axis while the z coordinate is defined positive 
upward from the channel bed. The two dimensional shear flow cases examined 
by these two boundary value problems incorporate essentially the same boundary 
conditions. For the equations of fluid motion the conditions of no-slip at 
the channel bed and zero shear at the free surface are applied; whereas for the 
transport diffusion equation the conditions of zero Fickian flux across the 
free surface and channel bed are used. 

The boundary value problem formulations for three dimensional steady 
unidirectional and oscillatory flow regimes are presented by boundary value 
problems 3 and 4 (BVP #3 and BVP # 4). Figure 3 illustrates the coordinate system 
used in these formulations. The origin has been located at the center of a 
rectangular region of height 2h and width w. The open rectangular channel is 
mathematically represented by the lower half of the full section shown in 
Figure 3. Selection of the coordinate system in this manner preserves the 
symmetry of the problem about the origin and, as will be shown later, correctly 
predicts the same dispersive mass transport for equal degrees'of skewness in 
channel geometry in either the vertical or lateral directions. Equations 
(15) through (18) are of the same form as those presented for the two dimen- 
sional cases in BVP #1 and BVP #2 with additional terms included to account 
for the lateral effects of turbulent shear and diffusivity. Boundary conditions 
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FIGURE 2 - DEFINITION SKETCH FOR TWO DIMENSIONAL SHEAR FLOW 

BVP#1 : Two Dimensional Steady Unidirectional Flow 
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FIGURE 3 - DEFINITION SKETCH FOR THREE DIMENSIONAL SHEAR FLOW 

BVP#3 : Three Dimensional Steady Unidirectional Flow 
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used include the conditions of no slip and zero Fickian flux at the sides 
of the full rectangular section. 

Dispersion Coefficient Solutions 

Solutions obtained for u" and c" from BVP #1 through BVP #4 were used 
as previously discussed to develop the corresponding expressions for the 
longitudinal dispersion coefficient. The reader is referred to Taylor (1974) 
for the detailed development of these expressions. 

To simplify the expressions obtained, several mixing time scales were 
introduced. These are defined as follows: 

a. Vertical Mixing Time,  T  = h2/K_ 

b. Lateral Mixinq Time,  T  = w2/4l< 3 Cy y 

c. Non-Dimensional Vertical Mixing Time,  T' = T /T 3       z  cz 

d. Non-Dimensional Lateral Mixing Time,  T' = T /T 

e. Relative Mixing Time,  T' = T /T 3      c  cz cy 

where T is defined as the period of flow oscillation. 

The solution of Equations (11) and (12) for the case of two dimensional 
steady unidirectional flow is straightforward. The expression obtained for 
the longitudinal dispersion coefficient is given as 

E. = 8u2maxTcz    (19) 
L    945 

where u  denotes the maximum cross-sectional velocity. Equation (19) 

has been expressed as a function of u , by maximizing the solution for u max 
as a function of the pressure gradient modulus, K. This provides a 
relationship between u  and K that can be used to express the dispersion max 
coefficient solutions in terms of the more useful parameter u „„. r       max 

Except for the numerical constants, the expression given by Equation (19) 
is identical to that obtained by Taylor (1953) for steady flow in a circular 
tube. By itself it is of passing interest only. However, for comparative 
purposes later in this paper, it is noted from Equation (19) that in two 
dimensional unidirectional flow, the dispersive mass transport increases 
proportionally with increasing vertical mixing time. 

