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ABSTRACT 

Viscous perturbed velocity field induced by interfacial waves is 
solved to the first order in terms of wave amplitude for sharply strati- 
fied flows described in a curvilinear coordinate system assuming that the 
external velocity is uniform and constant along the interface. A new type 
of formula for the interfacial friction coefficient is proposed based on 
the theoretical result on viscous dissipation in the boundary layer along 
the interface. The interfacial friction coefficient is supposed to be in- 
versely proportional to the square root of the product of the Reynolds 
number of a moving layer and the densimetric Froude number to the fifth. 
The new formula agrees with observed data better than the best empirical 
law does especially in the range of large Reynolds number.It is found 
out, however, that the proportional constant may be affected by stabil- 
ity of the two-layered flow system concerned. 

INTRODUCTION 

The behavior of saline wedges is directly concerned with the munic- 
ipal, industrial or agricultural utilization of estuarine waters. The 
form of the interface and the length of arrested saline wedges have been 
analyzed by the one-dimensional scheme as the case of varied flows in 
open channels. However, we have to estimate the value of the interfacial 
friction coefficient from the bulk hydraulic parameters to perform the 
prediction in a closed calculation scheme. 

One of remarkable flow patterns observed in a two-layered flow sys- 
tem is the generation of interfacial waves and its existence for a rela- 
tively wide range of flow conditions. Therefore, the flow regime changes 
from laminar to turbulent via stable transition zone with interfacial 
waves. When a whole flow system reaches turbulent condition we have an- 
other flow pattern, that is, well mixed estuaries which have density gra- 
dient not in vertical direction but in horizontal direction. Although the 
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flow regime in the upper layer( fresh water) is turbulent, the flow re- 
gime near the interface is considered in the transition zone due to the 
suppression of turbulence by the sharp density gradient. In this analysis 
mixing between two layers is assumed very weak or none. If there exists 
moderate mixing between two layers, it is supposed that the density dis- 
tribution may change and the thickness of the mixed zone will develop a- 
long the interface. In this case the flow system develops to a different 
condition from what was assumed initially. Thus we are concerned espe- 
cially with the case of abrupt interface with stable infinitesimal inter- 
facial waves at the interface as the first approximation of the fresh- 
salt interface. 

Theoretical approaches are classified into two types. One is to con- 
sider the energy dissipation of the formation of interfacial waves. This 
way of approach was initiated by Keulegan(1949) for inviscid fluids. He 
derived an expression for the interfacial friction coefficient assuming 
that the dissipation took on the same value as for surface waves in con- 
tact with air. He also formulated the additional shearing resistance due 
to the mixing. Since the liquid crossing the interface is initially at 
rest and after crossing the interface it acquires the velocity of the 
current, the current must suffer momentum loss. 

Shi-igai(1965) extended the Keulegan's approach to a fresh-salt two- 
layered flow system. He expressed the flow field by means of the velocity 
potential. However, interfacial waves were considered to suffer from vis- 
cous dissipation. Thus, a virtual shear flow was considered in his analy- 
sis. Summarizing the characteristics of interfacial waves, he proposed 
that the interfacial friction coefficient was inversely proportional to 
I|I where i^=ReF(j

2. Here Re is the Reynolds number of a moving layer and F<j 
is the densimetric Froude number. 

Hamada(1966) calculated the dissipation of infinitesimal waves form- 
ed on the interface of viscous stratified fluids. He utilized the theo- 
retical results of the Rayleigh-Taylor instability problem. His final re- 
sult is summarized that the interfacial friction coefficient is inversely 
proportional to the square root of I)J. However, the theory is built up on 
the basis of no external flow field, which disagrees with the real situa- 
tion of salt-water wedges. 

Another theoretical approach treats with skin friction and momentum 
loss due to entrainment of fluid particles from a stationary layer. If 
we consider the laminar condition for a stationary saline wedge, we can 
theoretically derive a velocity distribution for both layers and calcu- 
late shearing stress of the type of skin friction. In the laminar flow 
the interfacial friction coefficient is inversely proportional to the 
Reynolds number of a flowing layer. 

Valembois(1963)-considered the shearing stress at the interface as 
the sum of a laminar part and a turbulent part. The turbulent part is ex- 
pressed by the mixing velocity across the interface. Although he obtained 
the order of magnitude of these components by utilizing four among forty 
six experimental data of Lofquist(1960), he did not mention the general 
behavior of the mixing velocity any further. 

Recently Pedersen(1972) investigated the mechanism of entrainment in 
two-layer stratified flows. With the use of the momentum and work energy 
equations, both with respect to the net entrainment, the interfacial 
friction coefficient is found to be equal to the non-dimensional entrain- 
ment velocity. The details of the entrainment velocity, however, remained 
vague with respect to hydraulic parameters of a flowing layer since the 
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interfacial friction coefficient appeared to be a minor objective in his 
paper. 

As was briefly reviewed there are several components which contribute 
to the friction at the interface of a stratified flow. Referring to the 
proposed functional relationship it is said that when the Reynolds number 
is very large and the stratification is stable, which is encountered in 
saline wedges in estuaries, the magnitude of laminar friction is much 
smaller than that of the friction due to interfacial wave formation. In 
addition, as long as we consider a two-layered flow system the mixing be- 
tween two layers remains weak. Therefore, it is supposed that the friction 
due to the mixing does not play a dominant role in sharply stratified 
flows with which we are concerned in this paper. The objective of this pa- 
per is to construct a more advanced theory on the interfacial friction un- 
der the existence of interfacial waves. Main flow is divided into two parts, 
that is, an inviscid part and a viscous perturbed part so as to improve 
previous theories. Then, boundary layer along the wavy interface is ana- 
lyzed and the interfacial friction coefficient is derived from viscous dis- 
sipation in the boundary layer. 

