
CHAPTER 169 

BUOYANCY-DRIVEN GRAVITATIONAL SPREADING 

by 

Robert C. Y. Koh1 

Introduction 

It frequently occurs in environmental fluid mechanics that a mass of less 
heavy fluid spreads horizontally on top of a heavier one or a more homogeneous 
parcel of fluid spreads within a stratified one. Examples of such phenomena 
include spreading of diluted sewage effluent either at the surface or in a 
submerged layer, the spreading of heated effluent discharged from power plants, 
and the spreading of oil on the surface of the sea. The general problem is 
rather complex, being influenced not only by the buoyancy but also by momentum, 
ambient turbulence and flow, surface tension, waves, wind and other complicating 
factors. This paper attempts to examine gravitational buoyancy-driven flow in a 
homogeneous otherwise motionless ambient by casting it in the form of an initial 
value problem. Several assumptions are made and two empirical coefficients are 
introduced which must be determined from experiments. Experimental data are also 
presented, compared with the results of the analysis and the empirical coefficients 
determined. Previous investigations on similar problems include Sharp (1969, 
1971), Koh and Fan (1968, 1969, 1971), and Koh and Chang (1973). 

Formulation of the Problem 

The fluid dynamic problem which will be considered in this paper is the time 
dependent spreading of one fluid on top of a heavier fluid. Both the two- 
dimensional and the axisymmetric cases will be examined. In each geometrical 
configuration, both the instantaneous and the continuous discharge cases will be 
investigated. The derivation will be detailed only for the two-dimensional case. 
Results for the axisymmetric case will be presented without detailed derivations. 

Consider that at time t»0, a mass of buoyant fluid of volume A, linear di- 
mensions characterized by a and b and density P0-Ap is released from a state of 
rest on the surface of a deep reservoir containing fluid of density p0 (see Fig. 1). 
It will be assumed that there is little mixing between the two fluids and that the 
shape of the buoyant fluid remains similar from one instant to another while it 
spreads. One expects that b will increase with time and a will decrease with time. 
For the moment, it will be convenient to assume that the motions in the heavier 
fluid is insignificant. 

Figure 2 shows half of the buoyant fluid mass which will be considered as a 
free body. Assuming for the moment that the pressure distribution is hydrostatic, 
the buoyancy is seen to induce a net horizontal force of 

(p„-p)a2 

7 g'a"  L 2   1     O 
2 6     P 

In actuality, the pressure distribution is not hydrostatic. The departure of the 
pressure distribution from being hydrostatic will be accounted for by a horizontal 
force term which resembles that for hydrodynamic form drag and will be written 

- T Pa(^) 

the negative sign to indicate that the force is in opposition to the motion. 
There is another horizontal force tending to retard the spreading fluid, namely, 
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Figure 1.  Definition Sketch. 
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Figure 2.  Pressure Forces on Half a Spreading Element. 
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that on the interface between the two fluids similar to a skin friction, 
be assumed that this force is 

b db 

It will 

vC. F a dt 

The net imbalance of these forces must be equal to the net rate of change of 
momentum of the free body. Thus the equation of motion is 

^[(Caab)^(Cb)] C £f^> C„vT-£ 
b db 

dt (1) 

where Caab is the cross-sectional area of the free body and C„b is the distance 
from the origin to the center of mass of the cross-section.  These quantities 
Ca,Cg are coefficients which depend only on the geometrical shape of the cross- 
section . By the assumption of similarity in shape, they will be constants. 
Table 1 gives values for C and Ca for several shapes. 

Table 1 

Shape Geometry c 
8 

C a 

rectangle 

ellipse 

truncated 
trapezold 

1/2 

4/3(1 

4/9 

1 

IT/4 

3/4 

r—J     ' 
1 ' 

~V-J~ 
For the case of no mixing between the two fluids, the equation for conserva- 

tion of mass is simply 
C ab = A = constant (2) 
a 

for the case of instantaneous release. For a continuous discharge, it is 

C ab = qt (3) 

where q is the discharge rate which accounts for half of the spreading layer. It 
should be noted that mixing can be allowed in this formulation by properly modifying 
the equations. Also, an apparent mass coefficient could have been introduced on 
the left-hand side of the equation. Neither will be done herein for simplicity. 
The derivation including these effects can be found in Koh and Chang (1973) . 