For the case of oscillatory two dimensional shear flow, the solution of 
Equation (13) for the velocity has been known and documented for some time 
(Lamb 1945; Segall 1971). To obtain a solution for c", the velocity variation 
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component was expanded in a Fourier cosine series, and a Fourier cosine 
series form of the solution for c" in Equation (14) was correspondingly 

assumed. The assumed form for c" and the expanded series form for u" 

were then substituted into Equation (14) and the Fourier coefficients for 
c^ were solved for. Expressions obtained for u" and c" were then integrated 

over the flow cross section, and time-averaged over the period of oscillation 
to obtain the dispersive mass transport. This produced the following 
expression for the longitudinal dispersion coefficient as a function of 
u  , the temporal and spatial maximum of the velocity: 

<E >T - 7TU* T T'2 (cosh 2 /^  - cos c   yin^ ^     ( )2 
x T   max  z       —- }      "^  (20) 

(cosh v^ - cos -ATp2   ^j-4 [(nvr,)1«+(21TTp
2]2 

It should be noted that Equation (20) incorporates the effects of an 
oscillatory velocity shear profile which allows for temporal phase differences 
of the flow over the water column. It also demonstrates the dependence of 
the dispersion mechanism on both the vertical mixing time scale and the period 
of oscillation. Although this dual dependence has been pointed out by 
previous investigators (Okubo 1967; Holley et aK, 1970; Segall and Gidlund 
1972; Fukuoka, 1973) the fundamental way in which these two time scales 
govern dispersive mass transport has not been identified. This will be 
discussed in the following section. 

Equation (20) has also been expressed as a function of the pressure 
gradient modulus, K, and the excursion length of a surface particle during 
one-half of a period of oscillation. The reader is referred to Taylor (1974) 
for the development of these expressions. Results obtained from these, 
however, will be used later for discussion purposes. 

Solutions for the longitudinal dispersion coefficient in three dimen- 
sional unidirectional and oscillatory flows were obtained by assuming double 
Fourier cosine series forms for u and c". Arguments of the cosine functions 
were selected to satisfy both the boundary conditions stated for BVP #3 and 
BVP #4 and the physical requirements of no-slip, zero shear stress and zero 
diffusive flux at the appropriate boundaries and points of the rectangular 
half-section corresponding to the open channel cross section. The remaining 
portions of the solution techniques used are similar to those described 
previously for the two dimensional shear flow cases. To obtain the disper- 
sive mass transport, the product of the real parts of u" and c" were inte- 
grated over the full rectangular section shown in Figure 3 and the result 
divided by 2 to provide the actual dispersive mass transport in the rectangular 
open channel. 

The expression thus obtained for the longitudinal dispersion coefficient 
function of u  for the three dimen 

case is stated in nondimensional form as 

as a function of u„„ for the three dimensional steady unidirectional flow max 
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The non-dimensional form of the longitudinal dispersion coefficient 
obtained for the three dimensional oscillatory flow case (BVP #4) is 
presented on the following page as Equation (23). It is noted from an 
inspection of Equations (22) and (23) that: 

(a) Dispersive mass transport in channels of finite width for both 
oscillatory and unidirectional flows is a function of both the vertical 
and lateral time scales of turbulent mixing through the variable T' . 
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(b) The dispersive mass transport for the three dimensional oscillatory 
flow case is also a function of the period of oscillation through the 
variables T and T'. 

DISCUSSION OF RESULTS 

Two Dimensional Oscillatory Flow 

Bowden (1965) was the first investigator to look at longitudinal 
dispersive mass transport in oscillatory flow. He found that for the case 
in which the period of oscillation is infinitely long the longitudinal 
dispersion coefficient is one-half the value of the same coefficient for 
a corresponding unidirectional flow having the same surface velocity, the 
same shear profile, and the same vertical eddy diffusivity. Okubo (1967) 
and Holley, et al_. (1970) extended Bowden's work and demonstrated that the 
dispersion process in oscillatory flows was functionally dependent on both 
the time scale of vertical mixing and the period of oscillation. The manner 
in which Holley, et aK interpreted their results stimulated much of the 
interest in the work presented here, and will therefore be discussed for 
illustrative and comparative purposes. 