THEORETICAL CONSIDERATIONS 

The definition sketch of a two-dimensional two-layered flow system is 
given in Fig. 1. The coordinate system (x,y)   is a moving frame with the 
celerity of interfacial waves, o.  We have stable infinitesimal interfacial 
waves at the interface. The velocity distribution in the upper layer is 
assumed uniform. This is because the flow of the upper layer is considered 
turbulent, though the flow regime near the interface is in the transition 
due to the suppression of turbulence by the density difference. Since the 
relative importance of skin friction with the resistance due to interfa- 
cial waves diminishes as the Reynolds number becomes high, the velocity 
distribution is not essential in this analysis. The salt-water layer is 
assumed stationary. If we consider this motion as a relative motion, the 
situation is general. 

The coordinate system (x,y)  is transformed into a curvilinear coordi- 
nate system (£,n) by utilizing a conformal mapping. 

£ = C + iri=z-iae (1) 

y=a-cos(kx) 

Fig. 1. Definition sketch of a two-layered flow 
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where z=x+±y,  a is  the amplitude of an infinitesimal interfacial wave, 
and k is  the wave number.   From Eq.   (1)  we obtain 

—ky —kv 5 = x + a e        sin kx,       n = y - a e    '  cos kx (2) 

Jacobian of the transformation is calculated as 

J = 1 + 2ak e~ky cos kx + 0(a2) (3) 

The interface is expressed by rpO if we neglect the effect of the order 
of a2. 

The vorticity transport equation for a steady motion is expressed by 

U .   VW - M. vf - vV2«tf - V(l/p)A Vp (4) 

where U   and u}   are velocity and vorticity vectors, respectively, v the 
kinetic viscosity of the fluid, p the density of the fluid, p the pres- 
sure, V a gradient operator, • inner product, and A vector product. 
Equation of continuity for an incompressible fluid is explained by 

V -U    = 0 (5) 

Equation (5) is an exact expression for the equation of continuity even 
in the case of slight density variation due to a solute and is a passable 
expression to the first order approximation under the density variation 
caused by both temperature and concentration( Yih,1965). The equation of 
continuity in the curvilinear coordinate transformed by Eq. (1) is 

J {^(J-1/^) +^(J-!/2v) } = 0 (6) 

where u  and V  are 5 and n components of velocity, respectively. Equation 
(6) is satisfied by the stream function, X,  defined by 

Ti/2 9X T1/2 9X ,_,. u = J1'z T— ,       v = -J1!^ — (7) 

In a two-dimensional problem vorticity has just one component perpen- 
dicular to 5~1 plane. Therefore we can treat vorticity as a scalar denoting 

| CO | = (o. Further, the second term of the left-hand side of Eq. (4) van- 
ishes in case of a two-dimensional problem. Because a sharply stratified 
flow is considered in this analysis, density gradient and pressure gradi- 
ent are parallel each other. Therefore, the second term of the right-hand 
side of Eq. (4) also vanishes in this case. Equation (4) is thus rewritten 
as in Eq. (8). 

- J1/2 || • Jl/2 |S + jl/2 fl. jl/2 iffl . VJD2(0 (8) 
95 dr\ dT\ dt, 

where ui = -JD2Z and D2 = 32/3g2 + 92/3n2. 
Now perturbation method is applied to solve Eq. (8). Stream function 

defined in Eq. (7) is expanded in power series as shown in the next equa- 
tion. 
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X = X0 + EXJ  + e2X2 +  (9) 

where the suffix of X  stands for the order of a perturbed representation 
and E.= ak.  We assume the external flow is inviscid. Therefore, XQ  is ob- 
tained by the inviscid theory. X±   is composed of a wave component, X\   , 
which is also calculated by the inviscid theory and a viscous component, 
^1 . Substitution of Eq. (9) into the definition of vorticity yields 

ID = -JD2X = (J)Q + en) i + e2u)2 + 

= -{ 1 + 2ee kn cos k? + 0(E2) }•( D2X0 + ED
2
XX + E

2
D
2
X2 +••) 

= -£D2X! - e2( D2X2 + 2e"
kT1 cos k^-D^ ) + 0(E3)       (10) 

Since XQ  is derived from the inviscid theory, it provides irrotational mo- 
tion. Thus the perturbed expression for vorticity begins with the first 
order in terms of E. 

The equation in e is obtained as follows by substitution of Eqs. (9) 
and (10) into Eq. (8). 

According to the Kelvln-Helmholtz problem, the inviscid solution of the 
stream function is given by 

(Ui-c)a 
V "   (Ui-c)y H . . -.  sinh k(y-hi) cos kx 1  '   sxnh khj       J     y 

-kn        (Ui-c)a 
= (Ui-c)n + (Ui-c)ae   cos k? +  . . ,. sinh k(n-hi) cos k5 L ^ Sinn ktii 

+ 0(a2) 

where f  is the stream function, Cj the velocity of the upper layer, and h\ 
the depth of the upper layer. The stream function defined by Eq. (9) is 
thus obtained up to the order of e as 

X0 - (Ui-c)n 

{     1     -kn Ui-c xl = ^(Ui-c)e   cos k£ + k slnh khi sinh k(n-hl) cos k5 + Xiv 

= XX + Xx (12) 

Following Eq. (12) we obtain 3Xg/3£ = 0. Therefore, we can simplify Eq. 
(11) further as 

Oh-c) — = vD2^ (13) 

In addition length scale along the interface is considered much larger 
than that of the direction perpendicular to the interface. Hence 3/3£ << 
3/3n and 32/3£2«32/3n2 may hold to reduce the governing equation as in 
the following expression. 
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, 3(Di    3z«>i (ui-c) it= v -w- (U) 

where IOJ = -3uj/3n. Here uiis the first order component of perturbed ve- 
locity. 

Now the velocity component along the interface is developed in power 
series through Eq. (7). 

UQ + euj + e2u2 + 

3Xn 3Xi _kn 
= -^- + E{ ~ +  (U1-c)e Krl cos k£   } + 0(e2) (15) 

3n    3n 

Boundary conditions under which Eq. (14) is to be solved are determined 
as follows. As was previously mentioned the interface is expressed by 
1=0 to the order of e. Fundamental scheme on the velocity of this paper 
is that we allow velocity gap in the external flow but we impose no-slip 
condition for perturbation velocities. Therefore, we have 

3Xi 
w 

ui = 0   at n = 0,    ui = -r—   at n = °° 

The second condition shows that viscous effect vanishes as the distance 
from the interface increases. If we denote wavy and viscous parts in the 
perturbed velocity separately, we obtain the following expression from 
Eqs. (12)3 and (15)2. 