For definiteness, the shape of the spreading layer will be taken to be 
elliptical so that the coefficients Ca, and C„ are TT/4 and 4/3TT respectively. 
Equation 1 then becomes, after using either (2) or (3), 

d2b 
dt2 IT b^ 

2 ^D   ,db,2 

2   b    Mt; Ml^llh2 db 
16   A2 dt (4) 

and 

d_ (t db) : 
dt ^ dt; If g q b2  2 CD bSit' 16 

db 
t. dt 

(5) 

for the instantaneous release and continuous discharge respectively. 

In the axisymmetric case, defining the shape of the spreading fluid to be half 
an ellipsoid of revolution, the equations analogous to (1), (2) and (3) are readily 
deduced to be 

d JlTab2 dbl  ,g*a2b  „ ab,db%
2 „ b2 db 

dt\  16    dtj" 
.    ab.db2 

" CD   4 W  " VT dt (la) 
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3 

2H 

*2 

ab^ Q„t 

(2a) 

(3a) 

From these equations, one can derive the equations analogous to (4) and (5) to be 

8C, 
d2b . 8gM7 1   0UD l,db 2  64TT . ,h 

dr< IT bMt 9V2 
db 
dt 

(4a) 

and 
8C. d r* dbi - Sg^. '    D Mb-2 6W r „ b" db 

dt' dt IT2 b IT bMt' gcr t dt 
(5a) 

Equations (4),(5),(4a) and (5a) will form the basis of the investigation in 
the remainder of this paper. 

Normalization 

The equations (4),(5),(4a), and (5a) will be normalized by choosing character- 
istic length b0 and characteristic time tQ so as to make the resulting dimension- 
less equations as simple as possible. This leads to the choices for bQ and t0 as 
tabulated in Table 2. The dimensionless equations which result become 

Table 2 

Two-dim. 
instantaneous 

Two-dim. 
continuous 

Axisymmetric 
instantaneous 

Axisymmetric 
continuous 

16A2 \ 

3tfM 

3/7 ,  _   N2/7 

6&~ •FA/
1 

16A2\2/7  /6g'A\1/7 

i6a2 

3IT2 
£) pr_f 
V \6g'qJ 

'16£WJL_ 
3IT2v/ ^6g'q 

.2/3 

,1/3 

512vg' 
9ITV 

ig'V/ 

l8g'QJ       \C-   ' 

JfeffJSf 

64flv/ 

Usif 
64TTv/ 

iis 
dt2 ^C    i(^)2- 

2 CD 5^' 
r2 is. 
4    dt 

<L(t IS)  „ ± 
dt1' dt;       c

2 
3        t.dc/    r    S^ dc 
2 CD ?Mt;  " °F   t   dt 

(6) 

(7) 

iis. 
dt2' 

8C. 
£ IfAJ.s2   c ,t is. 

IT    SMt;      V    dt (6a) 

dtlt dt; s3     rr   cMt; S t dt (7a) 

where C = b/b0,   t » t/t0,   corresponding to   (4),   (5),   (4a),  and   (5a)  respectively. 
Once the solution C(t)  is obtained,   the thickness a  (or dimensionless n = a/a., 
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with appropriately chosen a0) can be obtained from the continuity equation (2), 
(3), (2a), and C3a). 

Each of the equations (6),(7),(6a), and (7a) will give solutions in the form 
C(t;Cp,Cj),C0,50') where the four quantities Cj.,Cp,C0,C0' are parameters needed to 
specify the solution. Here C0 and S0' are the values of C and d;/dt at t = 0. It 
is possible to have included Cp in the normalizing factors b0 and tQ. This is not 
done to allow the effect of Cp to show up more clearly and also allow comparison 
with experiments to be more meaningful. 

