
CHAPTER 156 

METHOD   OF   ANALYSES   FOR  TWO-DIMENSIONAL   WATER  WAVE   PROBLEMS 

by   ' 

Takeshi IJIMA*, Chung Ren CHOU** and Akinori YOSHIDA** 

Abstract 

One of the most powerful tools to analyze the boundary-value problems 
in water wave motion is the Green's function. However, to derive the 
Green's function which satisfies the imposed boundary conditions is some- 
times difficult or impossible, especially in variable water depth. In 
this paper, a simple method of numerical analyses for two-dimensional 
boundary-value problems of small amplitude waves is proposed, and the 
wave transformation by fixed horizontal cylinders as an example of fixed 
boundaries, the wave transformation by and the motion of a cylinder float- 
ing on water surface as example of oscillating boundaries and the wave 
transformation by permeable seawall and breakwater as example of permeable 
boundaries are calculated and compared with experimental results. 

I  Introduction 

The author. (1971) has investigated the problem of wave transformation 

by permeable breakwater and seawall with vertical faces by the method of 

continuation of velocity potentials.  Sollltt(1972) has also calculated 

the same problem by the similar method to the author's and recently Madsen 

and White(1976) have investigated the problem with long wave assumption. 

Such a problem can be analyzed theoreticall when the structure is of ver- 

tical faces, but as for the sloped-faces, it is possible only to estimate 

under several conventional assumptions. 

The problem on wave transformation by and the motion of floating rect- 

angular body in constant finite water depth area has been analyzed by one 

of the authors(1972) by the method of continuation of velocity potentials. 

Such a problem for floating cylinder with arbitrary cross-section shall be 

solved by means of Green's function, being derived by John(1950). However, 

the process is rather complicated and can not be applied to the case 
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of variable water depth. 

The proposed method in this paper is not to use Green's function but 

to use logarithmic function of the distance between the point on the 

boundary and the inner point of fluid region, according to Green's theorem. 

By means of our method, above-described problems concerning to the sloped- 

face permeable structures, the floating body in variable water depth area 

and so on are easily formulated and numerically analyzed. In the follow- 

ings, the formulations and numerical evaluations for small amplitude waves 

are described and compared with experimental results. 

II Green's Theorem and Identity Formula 

We assume that a potential function <^(x,z) is defined in a closed 

domain enclosed by a curve D in (x,z) plane as shown in Fig.2.-1. Indi- 

cating the point on the boundary curve D by (Jf, 1), the outward normal 

by \) , the distance between the point ( §,1 ) and a point (x,z) in the 

domain by r, that is, T =J{ l-X)2+ Q-ZJ* , and the constant refer- 

ence length to the geometrical size of the domain by h0 , it follows by 

Green's theorem that the potential value at point (x,z) is provided by 

the potential values d> ( | ,2 ) and its normal derivatives 3 <£ (£,1 )/ 

d(V/h.t>)  on the boundary curve as follows: 

D 

If the point (x,z) lies on the boundary at ( £',2'), Bq. (2.1) leads 

to the Green's identity formula as follows: 

«'4i[*w^-^^(«/4f (2.2) 

where    R =,/(§-£'/l-( 2--!')1 

In Eq.(2.1) and (2.2), the integration denotes the line integral along 

the curve D. Then, dividing the boundary curve into N small elements by N 

points and indicating the length and the central point of the j-th element 

as ASj and (Jj ,?j ), as shown by Fig.2-2, Eq. (2.1) and (2.2) are approx- 

imated by the following summation equations, respectively. 
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f    N     _ 
'f(f-,2)^fY[E^Lj)-E)(Sf(j)j (2.3) 

J-' 
tJ       - _ 

f(i)  =     ^L^tO^-^f^J (2.4) 

where 

^-ilH^f. • Eo- *4ifo^&£    '2'6> 

E/; , Lx; , and El/ , £(.,' are integrated values over the j-th element 

refering to the point X = (x, z) and i = ( £• , £: ) , respectively, and 

they are calculated numerically as follows: 

_ — (2.7) 

where $tj is the subtending angle of the point i = (J"-f 2t)  to the j-th 
element, and 

Exj , £Txj are calculated, replacing the point i = ( ^ , 2i ) by X = (x,z) 

in Eq.(2.7). 