-kn ul = ul + ul + (Ui~c)e   cos k£ 
{      W    V (16) 

ui  = 3Xi /3n,    ui  = 3Xi /3n 1w LW iV      V 

Thus we obtain the boundary conditions in terms of the first order viscous 
perturbed velocity, uj . 

ul = (Ui-c)coth khj cos k5       at  n = 0 

at  n 
{  v (17) 

The governing equation (14) is again rewritten in terms of uj . 

32ux    33ux 
(Ul-c) 777- = v TT <18) dt,dr\ 3n 

Integration with respect to n produces Eq. (19). 

3ui    32ui 
Oh-c) —J- - v  f + H(5) (19) 

3?     3n2 

Integration constant H(C) is considered pressure gradient referring to a 
momentum equation. 

The solution to Eq. (19) is obtained with boundary conditions of Eq. 
(17) for the case of H(5) equals zero, which represents constant external 
velocity. This is the case that the interface is parallel to the water 
surface and would be the first approximation even for the case of slightly 
inclined interface. 
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ux = (c-UOcoth khi e~Bn cos(kS+6n) (20) 

where 

6 = / (c-Ui)k/2v (21) 

Vorticity is thus calculated up to the first order. 

u = EUj = -E3UI/3TI 

= 6(c-Ui)ak coth khL e  {cos(k£+en) + sin(k£+Bn))    (22) 

In order to obtain a real value for g in Eq. (21), the condition 
c >, Vi  must be hold. The interfacial wave propagating downstream satisfies 
this condition. A more detailed description will be given as follows. Let 
us denote Ap=p2-pi and g'Hg-Ap/pj, where Ap is the density difference be- 
tween upper and lower layers and g  is the acceleration of gravity. For the 
case of a stationary lower layer and of a slight density difference, which 
is treated in this paper, the condition c >_ Dj can be rewritten on use of 
the Inviscid theory as 

g' >, kUj2 coth kh2 (23) 

where h2  is the thickness of the lower layer. For long waves we can approx- 
imately express coth kh2=l/kh2. Thus Eq. (23) reduces to 

(l/F^H^/hj) > 1 (24) 

where 

(25) 

4 PI 
ghl 

is the densimetric Froude number. The value of Fa is less than unity in 
density currents like as saline wedges. Therefore, the condition of Eq.(24) 
is ordinarily satisfied unless the thickness of the lower layer is extreme- 
ly small. For deep water waves we can put approximately coth kh2=l. Then 
we obtain the relationship for the wave length X 

A > 2Trh!-Fd
2 (26) 

Equation (26) shows that interfacial waves whose wave length is shorter 
than that given by Eq. (26) are unstable. Since we can expect to have real 
values for g for usual hydraulic conditions as shown in Eqs. (24) and (26), 
we can accept Eq. (22) as a basis for further investigation. 

Viscous energy dissipation is generated in the boundary layer, the 
thickness of which is the order of 1/6, along the interface. In this anal- 
ysis the boundary layer is only considered along the upper surface of the 
interface. This may be acceptable under the assumptions adopted in this 
analysis that the lower layer is stationary, the density profile is dis- 
continuous at the interface and the amplitude of interfacial waves is in- 
finitesimal. The mean energy dissipation per unit area is given by 

E = -u /o ">2 dn (27) 

where &  is the thickness of the boundary layer and overbar denotes the 
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average over a wave length.   Substituting Eq.   (22)   into Eq.   (27)  we obtain 

E = -(l/2)ne(c-U!)2a2k2  coth2kh! (28) 

where the outer edge of the boundary layer is approximated by n=oo. 
This energy dissipation must be fed by the mean flow of the upper lay- 

er. The resistance stress to the upper layer,T, is thus obtained by divid- 
ing the rate of energy dissipation by the mean flow velocity of the upper 
layer and turning the sign following the definition of the resistance 
stress. 

• T - - E/Hj (29) 

Interfacial friction coefficient, f^, defined by 

T = (1/2) f^2 (30) 

is then obtained on use of Eqs. (28),(29),'and (30). 

where 

fi = 72  V1/2<F" "1)5/'2(khl)1/2a2k2 coth2kh! (31) 

RP - ^ (32) 

is the Reynolds number of the upper layer. It is noted that in this anal- 
ysis the energy dissipation is not caused by the maintenance of interfa- 
cial waves but by the viscous perturbed velocity field which is induced 
by the presence of interfacial waves. 

It is found out that the interfacial friction coefficient is inverse- 
ly proportional to the square root of the Reynolds number of the moving 
layer. In order to study the dependence on the densimetric Eroude number 
we have to specify the magnitude of interfacial wave celerity which is 
obtained by the inviscid theory. 

_ Ujcoth kh!+{g'(coth khj+coth kh2)/k-Ux
2coth kh^oth khj}1/2 

C ~ coth khi + coth kh2 

For a real value of 6 only plus sign of the square root is considered. 
This expression can be simplified in two extreme cases of long waves and 
deep water waves. Further analysis on the frictional coefficient is devel- 
oped for these cases. 
(a) The aase of long waves:    We can put approximately coth kh^l/khj ,and 
coth kh2=l/kh2. From Eq. (33) We obtain 

c       h2 + {Fd-
2h2(hx+h2)  - hxhz)1/2 

U^ ~ hi  + h2 

(i) h2 » h1 

In this case Eq. (31) reduces to 

fi = 0.707 (ReFd5)-1/2 (kh^1/2 a2k2 coth2kni (34) 

(ii) h2 = hx 
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In this case Eq. (31) is rewritten as 

f±  = 0.125 V1/2 (.^2¥d-
2-l  - l)5/2(kh1)

1/2 a2k2 coth2khj  (35) 

For very small values of F<, Eq. (35) reduces to the same type of formula 
as Eq. (34). 

f± =  0.297 (RgF^)-1/2 (khj)1/2 a2k2 coth2khj (36) 