Holley, et al_. assumed a linear oscillatory profile for the spatial 
component of velocity of the form 

u" = az sin at (24) 

where a is a constant, z is the vertical coordinate, and a  is the angular 
frequency of oscillation, 2ir/T. Proceeding in the same manner as described 
here, they then used this expression for u" to obtain solutions for c" and 
the longitudinal dispersion coefficient corresponding to the general case 
of two dimensional oscillatory flow, and the special case in which the period 
of oscillation is infinitely long. The dispersion coefficient for the 
infinitely long period of oscillation, E , was then used as the basis for 

comparison of the dispersion processes in oscillatory and unidirectional flows. 
This was accomplished by plotting the ratio of the dispersion coefficient for 
oscillatory flow divided by E^versus the non-dimensional time T1 defined as 

1/T' as used here. This produced the results as shown by curve CD in 

Figure 4. The ordinate variable used in Figure 4 is normalized by the cor- 
responding dispersion coefficient for unidirectional flow, E. , which is 

exactly double the value of E^. The results of Holley, et a]_. were adjusted 

accordingly. 

For comparison purposes Figure 4 includes results obtained from the 
present work as shown by curves (2) and (3) . Curve (3) plots the ratio 
of Equation (20) divided by Equation (19) while curve (2) plots the ratio of 
the corresponding forms of Equations (20) and (19) expressed as functions of 
the pressure gradient modulus, K. 

The results depicted in Figure 4 demonstrate the fact that the relative 
magnitudes of the dispersion coefficients for oscillatory and unidirectional 
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flow vary considerably depending upon how one chooses to make the comparison. 
All three curves shown approach the limiting value of one-half for large 
periods of oscillation which agrees with the findings of Okubo (1967) and 
Bowden (1965). However, as T' decreases the curves begin to diverge consi- 
derably. The agreement between the results of Holley, et al_. (1970) and 
the u  normalization of the results presented here is good for large 

values of T1. However, it becomes increasingly worse as T' decreases. The 
c]ose agreement for large values of T' is not surprising since both curves 
(D and © were developed by requiring the surface amplitude of the velocity 
in the oscillatory flow field to be equal to the velocity at the surface in 
the unidirectional flow field. The divergence of the two curves with 
decreasing values of T1 results from the use of a truly oscillatory velocity 
profile in the present work as compared to the one assumed by Holley, et al• 
in which the velocity remains temporally in phase over the water column. 
Thus, as the period of oscillation decreases the effect of inertial forces 
increases thereby increasing the effects of flow reversals over the water 
column on the dispersive mass transport. 

Curve © in Figure 4 serves to illustrate the dramatic difference in 
behavior of the dispersion process when one chooses to compare the oscillatory 
and unidirectional cases by requiring both flow regimes to have the same 
pressure gradient modulus, K. For unidirectional flow the pressure gradient 
and viscous forces are in equilibrium so as to produce a constant unidirec- 
tional shear flow for the dispersive transport of substance. In oscillatory 
flow, however, the pressure gradient is in constant balance with the time 
varying inertial and friction forces. As the period of oscillation decreases, 
the inertial effects become very large such that in the limiting case little 
or no flow would be induced. This results in little or no dispersive transport. 

The dramatic difference in the behavior of the velocity and pressure 
gradient normalized solutions raises the question of whether or not a plot 
such as Figure 4 is the most meaningful method of illustrating the character- 
istics of dispersive mass transport in oscillatory flow. It also suggests 
that the non-dimensionalization of the oscillatory dispersion coefficient by 
the corresponding unidirectional flow coefficient may in fact mask the funda- 
mental behavior characteristics of the dispersion process in oscillatory flow. 
This is shown to be true by plotting separately the expressions obtained for 
E. and <E >T versus T , the vertical mixing time. Figure 5 presents such a 

plot. In this figure, the longitudinal dispersion coefficient, <
EX

>
T. as given 

by Equation (20) is plotted versus the vertical mixing time, T , for four 

periods of oscillation ranging from 22,526 to 223,560 seconds and a u  of 

1 ft./sec. Also plotted is the solution for the unidirectional flow coefficient, 
E., as given by Equation (19). This figure clearly shows the significantly 

different behavior of E. and <E >T- The unidirectional flow coefficient 

varies directly with the vertical mixing time which for little or no turbu- 
lent mixing over the water column allows the shear flow to transport higher 
concentrations of substance far downstream. The behavior of the oscillatory 
flow coefficient, however, is governed by a type of resonant interaction 
between the period of oscillation and the vertical mixing time. As the period 