Eq.(2.1) or (2.3), the Green's theorem, states that the potential func- 

tion at any point in the domain is determined by its boundary-values and 

normal derivatives. In other words, to solve a boundary-value problem is 

equivalent to determine the boundary-values and its normal derivatives of 

the interested potential function. 

Eq.(2.2) or (2.4), the Green's identity formula, states that the bound- 

ary-values <f> (£ , 2  ) an<^ its normal derivatives <\>   ( § , 2 )   are in linear 
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relationships which are defined by the geometrical shape of the domain. 

This is the first set of relations between <j>  and <£ on the boundary. 

Therefore, if another set of relations between <j>  and <£• is provided, 

it follows that they should be determined by solving the two set of rela- 

tions, simultaneously. And, in our problems, this second relation is 

given by dynamical or kinematical boundary conditions on the boundaries 

of the interested domain. 

Ill Wave Transformation by Fixed Cylinder 

As an example of fixed boundaries, we consider the wave transmission 

through and wave forces to the semi-immersed cylinder.with arbitrary 

cross-section in variable water depth area. In Fig.3-1, the origin 0 of 

the coordinate system is at still water surface, x- and z- axis are hori- 

zontal and vertically upwards, respectively. We assume that CDC' is a 

fixed cylinder at variable depth area, where the depth at sufficiently 

distant from the cylinder is constant h to the right and constant h1 to 

the left and that the incident wave of frequency o- and amplitude 5c, comes 

from the right. We take the geometrical boundaries AB and A'B' at x = £ 

and - £   , where the depths are h and h', respectively, and divide the 

fluid region into three parts (0), (I) and (01) as shown in the figure. 

The fluid motion is assumed to have velocity potential with potential 

function <£(x,z) as shown by Eq. (3.1) . 

#(*.z:t) = 2£<$><x.z,e^ (3-D 
where g is gravity acceleration and t is time. The potential functions 

in region (0) , (I) and (01) are denoted by <fc(x,z) ,     <f(x,z)  and "^ (x,z) , 

respectively. Then, since region (0) and (0') are of constant depth and so 

far from the cylinder that the scattering waves are damped to be vanished, 

the potential functions for them are expressed simply by Eq.(3.2) and (3.3) 

without scattering terms. 

<fe<^= [elku'l)+ ye^-vyAikZ) (3.2) 

<P>U.2)=tp'e~L*U~i')-AWZ) (3.3) 

In Eq.(3.2), the first term is for the incident wave and the second 

term is for reflected wave with complex reflection coefficient (p .    Eq. 

(3.3) is for transmitted wave with complex transmission coefficient (]}' . 
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The functions A(kz) and A(k'z) are given by Eq.(3.4) with wave numbers k 

and k' for region (0) and (0'), which are determined by Eq.(3.5).  The 

reflection- and transmission coefficient Kr and Kt are provided by Eq. 

(3.6). 

mR >       CM&tl'h' 0.4) 

^Ma'=^'    (3.5) 

K±=\V'\ (3.6) 

Now, we consider the dynamical or kinematical conditions on the 

boundaries of fluid region (I). 

On the free surface AC, C'A1 at z = 0, we have Eq.(3.7). 

and h0 is taken as the distance between point A and B'. 

On the immersed surface of fixed cylinder CDC' and on bottom BB1, 

we have Eq.(3.8) because of the impervious boundaries. 