Approximate Solution for Small Time 

From physical reasoning, it can be expected that for small time, the term 
involving Cp would be unimportant since Z  would be small. Moreover, for the 
instantaneous release cases (eqs. 6 and 6a), the term involving Cn would also be 
insignificant for small t since ds/dt would be small. Thus, for small t, the 
equations 6 and 6a can be written 

d2s  _1_ 
dt2 " C2 

and 

at* 

subject to the initial conditions C(0) = C0,C'(0)= 0. The solutions can be obtained 
by quadratures. For example, for the continuous release case, 

? = coVi + t2/c( 

This represents the transient start-up period. The solution for the instan- 
taneous case is more complex and will not be displayed. 

Approximate Solution for Intermediate Time 

For times not too large, physical considerations again lead to the approxima- 
tion of ignoring the term involving Cp in the equations (6), (7), (6a) and (7a).  It 
is now fruitful to examine solutions of the form C = Btot.  Substituting this into 
each of the equations (ignoring the Cp terms) results in the following values for 
a, and the resulting time dependence for C (width) and n (thickness). 

2-dim.   2-dim.   axisym.   axisym. 
inst. cont. inst. cont. 

2/3 1 1/2 3/4 

t2/3 t tl/2 t3M 

t-2/3 1 t-1 t-l/2 

These represent the circumstance when inertia balances the buoyancy driving force. 

Approximate Solution for Large Time 

For large time, x,  becomes very large, thus making the term involving Cp 
dominant. Physically this means that the interfacial shear is the dominant 
resistive force.  If one now balances the driving force by this term (i.e., ignore 
the left-hand side as well as the Cp term in equations (6) , (7) , (6a), and (7a)), 
and seek solutions of the form C = B1t

oll, one finds 
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2-dim.   2~dim.   axisym.   axisym. 
inst. cont. inst. cont. 

al = 1/5 4/5 1/8 1/2 

? t1/5 t4/5 tl/8 tl/2 

n  <« t-l/5 t1/5 t-m 1 

These represent the circumstance when Interfacial shear balances the buoyancy 
driving force.  It is worth noting that the behavior of n (thickness) as function 
of t (time) is fundamentally different between the two-dimensional and axisymmetric 
cases for continuous discharge. Whereas n ~ t-*-'-> in the two-dimensional case, 
n tends to a constant value in the axisymmetric case.  Physically, this means that 
the thickness will continue to grow ad infinitum in the former while it would not 
in the latter case. 

Overall Solutions 

From the above discussion it is seen that after a brief start-up period, the 
solution for the extent of the spreading layer can be represented in each case by 
a power law in time where the power changes from one value to a second value as 
time progresses.  It should be noted that the above results could have been obtained 
from simple dimensional arguments.  The purpose for extracting them herein is to 
provide more insight into the relationships among the various phenomena represented 
by the various terms in the equations. 

In general, the equations (6),(7),(6a),(7a) including all the terms can only 
be solved numerically.  This has been done using a fourth order Range Kutta algorithm. 
The results for example cases for equation (6) is shown in Figure 3. 

Comparison with Experiments 

The results of the analysis will now be compared with laboratory experiments. 
The writer wishes to acknowledge Messrs. C. Almquist, P. J. W. Roberts and J. C. 
Chen who actually performed these experiments. While these individuals have 
performed a larger number of experiments, only example runs are presented herein 
for comparison purposes.  The experimental data used for comparison in the following 
are shown tabulated in Table 3. 