DISPERSIVE TRANSPORT 3349 

- 

1          1          1          1 

•< >^     ^y   / 
/      " / 

/       '-/    ~~ 
~~~°^°Tl>ms~rPoTisJ~ = l   ~~~ — 

\ \ 
\\ 
\\ 

. H 
o 
»  o 

CM    E 

*   1 

\ 

II 

* .1 

l_oto 

1 1                   1 
o 
o 

o 
o 

O 
O 

O 
O 
in 

o 
O 

o 
o 
to 

o 
o 

_   O -c p£ 

O 
O 

% 

CO 

o 
L 

sz < 
o 
oo : 
l-H < 

<C h 
CU ( 
S : 
o : 

4U8!0|ji8O0     uoisjadsiQ   |DU]prn|6uoi 



3350 COASTAL ENGINEERING-1976 

of oscillation is increased, the resonant peak shifts to the right and like- 
wise increases until the limiting case is reached where the peak is infinitely 
large and the values predicted for <E >T are exactly one-half those predicted 

for the unidirectional flow coefficient, E. . The resonant characteristic of 

<E >T also explains the abrupt decrease in the ratio of <E >T/E. as exhibited 
X ' X I  L 

by the curves in Figure 4. 

The physical reasoning behind the resonant behavior of <E >T is surprisingly 

simple. Consider first the case where the period of oscillation is much greater 
than the vertical mixing time. In this situation, the rate of vertical mixing 
is so rapid that there is no time for the velocity shear profile to transport 
the substance longitudinally before it loses its identity through vertical 
mixing. Thus, the oscillatory and unidirectional flow dispersive processes 
behave in a similar manner and both are small. This corresponds to conditions 
found in the extreme left regions in Figure 5. If T is held constant and T 

is allowed to increase, the oscillatory shear profile is then able to transport 
the substance farther downstream before excessive mixing occurs; thereby 
increasing the dispersive, transport. Thus, the oscillatory case continues to 
behave in the same manner as the unidirectional case. This continues to be 
true until the optimum ratio between the period of oscillation and the vertical 
mixing time is reached. At this point, the dispersive mass transport in the 
oscillatory flow regime has reached its maximum. If, however, the vertical 
mixing time is increased beyond this point, the oscillatory nature of the flow 
begins to become a factor and the longitudinal dispersion is decreased. This 
trend continues as T  is increased further until the limiting case is reached 

in which there is little or no vertical mixing taking place during one or 
more periods of oscillation. For this situation an elemental volume initially 
residing in the water column at elevation z, and containing an initial 
concentration c, would remain at this elevation thus being transported over 
the closed pathline of flow, and returned to its initial position with no 
longitudinal dispersion having occurred. By comparison, in a unidirectional 
flow with little or no vertical mixing, the longitudinal dispersion would be 
very large. 

Thus, it is seen that for an oscillatory flow regime, the longitudinal 
dispersive mass transport becomes small for both T«T  and T>>T ; whereas 

for a unidirectional flow the longitudinal dispersive mass transport varies 
directly with T 

The family of curves implied by Figure 5 was collapsed into one 
summarizing curve by expressing <E >_ as given by Equation (20) in the 

following non-dimensional form: 

K  = <VT (25) 
x  u2 T max 

It is noted that the form of E' follows naturally from Equation (20). A 
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plot of E' versus the non-dimensional vertical mixing time T' is shown by 

coefficient occurs when the vertical mixing time, T , is 1.58 times the 
Figure 6. As indicated, the maximum value of the longitudinal dispersion 
coefficient occurs when th 

period of oscillation, T. 

Three Dimensional Oscillatory Flow 

The non dimensional form of the solution for the longitudinal dispersion 
coefficient in three dimensional oscillatory flow, as given by Equation (23), 

is plotted versus T' in Figure 7 for several values of the relative mixing 

time, T'. As stated earlier, the relative mixing time is defined as the ratio 

of the vertical mixing time scale to the lateral mixing time scale. Thus, 
small values of T' are indicative of a very wide shallow channel, whereas 