Finally, on the geometrical boundaries AB (x = £   ) and A'B1 (x = 

- £'  ), we have from Eq.(3.2) and (3.3) 

<ft =0+ f)A(hl) , $0=ko |& = -aoV-WMQ (3. 9) 

^'= ^Mft'z),       ^-^ = ~vx,f/\ih)     (3.io) 

where       Ao - kko Ao = H ko (3.11) 

As shown in Pig.3-2, we divide the boundaries AC, CDC', C'A' and BB1 

into.N/ , N^ , N3 and N4 elements, respectively and geometrical bound- 

aries AB, A'B' into M and M' elements, and denote the potential funct- 

ions on them by <f>( ,  cf>2 , <p} , <fy. and <fy0 , <£' , respectively. Then, 

substituting the relations (3.7)~ (3.10) into the Green's identity 
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formula (2.4) for the fluid region (I), the following simultaneous linear 

equations with respect to the potential functions on the boundaries and 

coefficients (f>  and (//' are provided: 

= -ZQ*rA(ftZr) (3.12) 

where 

In above equations, the first term <£(i) should be written as 

follows, according to the position of point (i): 

For   i = l~N,,      <£(i)=<#(j)     ;    i = l~N2,      <£(i)  = <^2(i) ; 

i = l~N3,      <£(i)  = ^(j)     ;    i = l~N4,      <^(i)=^(i); 

(3.14) 

For point (i) on AB and A'B', putting i= ( £ , z^,) = (p), i= (- £', z%) 

= (q) , we take 

<fro=(/+<f)/!(/?z^,    <Hi)=ty'A(h%) <3-15> 

Eq. (3.12) yields (N/+ Nj+ Nj+ %+ 2) linear equations with respect 

to the same number of unknown quantities. Solving these equations, all 

of the unknowns are determined and by means of Eq.(2.3), the potential 

function at any point in fluid region is calculated, and at the same 

time those of regions (0) and (01) are obtained by Eq.(3.2) and (3.3). 

The fluid pressure at point (j) = (Jj'^j) °n the immersed surface of 

the cylinder is given as 

•J&^-i^e^ (3-X6) 

Consequently, the horizontal and vertical resultant forces P* and P# 

and the resultant moment T around the point (xo,z0) are calculated as 

follows: 



ns>ht 
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T 
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= -ie^   f<JXi>^ (3.17) 

= teirt Zt^-T1 (3-18) 

The first calculated example is a semi-immersed circular cylinder 

whose center is fixed at still water surface on constant water depth area 

and whose diameter D is 0.8 times the water depth h. The geometrical 

surface AB and A'B' are taken at x = 3h and - 3h, respectively. The 

numbers of calculation points on the boundaries are taken as N/= 20, N2= 

14, N,= 20, tfy= 30 and M = M' =20. The second example is double cylin- 

ders whose diameters are the same as above and whose centers are apart by 

three times the diameter D. 

Fig.3-3 shows the calculated and measured transmission coefficients 

with respect to the non-dimensional frequency <N h/g or to the ratio of 

diameter to wave length D/L for the first and second examples, where the 

solid line and open circles are for single cylinder and the broken line 

and solid circles are for double cylinders. From the figure, it is seen 

that the transmission coefficient for single cylinder decreases gradually 

and the one for double cylinders decreases rapidly with increasing freq- 

uency and that the measured values are somewhat lower than the calculated 

values for higher frequencies but the tendencies of both are in good 

agreement. The discrepancies between measured and calculated values are 

thought to be due to the non-linear effect of measured waves. (The expe- 

riments were carried out in wave flume of length 22 m with water depth 

h = 40 cm and incident wave amplitude £0 = 3 ~- 4 cm.) 