Two-Dimensional Instantaneous Release 

These experiments were performed by C. Almquist (1973) as a term project for 
a course in the Environmental Engineering option at California Institute of 
Technology.  The laboratory tank used was 5 inches wide by 18 inches deep by 16 
feet long.  It is filled with salt water (sp. gr. fa 1.020).  A trough at the 
surface at one end of the tank containing less dense dyed water in hydrostatic 
equilibrium with the water in the tank is released at t - 0 by removal of a 
partition (see Figure 4a).  The subsequent motion of the spreading layer is then 
timed.  The density difference and the amount of the released fluid was varied 
over a factor of 4 and 9 respectively resulting in a total of twenty experiments. 
Figure 5 shows the data for four example runs together with the predictions from 
equation (4).  In obtaining this comparison, the initial conditions were chosen 
to be the values of b and db/dt (dimensional values) at the beginning of the 
data.  The values of CQ and Gp are chosen to obtain a good fit between the 
prediction and the experiment. However, the same value for Cp and the same value 
of CF were used in all four comparisons.  This comparison indicates that the 
predictions are quite good.  Moreover, the values for Cp and Cp (0.85 and 0.4 
respectively) are what might be expected being of order unity. 
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/ 

(a) instantaneous release 

(b)  continuous release 

Figure 4. Schematic of Laboratory Set-Up for Two-Dimensional Surface 
Release Experiments. 
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Table 3 

Basic Experimental Parameters 

(a) Two -Dimensional Instantaneous 
Release 

(b) Two-Dimensional Cont 
Release 

inuous 

Run No. A Ap/p Run No. 1 Ap/p 

(cm2) (cm2/sec) 

1 116. 0.016 1 2.09 0.0036 

2 116. 0.004 2 4.33 0.0038 

3 29. 0.016 3 4.06 0.0066 

4 29. 0.004 4 3.92 0.0145 

(c) Two -Dimensional Submerged Continuous Release 

Run No. q 

cm2/sec 

Ap/p Depth 

cm 

1 0.108 0.0240 16.3 

2 0.189 0.0252 16.1 

3 0.344 0.0244 8.1 

(d) Axisymmetric Submerged Continuous Release 

Run No. Q 
cc/sec 

Ap/p Depth 

cm 

1 41.6 0.051 11.7 

2 37.5 0.013 23.4 

3 13.5 0.066 5.9 

4 13.5 0.022 5.9 

5 13.5 0.017 5.9 
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The same data are shown plotted in Figure 6 in non-dimensional form. The 
curve shown is for 0^ = 0.85 and Cy = 0.4 obtained as the solution to equation (6) 
(in dimensionless variables).  The initial start-up period is ignored in this 
solution hence the lack of fit for small t.  It should also be pointed out that 
the initial conditions used in the predictive solution, as a consequence, is 
independent of the data. From this comparison, it is seen that the analyses 
does, in fact, conform to the data quite well. 

Two-Dimensional Continuous Surface Release 

These experiments were also performed by C. Almquist under the same .circum- 
stances in the same tank.  The only difference in the procedure is in the mode of 
introduction of the buoyant fluid.  In this case, the buoyant fluid is allowed to 
be discharged continuously at the surface at one end of the tank from a structure 
as shown in Figure 4b. The supply of the buoyant fluid is via a constant head tank. 
Comparison of the results of four of the experiments are shown in Figure 7 where 
the curve is obtained by solving equation (7) using CD = 0.5, and Cp = 5. 

Two-Dimensional Continuous Submerged Release 

These experiments were performed by P. J.W. Roberts in a much larger tank 
than the previous experiments. The buoyant fluid is now introduced at the bottom 
of the tank, allowed to rise to the surface and then spread horizontally on the 
surface. A schematic of the experimental setup is shown in Figure 8.  It should 
be pointed out that while equation (7) is still applicable to this case, interpre- 
tation of the coefficients CJJ and Cp must be viewed somewhat differently. Whereas 
in the surface release case,'the water depth in the tank is much larger than the 
thickness of the spreading layer, this is no longer true in the submerged case. 
More importantly, in this case, mixing occurs during the rise of the buoyant water 
from the discharge point at the bottom to the surface. An entrainment undercurrent 
is set up whose direction is opposite to that of the spreading layer. One must, 
therefore, expect both CD and Cj to be larger than in the previous experiments. 
In the case when the entrainment is significant, one expects CD to be larger by a 
factor of approximately 3 for the case when the spreading layer is approximately 
1/3 of the total depth as was observed to be the case.  Comparison of these 
experiments with the solution to eq. (7) with CD = 2.5 and Cj. = 14.5 is shown in 
Figure 9 where again the data appears to confirm the analysis. 