(b) The case of deep water waves:     In this case coth khj and coth kb.2 are 
approximated to be unity. From Eq.(33) we obtain 

c/Uj = (l/2){ 1 + A/(7Th,Fd
2) - 1 } 

Substitution of the above expression into Eq. (31) yields 

tt  = 0.125 Re~
l/2 {A/drhjFj2)-! -l}5/2(kh!) x/2a2k2 coth2khx (37) 

A few remarks on Eq. (37) are added. For the shortest waves that satisfies 
Eq. (26) f^ reduces to zero. In that case the celerity of the interfacial 
wave is identical to the mean flow velocity. Thus the upper layer does not 
suffer from the energy dissipation. The longest wave that satisfies the 
deep water condition is written as A=2hi. For this wave we can simplify 
Eq. (37). If we assume the densimetric Froude number F<j is much smaller 
than unity, Eq. (37) gives the relationship  f^ « (RgF^5)~1'2. 

COMPARISON WITH MEASURED DATA AND DISCUSSION 

There have been several experimental works and field observations on 
saline wedges. Reported data of the interfacial friction coefficient are 
rearranged on the light of a newly developed formula. Referring to Eqs. 
(34), (35) and (37), the frictional coefficient depends on the wave char- 
acteristics even in specified cases. However, none has been reported ex- 
plicitly about the wave length, the amplitude, and the celerity of inter- 
facial waves. Therefore whichever formula we choose, certain magnitude of 
scattering of data around the estimated relationship will be inevitable. 

Previous formulae claim the type of relationship 

f± = a ijTn (38) 

where a and n are constants and ty =  RgF^2. Because no observational re- 
sult explains the amplitude and the wave length of interfacial waves as 
mentioned above, we have to simplify Eq. (31) in order to compare the the- 
oretical result with reported data. The newly derived formula is approxi- 
mated as in Eq. (39) excluding the effect of the characteristics of inter- 
facial waves. 

f± = m (ReFd
5)-!/2 (39) 

where m  is a proportional constant. This type of formula is chosen in con- 
nection with Eqs. (34), (35) and (37). Note that for very small Fd Eqs. 
(35) and (37) reduces to the same type of relation as Eq. (34). 

The observed data are shown in Fig. 2 in the relationship between f^ 
and ReF<j

5. Detailed values of fi, Re, and F^ of each data are listed in 
Table 1. A full line in Fig. 2 shows Eq. (39) in which m=0.085. The au- 
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thor's experiment^ Tamai,1964) was performed in a flume 15cm wide and 420 
cm long and interfacial profiles of stationary saline wedges were recorded 
for a bottom slope of 1.27/100. Values of the interfacial friction coeffi- 
cient were selected to produce the best fit interfacial profile by the nu- 
merical integration of a one-dimensional open channel equation for two-lay- 
ered flows. The determined interfacial friction coefficient is thus consid- 
ered the average value over the interface. The Reynolds number of the upper 
layer remains constant even for an inclined interface because of the con- 
stant discharge per unit width. The representative depth of the upper lay- 
er to calculate FJ is chosen at the mid-point of intruded saline wedges. 

Lofquist(1960) performed his experiment in a horizontal flume 23.3cm 
wide and 30m long. In his experiment a heavier salt-water layer moved under- 
neath a stationary fresh-water layer. Mean shear stress with respect to 
width at the interface were calculated from the slope of the interface, bed 
shear stress, and velocity gradient. Although friction coefficient is given 
with respect to the maximum velocity in the paper, the conversion to the 
definition of Eq. (30) is available utilizing the listed quantities. 

Nakamura and Abe(1970) observed the behavior of a saline wedge in the 
Kuzuryu River. Values of the interfacial friction coefficient were calcu- 
lated by the equation 

i      "l        Q Ahi     U,2   AB , 
fi " 2 V2 h^hl <-<l-*d

2) st + (Ap/Pl)gB Ax" 
}        (40) 

Here we assume a stationary lower layer and B  is the width of a channel. 
Symbol A explains finite difference in the marked quantities and i is a 
coordinate axis taken to the direction of fresh-water flow. It is noted 
that the resulted interfacial friction coefficient through Eq. (40) is 
considered a local value at a certain position in two-layered flows. 

Suga and Takahashi(1971) performed a field observation in the Tone 
River and experiments in two flumes. One is 80cm wide and 100m long and 
the other is 30cm wide and 30m long. Values of the interfacial friction 
coefficient were computed by Eq. (40). Other data reported previously 
cannot be rearranged in Fig. 2 because the data are tabulated only with 
the value of ijj which is the sole parameter in the existing formula, Eq.(38). 
Thus the value of Re and Fd cannot be obtained separately. 

In fi versus tp diagram the best fit empirical formula was the case 
that ct=0.2 and re=l/2 in Eq. (38). But the value of n  to explain the trend 
of the data measured in the Tone River that is one of the largest rivers 
in Japan is about 6/5. Therefore, the empirical formula fails to explain 
the behavior of the interfacial friction coefficient in the largest range 
of i|i. The trend of the data obtained in the Tone River which are indicated 
in solid circles in Fig. 2 seems to follow a line 

t± =  0.025 ( ReFd
5 )"!/2 (41) 

The trend agrees with what the new formula, Eq. (39), predicts, though the 
magnitude of coefficient is different from other groups of data. 

Generally speaking scattering around the solid line 

fi = 0.085 ( ReFd
5 )-1/2 (42) 

in Fig. 2 is smaller than that shown in fi versus \j>  diagram by previously 
proposed formulae. The data reported by Lofquist(1960) illustrated by sol- 
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id reversed triangles in Fig. 2 behave differently from others. Previously 
only four cases in forty six of Lofquist's experimantal results were re- 
ported by Valembois(1963). Present analysis revealed that the different 
relationship held for a set of all forty six data. The magnitude of the 
interfacial friction coefficient remains almost unchanged regardless of 
the value of the abscissa. This is partly because Lofquist performed his 
experiments with a moving denser fluid while a lighter upper layer remain- 
ed stationary and therefore the results might be affected more strongly by 
bottom shear. Although the trend is not so clear as Lofquist's data, the 
data obtained in the Kuzuryu River expressed by open circles in Fig. 2 
shows nearly the same feature. 