IV Wave Transformation by and the MDtion of Floating Cylinder 

In Fig.4-1, it is assumed that a cylinder of cross-section CDD'C with 

gravity center at (x^z,,) and center of bouyancy at (X6,ZJ,) in equilibrium . 

condition is moored by spring lines DE and D'E' with spring constant K on 

the variable sea bottom B'E'EB, and is subjected to the incident wave of 

frequency <j~  and small amplitude £0 from the right. Then, the position of 
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the gravity center of the cylinder (x^z^) and the rotation angle o  of 

the cylinder around gravity center at any tine t in motion are expressed 

by the complex amplitude of horizontal and vertical displacements X, Z 

and of the rotation angle ®  as follows: 

Xo = x.+ Xe1**,   z. = Z + 2e** ,   h =®e**     W.D 

Similarly to the previous section III, the velocity potential is exp- 

pressed by Eq.(3.1) and the potential function in region (0), (0') are by 

Eq. (3.2), (3.3) with reflection and transmission coefficients if>  and <lif . 

And also, the potential function at free surface and at bottom in fluid 

region (I) are in the relation of Eq.(3.7) and (3.8), respectively. 

However, on the oscillating surface CDD'C', the normal derivatives of 

the potential function <f2 is given by the following expression, due to 

the kinematical boundary condition: 

where GL  is a reference length to the horizontal size of the cross- 

section, for example, &• is taken as half width for rectangular cylinder 

and as radius for circular cylinder.  (x,z) is the coordinate of point 

on the surface CDD'C' and s is the length measured along CDD'C'. 

The complex amplitudes X, Z and <g) in Eq.(4.2) can be expressed by 

the potential function <j>z on the immersed surface of cylinder, taking 

account of the following equations of motion of the cylinder: 

(4.3) 
M|£=?*+Fx,       M#£=?r+-Pft + F* 

Ie# = Tfl + Ts + Me clt1 

where M is the mass of the cylinder; Ig is the moment of inertia around 

the gravity center; Px , Pz , T© are the resultant horizontal and vertical 

fluid forces and moment around gravity center due to the fluid pressure 

acting to the immersed surface; Ps , Ts are the restoring force and moment 

for vertical displacement and rotation of cylinder due to statical fluid 

pressure; Fx, Fz , Mg are the mooring forces and moment by the mooring 

lines induced by the motion of the cylinder. 

Indicating the fluid density by P , the draught in mooring condition 
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by qh (1> q> 0), the mass M, the moment of inertia Ig and the immersed 

volume of the cylinder V are expressed with positive constants v^i , V^ 

and ~\}^  as follows: 

H=))^a%^>    ld = ))-^(i\%\o\ T-^aflk     <4-4> 
Since the fluid pressure on the immersed surface is expressed by Eq. 

(3.16) , Px , P% and T Q are given as follows: 

?z=if?5.e'rtJsfacx,z)dz (4>5) 

s 
where integrations are taken along the surface CDD'C. 

Denoting the length of water line as 2 lB ,  Ps and Ts are given as 

B=-2;?i0Ze^ Ts=-jw{f£-%-Z)}®elrt  (4.6) 

For simplicity, we assume that the cross-section of the cylinder and 

the mooring condition are symmetrical with respect to the vertical line 

through the gravity center. Taking the angle of nooring line with hori- 

zontal as B  and the mooring point on the cylinder as ( Clct bo)  and 

( - dc i b0 ) / the mooring forces and moment to the cylinder F^ , F;j and 

M(3 are expressed as follows: 

He = 2KS(XS®)Cos^e1^ 
where 

S = bo - Z. - (a„ - X0) tan /3 

Substituting Eq.(4.1)(4.4)(4.5)(4.6) and (4.7) into Eq.(4.3), it 

follows that X, Z and © are expressed by <^(x,z). 