Axisymmetric Continuous Submerged Release 

These experiments were performed by J. C. Chen in the same laboratory basin 
as the two-dimensional submerged release experiments. A 6 mm diameter round 
orifice is placed at the bottom of the basin.  Injection is started and overhead 
photographs taken at discrete times to record the spread of the dyed buoyant fluid. 
The normalized variables ; and t for five of these experiments are shown in 
Figure 10 together with the analytical results (CD = 0.2, Cp = 0.05). The comparison 
is seen to be reasonable. 

It should be noted here that in the submerged release cases, the buoyant dis- 
charge undergoes a certain amount of dilution before reaching the surface and 
spreading. Thus the value of the discharge rate is actually larger than the 
discharge from the orifice by a factor equal to the average dilution.  The 
buoyancy flux, of course, is still unchanged.  In plotting the experimental 
points in Figures 9 and 10, the discharge rates have been calculated on the basis 
of simple plume theory with Sa given by 

y(g0'q0)
1/3 

S = 0.38  2—o  
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TWO DIMENSIONAL CONTINUOUS SURFACE BUOYANCY SPREADING 
SURFACE SOURCE 

COMPARISON OF THEORY <CD=0.5.CF=5> WITH EXPERIMENTS 

T/TO 

Figure 7. 
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y v. 

Figure 8.  Schematic of Laboratory Set-Up for Two-Dimensional 
Continuous Submerged Release Experiments. 
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TWO DIMENSIONAL CONTINUOUS SURFACE BUOYANCY SPREADING 
SUBMERGED SOURCE 

COMPARISON OF THEORY <CD=2.5,CF=14.5> WITH EXPERIMENTS 
10° r 

10 -l 

10-2 ~ 

10-3 
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1 _ 

- 
o RUN 2 
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Figure 9. 
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0.16 
y5/V<U1/3 

(S » average dilution). 

Practical Applications 

It appears at first glance that the results obtained in the previous 
sections are of little practical value since in practice, neither two-dimenslon~ 
ality nor axial-symmetry obtains. It will be shown in this section how the 
results can be utilized to deduce some properties of the flow field which are of 
great practical value. 

(a) Thickness of surface sewage field. 
Major coastal 'discharges of sewage effluent into the ocean frequently employ 

long diffusion structures (on the order of several thousand feet long) at a depth 
of approximately 200 ft. Many small ports along the diffuser discharges the 
effluent in such a way as to approximate a long line source of effluent.  It has 
been found experimentally that, in the event where the ocean is uniform in density 
and motionless, simple line plume theory gives good predictions of dilution factors 
(see e.g., Koh and Brooks, 1975). The centerline dilution, Sc according to that 
theory is simply 

0.38 

•  sl/3 

(8) 

The average dilution Sa is /2 Sc. Here (g0q0), q0, and y are the buoyancy flux 
and discharge per unit length, and vertical distance from the diffuser 
(go = s(Po " P)/P> S = gravitational acceleration, p = density of effluent, p0 = 
density of sea water). Referring to Figure 11, there is seen to be an uncertainty 
in application of equation (8) in that one does not know what value of y to use. 
Whereas buoyant plume theory is developed for an infinite fluid, the presence of 
the ocean surface deflects the sewage field to spread on the surface.  The value 
of y to be substituted into equation (8) to obtain the surface dilution should 
logically be (d-a) where d is the depth and a the thickness of the sewage field 
(see Figure 11). The thickness of the surface field a will now be estimated from 
the results of analyses in this paper. It should first be noted that the thick- 
ness a(t) defined in the two-dimensional continuous release case analyzed pre- 
viously is the quantity of interest. As a function of time, it starts.at zero, 
grows to a constant value, remains constant until interfacial shear forces become 
Important, whereupon it grows as t^'5 without limit.  For practical problems, the 
tl/5 growtji is 0f little significance since by the time this would occur, the 
two-dimensionality assumption breaks down.  (It may be noted that in the three- 
dimensional continuous release case, the thickness tends to a constant.) Given 
that shear is unimportant, one may write equation (5) as 

db 
dtvc At'      TT'-S 1) To  "7 °TI rv3T) dtv dt 

with solution 

where 

b = Yt 

6 

IT 
g q   "I 

.1+ 
3 
2 

CJ 

2 D bMt' 

1/3 

(9) 