T' = 1 would represent a channel whose width is twice its depth provided 

K = K . T1 can therefore be considered as a measure of the relative effects 
z  y  c 

of vertical and lateral shear for a given width-to-depth ratio, and vertical 
and lateral eddy diffusivities.  Values of T' ranging from 1 x 10"6 to 1 were 
used to develop the curves shown in Figure 7. 

It is seen from Figure 7 that when both the vertical and lateral effects 
of shear and turbulent mixing are considered, the dispersion process in 
oscillatory flow is described by an infinite number of resonant curves as 
compared to the single curve presented in Figure 6 when only vertical effects 
are considered. The effect of varying T' causes changes in the shape of the 

curve, the maximum value of E' achieved, and the value of T' at which this 

maximum occurs. 

The innermost curve shown in Figure 7 is identified by T'<_ x 10"6 on the 
left hand side of the peak and by T' <_ 0.001 on the right. A comparison of 

this curve and the one shown in Figure 6 shows that the general shapes of the 
two curves are nearly identical with both peaks occurring at T1 = 1.58. 

The peak value of E1 in Figure 6 is 3.27 x 10"3 whereas for the limiting 
curve in Figure 7 it is 3.07 x 10"3 or 6 percent below the value shown for the 
two dimensional case. Differences in these two curves are attributed to the 
number of terms used to generate Figure 7. Because the solution for E' as 

given by Equation (23) contains six infinite summations nested in series, 
some limitations were necessary in carrying out the required computations. 
By varying the upper bound on each of the sums, it was demonstrated that the 
solution converges upward to its limiting value. The convergence occurs 
reasonably rapidly, however, above an upper limit of 10 terms for each sum 
the rate of convergence is slowed considerably. The results presented here 
were computed using an upper bound of 10 on each sum; therefore, each value 
of E' includes approximately 1.2 x 106 terms. Notwithstanding this obvious 
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limitation, it appears that the three dimensional solution for E' approaches 

the two dimensional solution for E' in the limit as T' + 0. 

Before passing, it is worthy to note the mathematical and physical 
symmetry of the dispersion process described by Equation (23). If T' had 

been inversely defined as T /T , Equation (23) would be of the same form 

with T' replacing V  everywhere, and the newly defined T' multiplying all com- y z c 
plementary terms in rl5 r2, and a1.    This form of the solution would predict 
the same value of E' as the original formulation provided that um„v and T x max 
were the same, and that the new T' equaled the old T' and the new T' equaled 

the old T'. Stated another way, for the same u„,„ and T, a channel whose c max 
half-width was twice its depth would produce the same dispersive mass transport 
as a_ channel whose depth was twice_ its half-width provided that the ratio 
K /K for the first case equaled K /K in the second case. One way to show 

the symmentry of the solution about T1 = 1 is by means of a plot such as Figure 

8 in which isolines of E1 are shown for channel geometries skewed in both 

width and depth. The lower half of this figure corresponds to geometries in 
which w/2h > 1 whereas the upper half corresponds to geometries in which w/2h 
< 1, provided that K = K . v z   y 

Three Dimensional Steady Unidirectional Flow 

Values for E^ obtained from Equation (22) are plotted versus T' in Figure 9. 

In performing the computations, a summation limit of 12 was used on each of the 
six infinite summations included in the solution. By adjusting this value in 
a manner similar to that discussed for the oscillatory case, it was concluded 
that the solution as presented in Figure 9 is near that given by the infinite 
summations. 

It is seen from Figure 9 that the longitudinal dispersion coefficient 
becomes very large with increasing channel widths. By comparison, if the 
definition of E.1 given by Equation (21) is applied to the two dimensional 

solution for E, given by Equation (19) the result is 

E, = QTF = constant   (26) 

This is shown in Figure 9 by the dotted line. The difference between the 