•J = HtiU,Z,|b„^f + (h8iai-.-*)fj      ,4.,, 
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where 

he 

*   -fa,  _,)lp4   2Z» . CW' 

(4.11) 

b   _2K 

Introducing Eq.(4.8)(4.9)(4.10) into Eq.(4.2), <^ on the immersed 

surface of cylinder is written by <f>2  as follows: 

f2 (x,z) = yj <&(u,v>p(x,z-, a,v) (4.12) 

where 

ft   Z-Z,\ (u  n__, Z-Zo^V-Zoldl T gt^ 

where (x,z) and (u,v) are the coordinates of the points on the immersed 

surface. Indicating the calculation points on the surface as (£• , {?; ) 

and (%m,'lm),  corresponding to (x,z) and (u,v), Eq. (4.12) is written 

as follows: 

+*(i)-= VZ pj,»0-<£(m) (4.14) 
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Similarly to the preceding section III, applying Eq.(3.7)(3.8)(3.9) 

(3.10) and (4.14) to the Green's identity formula (2.4) for the fluid 

region (I), we have linear simultaneous equations with respect to the 

potential functions <£ on the boundaries and y  , y/'. They are witten 
N'i   Ni  /v"-i     _ 

by replacing the term £JEi\'%(-i>     in Eq. (3.12) by Y £j {."jUit-ij 

- PEijpfj/Bl)]^•.) ,where £ is Kronecker's delta and Sjm = 0 

(j 4 m) : = 1 (j = m). 

Solving the equations, we can obtain all of the boundary-values of 

potential function of region (I) and the transmission-, reflection coeff- 

icient, similarly to the section III. Then, the amplitudes of motion of 

cylinder are calculated by Eq.(4.8)(4.9)(4.10) and also the mooring force 

F to the wave-side mooring line DE is calculated as follows: 

The mooring force F' to the lee-side line D'E' is given by replacing 

J3 by - (3 in above expression. 

As an example, we consider the case when a circular cylinder is moored 

on constant water depth h. The diameter D = 2a is 0.914h, the draught is 

0.67h (q=0.67), the mooring points on the cylinder are ( + 0.486h, - 0.114h) 

and \>k -  1.467, \)A= 0.670, Vi=  1.646. The cylinder is of uniform density 

0.584 and the center is at 0.114h below still water surface. The spring 

constant K/j*ga is 0.227 and mooring angle f? is 33"\ Fig.4-2 is the cal- 

culated (solid line) and measured (open circles) transmission coefficients 

with respect to the non-dimensional frequency or to the ratio of diameter 

to the wave length D/L. Experiments were carried out in wave flume with 

water depth h = 35 cm and a circular cylinder of diameter D = 32 cm, whose 

center was at depth 4.0 cm below still water level in equilibrium condition. 

The figure shows that the calculated and measured values are in good agree- 

ment. Moreover, it shows an interesting fact that the incident wave is 

perfectly intercepted even by floating cylinder, if the frequency S^ h/g is 

0.42 and 1.74, that is, D/L is 0.10 and 0.26. Fig.4-3 is the calculated 

reflection coefficient and amplitudes of motion of cylinder. 
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V Wave Transformation by Permeable Seawall and Breakwater 

In Fig.5-1, suppose that ABC is a permeable seawall placed on imper- 

vious bottom BCO'. The geometrical boundary is taken at 00', which is 

sufficiently distant from the seawall and of constant water depth h. 

Dividing the fluid region into three regions (0),(I) and (II), the velo- 

city potentials in region (0) and (I) are assumed to be expressed in the 

form of Eq. (3.1) with potential functions <f>0{x,z)  and <f>(x,z),  respecti- 

vely. In permeable region (II), indicating the quantities by superscri- 

pt * , the mass and momentum equations are written with horizontal and 

vertical fluid velocities u*, w* and fluid pressure p* as follows: 

20.*. M*- n 

IM.*, .11^, iJg«-£(*-7) M* 

7 W        f  dZ     f     T Y     Dt 

where _f is the fluid density, V is porosity of the seawall, M. is the 

coefficient of drag force to the porous material which is linearized to 

be proportional to the fluid velocity and £ is the added mass force 

coefficient to the material. The fluid motion represented by Eq.(5.1) 

has velocity potential, which is expressed by Eq.(5.2) with potential 

function d>*  , and fluid velocities, pressure and surface profile are 

provided by Eq.(5.3). 