The measured data follow the trend explained by Eq. (42) on the whole. 
As mentioned above, however, there is a more appropriate formula like Eq. 
(41) for a special group of data. The variety of the magnitude of coeffi- 
cients of the derived formulae is discussed from the standpoint of the 
stability of a two-layered flow system. Equation (43) is an interpretation 
of the reciprocal of the Keulegan number by Turner(1973). 

Here 6 denotes the thickness of the boundary layer and x  is the length of 
contact of two layers along the interface. In field observation like the 
case of the Tone River the length of the contact of interface measured 
from the saline wedge toe may be much larger than that encountered in ex- 
perimental flumes. Thus the Keulegan number observed in natural streams 
is expected much smaller than the critical value if it exists at all. 
Therefore, the stability of field data may be higher than that obtained 
in experiments. 

The amplitude of the lowest internal mode obtained by Phillips(1969) 
is expressed for n«Nm  by 

Nm 
a2k2 „ ( — )-2 j-1 

n 

where n  is the frequency of an internal wave mode, Nm  the maximum Brunt- 
Vaisala frequency ( N2{-(g/p)(3p/3y)}1I2  ), J  the local Richardson number. 
Substitution of this expression into the derived relationship, Eq. (34), 
yields 

ft = 0.707 (RgFd
5)-1/2 (kh^"3/2 (n/Nm)

2 J"1 (44) 

This suggests that the higher the stability of a two-layered flow system 
is, the lesser the magnitude of the interfacial friction coefficient will 
be, which explains the feature of the observed data qualitatively. 

One more comment on the field data is added. Values of the interfacial 
friction coefficient were calculated by Eq. (40) which was applicable only 
to steady motions. Since tidal motion affects the behavior of saline wedges 
continuously, we would have measured various hydraulic quantities under un- 
steady conditions in reality. This discrepancy from the assumed condition 
may explain the scattering of field data. 
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CONCLUSIONS 

An advanced theory on the interfacial friction of sharply stratified 
two-layered flows is developed. Because the magnitude of laminar friction 
is much smaller than that of the friction due to interfacial wave forma- 
tion in case of the large Reynolds number, the theory is formulated under 
the existence of interfacial waves. The solution to a governing equation 
is obtained to the first order in terms of wave amplitude by perturbation 
method. No-slip condition is imposed for the first order solution and ex- 
ternal flow velocity is assumed uniform and constant. In this theory it 
is considered that the energy dissipation is caused by the viscous per- 
turbation velocity field which is induced by the presence of interfacial 
waves. 

Based on the theoretical result a new type of formula for the inter- 
facial friction coefficient is proposed discarding the detailed proper- 
ties of interfacial waves which have not been reported in available form. 
It is said that the agreement between the proposed relationship, that is, 
f^ is proportional to  (ReFd ) ' , and the observed data is better than 
that demonstrated by the best empirical formula, f^ x   (ReF,j

2)_1/2. 
Scattering of data may be attributed to the stability of two-layered flows. 
It is pointed out that the proportional constant in the new formula de- 
creases its magnitude as the stability increases. 

This study has explained the hydrodynamic feature of the interfacial 
friction coefficient under the existence of interfacial waves with no mix- 
ing between two layers. In order to determine the more detailed feature 
of the derived expression, it is still needed to obtain reliable data from 
which we can specify the interfacial wave characteristics and to develop 
a more refined theory which can take account of the effect of viscosity 
even in the zeroth order principal velocity or of the accelaration of the 
external flow. 
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Table 1 - Interfacial Friction Coefficient 

£=Ap/p1 

Experiment,  Reporter:   Tamai c.g.s. unit 

Run hi Ul vlO2 E-102 Vio-3 F
d f±'102 

1 7.1 4.47 1.240 1.05 2.56 0.523 1.67 
2 7.2 4.26 1.275 1.00 2.42 0.508 1.60 
3 7.1 4.21 1.275 1.00 2.35 0.505 1.45 
4 7.2 3.99 1.275 1.00 2.26 0.474 1.58 
5 7.1 3.90 1.275 1.00 2.18 0.468 1.58 
6 7.1 3.76 1.275 1.00 2.10 0.451 1.34 
7 6.6 3.89 1.240 1.05 2.07 0.472 1.74 
8 5.6 4.64 1.312 1.15 1.99 0.584 0.93 
9 5.7 4.23 1.312 1.15 1.84 0.528 0.96 

10 5.7 3.98 1.312 1.15 1.73 0.498 1.07 
11 5.7 3.84 1.312 1.15 1.67 0.480 1.20 
12 5.7 3.51 1.312 1.05 1.61 0.459 1.50 
13 5.5 3.69 1.312 1.15 1.55 0.470 0.98 
14 6.7 2.87 1.275 1.00 1.51 0.354 2.00 
15 6.8 2.65 1.275 1.00 1.42 0.324 2.32 
16 5.5 2.91 1.210 0.95 1.32 0.407 2.08 
17 5.2 2.65 1.240 0.95 1.11 0.381 2.46 
18 5.1 2.33 1.275 0.95 0.934 0.338 3.18 
19 4.7 1.70 1.275 0.90 0.630 0.264 4.82 

Experiment,  Reporter:   Lofquist c.g.s. unit 

Run hi Dl vlO2 e-102 Re-10-3 Fd fi-103 

3 7.13 3.54 0.952 1.18 2.65 0.375 10.7 
4 7.02 4.83 0.956 1.11 3.55 0.538 7.44 
6 7.27 5.41 0.928 1.07 4.24 0.618 11.3 
7 6.47 1.55 0.928 1.19 1.08 0.180 8.95 
8 7.10 2.38 0.904 1.19 1.87 0.204 4.58 
9 7.19 3.42 0.900 1.20 2.73 0.371 4.67 