behavior of the two solutions is dramatic and for unidirectional flows supports 
Fischer's theory regarding the dominant effect of lateral shear on longitudinal 
dispersion in wide channels. It is apparent that the longitudinal dispersion 
for the three dimensional case increases without bound as the width of the 
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channel is increased correspondingly, whereas the longitudinal dispersion 
predicted for the two dimensional case remains independent of changes in the 
channel width. 

The fact that the three dimensional solution does not approach the two 
dimensional solution in the limit as T' + 0 is not surprising if one considers 

the physical characteristics of the unidirectional flow regime and the mathe- 
matical formulations of the two cases examined. The three dimensional problem 
has by definition a lateral shear effect which, no matter how wide the channel, 
is forever present. Conversely, the two dimensional problem by definition has 
no such effect. Thus, the presence of this shear coupled with a unidirectional 
flow and a long time scale of lateral mixing must produce a significantly higher 
longitudinal dispersive mass transport than would be produced in the case where 
the lateral effect is non-existent. This phenomena does not apply to the 
oscillatory flow case because of the completely different nature of the flow 
regime. In that situation, the oscillatory characteristics of the flow 
negate the effects of a large lateral mixing time by periodically transporting 
the water mass across a fixed point of reference rather than transporting it 
far downstream as in unidirectional flow. 

It is noted that the solution given by Equation (22) is symmetrical 
about T = 1 in exactly the same manner as discussed for the three dimensional 

oscillatory flow case. Thus, the discussion presented applies equally to those 
channels whose geometries are skewed in depth rather than width provided the 
conditions previously discussed are satisfied. This, of course, would not 
include the period of oscillation, T. 

SUMMARY AND CONCLUSIONS 

Analytical expressions for the longitudinal dispersion coefficient have 
been presented for four cases of shear flows, namely: 

a. Unidirectional flow in an infinitely wide rectangular channel 

b. Oscillatory flow in an infinitely wide rectangular channel 

c. Unidirectional flow in a rectangular channel of finite width 

d. Oscillatory flow in a rectangular channel of finite width 

Examination of these results shows that in oscillatory flow regimes the 
dispersion process is governed by a type of resonant interaction between the 
period of oscillation and the time scales of transverse mixing over the flow 
cross section. For two dimensional oscillatory flows in which lateral effects 
are not considered, this interaction is confined to the period of oscillation 
and the time scale of vertical mixing. The dispersion coefficient was found 
to reach its maximum value for this case when the vertical mixing time is 
1.58 times the period of oscillation. For the case of three dimensional 
oscillatory flows in which both the vertical and lateral effects of shear and 
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turbulent mixing are considered, it was found that the inclusion of the lateral 
effects affected the shape of the resonant curve, the maximum value of the 
dispersion coefficient achieved, and the value of T' at which the maximum 

occurred. It was also shown that the three dimensional solution for the 
dispersion coefficient in oscillatory flow approaches the two dimensional 
solution in the limit for wide channels. 

The solution presented for the dispersion coefficient in three dimensional 
unidirectional flow was shown to predict increasing dispersive mass transport 
as the channel width was increased correspondingly. Thus, the three dimen- 
sional solution does not collapse in the limit to the two dimensional case 
as was found for oscillatory flow. This behavior supports Fischer's (1967) 
theory regarding the dominant effect of lateral shear on longitudinal dispersion 
in wide channels. 
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