(10) 

but qt ab (11) 
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a. 
_1_ 

&%o 

Figure 11. Definition Sketch. 

u 

Figure 12. Schematic Plan View of Wastewater Plume. 
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so that 

TTY  TI 

r^fs 1/3 

Lrr g'q 
(12) 

It may be seen that, In the present case, g'q » g0q0/2, and q «= Saq0/2 where the 
factor 2 is to account for the fact that only half the discharge goes to either 
side. Noting that 

_     (goqo)
1/3(d-a) 

S - n  0.38 ——  (13) 

and substituting into equation  (12) yields 

,   /2 0.38   (g'q )1/3(d-a)       1+ | C. 

from which 

1 + 6 

2  T) 

fKV2 

where 2/? 0.38 
IT 

1+ 2 °D 
_3 

IT 

1/3 
2/2 0.38 

IT N+M 
1/3 

(14) 

From experiments   (see Figure 9),  CD = 2.5, hence 6 = 0.40 and 

f - °-29 
d 

In other words, the thickness of the sewage field should be 29% of the total 
depth. The depth of water available for mixing is d-a and is therefore 71% of 
the total depth.  It is interesting to note that 0.71 x /2« 1 so that one may 
use the full depth d for y in equation (8) provided one interprets the result as 
average instead of centerline dilution. 

(b)  Shape of surface plume in a parallel current. . 
An overhead view of the spreading surface field from a long submerged diffuser 

might be as shown in figure 12 for the case where an ocean current of speed U flows 
parallel to the diffuser. Assuming that the fluid all travels at speed 0, a 
Galilean transformation (moving with the current) indicates that b(£) should behave 
similar to b(t) in the solution presented previously. For x less than L, the 
length of the diffuser* the continuous injection case applies while for x larger 
than L, the instantaneous injection case applies. For the case interfacial shear 
is unimportant in the region x < L, b(x) should be proportional to x. For x > L, 
b(x) should be proportional to x^'3. For very large x, (interfacial shear becomes 
important), b(x) should be proportional to x-*-' . Thus the horizontal extent of 
the surface field can be obtained by using this approximation in the case when a 
Galilean transformation is permitted. For low ocean current speed, the surface 
field would actually extend upstream and in that region, the approximation is no 
longer valid. 
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Summary and Conclusions 

In this paper, the time dependent spreading of a buoyant fluid on the 
surface of a heavier fluid is investigated by casting the problem in the form 
of an initial value problem. By assuming that the shape of the spreading 
layer remains geometrical similar from one instant to the next, differential 
equations were derived for two-dimensional and axisymmetric configurations in 
both the instantaneous and continuous release cases. Laboratory experiments 
were compared with the analysis and the results were found to compare favorably. 
Similar analysis can also be performed for the submerged case of spreading in a 
density stratification. 

The results of this analysis should prove of value in environmental fluid 
mechanics such as the spreading of wastewater or thermal effluent on the sea 
surface. A fundamental important finding from the analysis is that in the two- 
dimensional continuous release case, the thickness of the spreading layer would 
tend to infinity as time tends to infinity while in the axisymmetric case, the 
thickness tends to a constant.  The extra dimension available for spreading in 
the three-dimensional case is apparently sufficient to prevent complete blocking 
of the flow (or inundation of the source).  In an actual submerged discharge of 
wastewater from a long diffuser in an otherwise stagnant ambient, the thickness 
of the spreading layer could probably be represented by the value indicated by 
assuming Cp=0 in the equation (5).  This thickness is deduced to be 29% of the 
depth. The results of the analysis can also be applied to estimate the horizontal 
area covered by the surface field in the case of a parallel current. 
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