10 7.21 4.59 0.902 1.17 3.67 0.504 7.20 
11 7.47 4.96 0.889 1.13 4.17 0.545 7.12 
12 6.92 2.52 0.842 2.08 2.07 0.211 6.77 
13 6.84 3.86 0.835 2.09 3.16 0.326 3.90 
14 6.93 4.98 0.828 2.08 4.17. 0.408 4.99 
15 7.22 5.70 0.849 2.10 4.85 0.466 7.31 
16 7.25 6.72 0.844 2.04 5.77 0.555 5.47 
17 6.92 2.49 0.870 3.00 1.98 0.173 5.77 
18 7.13 4.64 0.855 3.02 3.87 0.316 5.58 
19 6.96 6.20 0.872 2.89 4.95 0.438 4.29 
20 7.11 6.94 0.864 2.92 5.71 0.483 4.58 
21 7.27 7.71 0.860 2.88 6.52 0.535 6.01 
22 7.37 8.27 0.856 2.86 7.12 0.570 6.75 
23 6.90 2.51 0.875 3.92 1.98 0.153 6.35 
24 6.90 5.04 0.857 3.97 4.06 0.305 5.92 
25 7.10 7.05 0.849 4.01 5.90 0.418 5.55 
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Table 1 (continued) 

Run hi »1 v-102 e-102 Re-10-
3 Fd fi-103 

26 7.15 8.08 0.869 4.18 6.65 0.468 4.38 
27 7.25 8.75 0.863 3.94 7.35 0.517 4.61 
28 7.17 9.03 0.853 3.75 7.59 0.551 4.67 
29 7.51 4.01 0.896 4.80 3.36 0.210 4.47 
30 7.01 7.20 0.881 4.73 5.73 0.394 3.32 
31 6.97 8.50 0.867 4.65 6.83 0.471 2.68 
32 7.19 9.05 0.880 4.72 7.39 0.490 3.66 
33 7.14 10.01 0.873 4.60 8.19 0.552 3.56 
34 7.32 10.20 0.872 4.68 8.56 0.550 4.57 
35 7.06 4.74 0.920 5.74 3.64 0.232 3.34 
36 7.09 6.95 0.924 5.61 5.33 0.346 3.69 
37 7.04 8.31 0.905 5.67 6.46 0.404 3.63 
38 7.12 9.13 0.922 5.67 7.05 0.453 2.90 
39 7.23 9.75 0.914 5.64 7.71 0.481 3.36 
40 7.32 10.45 0.900 5.32 8.50 0.528 4.05 
41 7.12 4.62 0.945 7.55 3.48 0.211 2.80 
42 6.88 7.50 0.937 7.55 5.51 0.326 3.11 
43 6.88 9.88 0.925 7.40 7.35 0.434 3.48 
44 7.21 10.60 0.927 7.68 8.25 0.446 3.66 
45 7.27 12.47 0.911 7.60 9.95 0.525 3.92 
46 7.37 13.71 0.887 6.86 11.39 0.605 6.69 

Kuzuryu River, Reporter: Nakamura c.g.s. unit 

Run hi Ul v-102 e-102 Re-10-5 Fd fi-lO1* 

1 120 32.5 0.869 2.06 4.49 0.660 3.94 
2 130 20.7 0.861 2.06 3.13 0.404 2.46 
3 135 17.5 0.842 2.06 2.81 0.335 45.0 
4 175 26.2 0.841 2.06 5.45 0.441 35.0 
5 177 19.0 0.841 1.96 4.00 0.326 6.16 
6 180 19.1 0.842 2.06 4.08 0.317 15.5 
7 272 33.4 0.964 1.96 9.42 0.462 27.2 
8 185 34.0 0.928 1.96 6.78 0.570 10.8 
9 170 31.8 0.907 2.06 5.96 0.543 6.78 

10 182 21.8 0.892 1.57 4.45 0.412 12.8 
11 225 25.6 0.907 2.06 6.35 0.380 20.8 
12, 134 26.3 0.960 1.96 3.67 0.519 10.3 
13 148 20.3 0.963 1.96 3.12 0.381 5.10 
14 135 19.0 0.950 1.77 2.70 0.393 8.44 
15 135 38.8 0.960 1.96 5.46 0.762 29.2 
16 185 20.2 0.960 1.96 3.89 0.339 18.6 
17 188 31.9 1.063 2.15 5.64 0.507 17.8 
18 66 27.5 1.098 2.19 1.65 0.731 4.96 
19 124 10.5 1.105 2.18 1.18 0.204 26.8 
20 131 8.9 1.105 2.15 1.06 0.170 31.4 
21 135 9.0 1.072 2.30 1.13 0.163 3.82 
22, 130 10.4 1.075 2.23 2.35 0.364 7.04 
23 125 23.0 1.075 2.26 2.67 0.437 15.6 
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Table 1 (continued) 

Run hi "l v-102 E-102 Re-10
-5 Fd fi'10" 

24 82 31.5 1.140 2.27 2.27 0.738 3.06 
25 90 26.5 1.145 2.26 2.08 0.594 6.00 
26 110 18.2 1.147 2.24 1.75 0.371 10.9 
27 105 16.2 1.147 2.16 1.48 0.344 49.8 
28 120 12.5 1.143 2.01 1.31 0.257 26.2 
29 125 24.9 1.140 2.25 2.73 0.474 27.8 
30 150 23.8 1.137 2.25 3.14 0.414 4.92 
31 156 14.0 1.135 2.05 1.92 0.250 19.7 
32 195 40.5 1.188 1.96 6.65 0.662 3.22 
33 205 35.5 1.179 1.97 6.17 0.564 11.7 
34 253 24.2 1.188 1.97 5.15 0.346 20.4 
35 324 37.2 1.510 2.30 7.98 0.435 37.8 
36 254 31.2 1.425 2.21 5.56 0.420 12.0 

Tone River, Reporter: Suga c.g.s. unit 

Run hi Di V e- Re-10-5 Fd fi-105 

1 245 17.0 / / 4.17 0.315 104 
2 305 23.0 / / 7.02 0.347 66 
3 335 24.0 / / 8.04 0.337 60 
4 365 22.0 / / 8.03 0.602 12 
5 385 24.5 / / 9.43 0.346 38.6 
6 410 16.0 / / 6.56 0.227 89.4 
7 240 52.0 / / 12.5 0.922 2.66 
8 300 53.0 / / 15.9 0.798 4.20 
9 315 56.0 / 1 17.6 0.862 1.58 

10 330 39.0 / 1 12.9 0.594 7.3 
11 350 31.0 / 1 10.9 0.524 9.2 
12 140 39.0 / 1 5.46 0.955 2.4 
13 230 45.0 / 1 10.4 0.901 3.4 
14 260 34.5 / 1 8.97 0.792 6.0 
15 290 37.0 / 1 10.7 0.712 10.0 
16 320 40.0 / 1 12.8 0.639 12.0 
17 350 34.5 / I 12.1 0.530 18.0 
18 50 58.0 / 1 2.9 0.924 5.0 
19 240 49.0 / 1 11.8 0.928 2.2 
20 290 49.0 / 1 14.2 0.656 13.2 
21 330 43.0 / 1 14.2 0.563 14.8 
22 355 38.0 / 1 13.5 0.560 11.7 
23 380 41.5 / 1 15.8 0.508 11.7 
24 160 11.0 / 1 1.76 0.509 84 
25 310 11.0 / 1 3.41 0.167 386 
26 350 5.0 / 1 1.75 0.124 620 
27 410 6.0 / 1 2.46 0.090 688 
28 450 6.0 / 1 2.70 0.088 566 
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Table 1  (continued) 

Experiment, Reporter: Suga c.g.s. unit 

Run hi UX V e-102 Re-10~
3 

Fd . fi-103 

1 12.75 5.23 0.60 6.67 0.605 7.40 
2 13.30 5.01 0.60 6.67 0.568 6.92 
3 13.75 4.85 0.60 6.67 0.541 5.94 
4 14.10 4.73 0.60 6.67 0.521 4.68 
5 14.40 4.63 0.60 6.67 0.505 4.82 
6 14.75 4.52 0.60 6.67 0.487 6.62 
7 15.15 4.40 0.60 6.67 0.468 7.60 
8 15.70 4.25 0.60 6.67 0.443 11.2 
9 16.40 4.07 0.60 6.67 0.415 12.5 

10 17.25 3.87 0.60 6.67 0.385 14.3 
11 14.59 9.14 0.60 13.3 0.989 0.760 
12 16.54 8.06 0.60 13.3 0.820 4.88 
13 17.49 7.62 0.60 13.3 0.754 3.80 
14 18.54 7.19 0.60 13.3 0.691 7.48 
15 21.35 6.25 0.60 13.3 0.559 7.50 
16 21.85 6.10 0.60 13.3 0.540 6.58 
17 22.35 5.97 0.60 13.3 0.522 6.48 
18 22.80 5.85 0.60 13.3 0.507 5.90 
19 23.20 5.75 0.60 13.3 0.494 5.98 
20 23.65 5.64 0.60 13.3 0.480 6.72 
21 24.15 5.52 0.60 13.3 0.465 7.08 
22 24.65 5.41 0.60 13.3 0.451 7.36 
23 25.20 5.29 0.60 13.3 0.436 7.84 
24 25.80 5.17 0.60 13.3 0.421 7.82 
25 26.40 5.05 0.60 13.3 0.406 7.90 
26 27.10 4.92 0.60 13.3 0.391 8.56 
27 28.00 4.76 0.60 13.3 0.373 10.9 
28 23.20 8.62 0.60 20.0 0.740 6.36 
29 23.75 8.42 0.60 20.0 0.715 4.16 
30 24.20 8.26 0.60 20.0 0.694 3.28 
31 24.60 8.13 0.60 20.0 0.678 2.88 
32 25.00 8.00 0.60 20.0 0.662 3.18 
33 25.55 7.83 0.60 20.0 0.640 3.56 
34 26.20 7.63 0.60 20.0 0.617 4.20 
35 27.20 7.35 0.60 20.0 0.583 4.66 
36 11.34 5.88 1.0 6.67 0.560 6.6 
37 12.09 5.51 1.0 6.67 0.509 6.8 
38 12.74 5.23 1.0 6.67 0.470 6.4 
39 13.34 5.00 1.0 6.67 0.439 6.2 
40 13.79 4.83 1.0 6.67 0.418 4.6 
41 14.24 4.68 1.0 6.67 0.399 6.0 
42 14.79 4.51 1.0 6.67 0.377 7.0 
43 15.39 4.33 1.0 6.67 0.355 7.2 
44 16.14 4.13 1.0 6.67 0.330 7.8 
45 14.37 9.28 1.0 13.3 0.785 4.12 
46 14.97 8.91 1.0 13.3 0.739 4.92 
47 15.57 8.56 1.0 13.3 0.696 4.60 
48 16.07 8.30 1.0 13.3 0.664 5.82 
49 16.67 8.00 1.0 13.3 0.629 5.90 
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Table 1 (continued) 

Run hi Dl V £-102 Re-10~
3 

*d fi-103 

50 17.27 7.72 / 1.0 13.3 0.597 9.47 
51 13.10 7.63 / 1.0 10.0 0.694 6.44 
52 13.80 7.25 / 1.0 10.0 0.626 6.40 
53 14.45 6.92 / 1.0 10.0 0.585 6.02 
54 14.95 6.69 / 1.0 10.0 0.555 5.84 
55 15.40 6.49 / 1.0 10.0 0.531 5.44 
56 15.90 6.29 / 1.0 10.0 0.505 6.18 
57 16.40 6.10 / 1.0 10.0 0.484 6.16 
58 16.95 5.90 / 1.0 10.0 0.460 7.18 
59 17.55 5.70 / 1.0 10.0 0.437 6.66 
60 19.54 8.53 / 1.0 16.7 0.620 2.94 
61 20.19 8.26 / 1.0 16.7 0.590 4.16 
62 20.94 7.96 / 1.0 16.7 0.559 5.14 
63 21.74 7.68 / 1.0 16.7 0.528 5.46 
64 22.54 7.39 / 1.0 16.7 0.500 5.68 
65 23.34 7.14 / 1.0 16.7 0.474 6.14 
66 24.24 6.88 / 1.0 16.7 0.448 6.78 
67 25.24 6.60 / 1.0 16.7 0.422 7.06 
68 26.34 6.33 / 1.0 16.7 0.396 6.98 
69 22.00 9.09 / 1.0 20.0 0.622 4.10 
70 22.50 8.89 / 1.0 20.0 0.602 4.70 
71 23.10 8.66 / 1.0 20.0 0.578 5.32 
72 23.70 8.44 / 1.0 20.0 0.557 5.40 
73 24.30 8.23 / 1.0 20.0 0.536 5.42 
74 24.95 8.02 / 1.0 20.0 0.515 5.76 
75 25.65 7.80 / 1.0 20.0 0.494 .5.92 
76 26.35 7.59 / 1.0 20.0 0.474 5.14 
77 27.20 7.35 / 1.0 20.0 0.453 5.56 
78 11.59 11.50 / 3.0 13.3 0.632 4.44 
79 12.24 10.89 / 3.0 13.3 0.583 4.20 
80 12.84 10.38 / 3.0 13.3 0.542 4.74 
81 13.44 9.92 / 3.0 13.3 0.507 5.16 
82 14.09 9.46 / 3.0 13.3 0.466 6.66 
83 14.74 9.05 / . 3.0 13.3 0.437 6.74 
84 15.49 8.61 / 3.0 13.3 0.405 6.96 
85 16.19 8.24 / 3.0 13.3 0.379 6.42 
86 16.94 7.87 / 3.0 13.3 0.358 6.26 
87 14.20 14.09 / 3.0 20.0 0.699 3.23 
88 14.70 13.61 / 3.0 20.0 0.664 3.60 
89 15.20 13.16 / 3.0 20.0 0.632 3.92 
90 15.70 12.74 / 3.0 20.0 0.602 4.16 
91 16.15 12.38 / 3.0 20.0 0.577 3.44 
92 16.55 12.09 / 3.0 20.0 0.556 3.48 
93 17.00 11.71 / 3.0 20.0 0.534 4.76 
94 17.60 11.36 / 3.0 20.0 0.507 5.40 
95 13.05 5.10 / 1.0 6.67 0.449 23.0 
96 13.45 4.95 / 1.0 6.67 0.434 20.8 
97 13.80 4.83 / 1.0 6.67 0.417 18.7 
98 14.10 4.76 / 1.0 6.67 0.407 17.3 
99 14.10 4.63 / 1.0 6.67 0.391 18.1 

100 14.70 4.54 / 1.0 6.67 0.379 16.8 
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Table 1 (continued) 

Run "1 Ul V e-102 Re-10
-3 

*d fi'103 

101 14.95 4.45 1.0 6.67 0.370 15.4 
102 15.20 4.39 1.0 6.67 0.361 15.5 
103 15.45 4.31 1.0 6.67 0.352 17.1 
104 15.75 4.23 1.0 6.67 0.342 20.0 
105 16.10 4.14 1.0 6.67 0.332 21.2 
106 16.45 4.05 1.0 6.67 0.321 21.6 
107 16.85 3.95 1.0 6.67 0.310 23.8 
108 20.70 6.44 1.0 13.3 0.455 8.12 
109 21.00 6.35 1.0 13.3 0.445 5.94 
110 21.20 6.29 1.0 13.3 0.438 4.82 
111 21.40 6.23 1.0 13.3 0.432 4.86 
112 21.60 6.17 1.0 13.3 0.427 5.52 
113 21.85 6,10 1.0 13.3 0.420 6.18 
114 22.10 6.03 1.0 13.3 0.412 6.86 
115 22.40 5.95 1.0 13.3 0.404 7.58 
116 22.70 5.87 1.0 13.3 0.396 7.60 
117 23.00 5.80 1.0 13.3 0.389 7.60 
118 23.30 5.72 1.0 13.3 0.381 7.62 
119 23.60 5.65 1.0 13.3 0.373 8.26 
120 23.95 5.57 1.0 13.3 0.365 8.84 
121 24.30 5.49 1.0 13.3 0.358 9.30 
122 24.70 5.40 1.0 13.3 0.349 10.3 
123 25.15 5.30 1.0 13.3 0.339 11.8 
124 13.60 6.62 1.0 3.38 0.576 11.5 
125 14.00 6.43 1.0 3.38 0.551 10.2 
126 14.35 6.27 1.0 3.38 0.532 9.18 
127 14.65 6.14 1.0 3.38 0.515 8.06 
128 14.90 6.04 1.0 3.38 0.502 7.46 
129 15.15 5.94 1.0 3.38 0.490 7.56 
130 15.40 5.84 1.0 3.38 0.479 7.62 
131 15.65 5.75 1.0 3.38 0.467 7.66 
132 15.90 5.66 1.0 3.38 0.456 8.42 
133 16.20 5.56 1.0 3.38 0.443 10.7 
134 16.60 5.42 1.0 3.38 0.428 11.9 
135 17.00 5.29 1.0 3.38 0.412 11.4 
136 17.40 5.17 1.0 3.38 0.397 12.0 
137 17.57 3.79 0.6 6.67 0.374 23.4 
138 17.97 3.71 0.6 6.67 0.362 19.2 
139 18.37 3.63 0.6 6.67 0.351 20.1 
140 18.77 3.55 0.6 6.67 0.339 20.8 
141 19.17 3.48 0.6 6.67 0.329 21.4 
142 19.57 3.41 0.6 6.67 0.318 22.1 
143 19.97 3.34 0.6 6.67 0.308 22.6 
144 20.37 3.27 0.6 6.67 0.300 20.0 
145 . 20.67 3.23 0.6 6.67 0.293 17.3 
146 20.97 3.18 0.6 6.67 0.286 17.5 
147 21.27 3.13 0.6 6.67 0.281 17.8 
148 21.57 3.09 0.6 6.67 0.276 17.8 
149 21.87 3.05 0.6 6.67 0.270 19.4 
150 22.17 3.02 0.6 6.67 0.265 19.4 
151 22.47 2.99 0.6 6.67 0.261 17.2 