(5.3) 

The potential function <fc, in region (0) is given by Eq.(3.2), so 

that the boundary conditions of fluid region (I) are provided by Eq»(3.7) 

on OA, by Eq.(3.8) on GO' and by Eq.(3.9) on O'O. As for the conditions 

on AC, since the mass flux and energy flux through the boundary AC should 

be continuous, it follows from Eq.(3.16) and (5.3) that 
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^*= ? )       <f>*~±4 (5-4) 

As for the porous region (II), we have Eq.(5.5) on free surface AB 

from the kineitatical condition, and Eq. (5.6) on impervious boundary BC. 

*£ = «*>*  or    $* = #r*\      r=^*      (5.5) 

||*= 0 or    $•*=  0 (5.6) 

As shown in Pig.5-2, denoting the potential functions on the bounda- 

ries OA, AC, 00' and O'O by <f>, , <p^ , <f>3  , <£„ and on the boundaries BA, 

AC and CB by <$*,    <fc*  and <£j*, dividing these boundaries into N,, N2, 

N3, M and Nf , N2, N% and taking the outward normal for region (I) and 

inward normal for region (II), and applying the boundary conditions (3.7) 

(3.8) (3.9) to the Green's identity formula (2.4) for region (I) and 

conditions (5.4) (5.5) and (5.6) to Eq.(2.4) for region (II), we have the 

following equations: 

(i) For fluid region (I): 

W:s _ M. H.      v. 

+ ZEirilj) + <t2GlrMto>=-ZGlrMltZr) (5.7) 
j=i r=i v=i 

( i = 1 •-' N,, 1 -s_~ N2, 1 ~ N3 and ( 0, Zp ) on O'O ) 

(ii) For porous region (II) : 

ci»» j--t  r 
_.-- N3*- • 

- fc£}^j)]+ Z ^ ^P = 0 (5.8) 

( i = 1 ~ N^ , 1 -~ N2 , 1 -^  N* ) 

Eq. (5.7) , (5.8) are ( N, t 2Ni+H3 + N* + N* + 1 ) linear equations 

with respect to the same number of unknowns <$>   , <f>x , Zfx ,   <f>.  ,   ip  , <f>* 
an<^ 13* •    Consequently, solving these equations simultaneously, we can 

determine all of the unknowns, from which the potential values at points 

in fluid region are calculated by Eq.(2.3). 
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The surface wave profiles are calculated as follows: 

Frcm-B to A: $*(j) -  _ i p <£*(j > ^ j = 1- N* 

S(j;= -^(j>e^i 

(5.9) 

Fran A to 0:     i<-J->—-«• 77-VJ'<- j = N, 

Fig.5-3 and 5-4 are the calculated and measured reflection coefficients 

with respect to non-dimensional frequency g^h/g for model seawall of 1:1 

slope and of vertical face, respectively, made by quarry stones of mean 

diameter 6 cm with porosity V = 0.43 in constant water depth h = 40 cm. 

The widths of both seawalls at still water level are equal to twice the 

water depth h.  The solid lines in figures are calculated values, taking 

V = 0.5,  H/a^ = 1.0 and £ = 0 for all frequencies. The measured and 

calculated values are almost in good agreement. 

Wave transformation by permeable breakwater is analyzed in the similar 

manner. In Fig.5-5, solid line, solid circles and broken line, solid tri- 

angles are the calculated and measured reflection and transmission coeffici- 

ents, respectively, for model permeable breakwater with 1:1.5 sloped faces 

and the width at still water level h. Other conditions are the same as the 

seawall. The calculated values are somewhat different from measured values 

but the tendencies are nearly in agreement. Fig.5-6 is for permeable breaks- 

water model with rectangular cross-section of width 2h. The measured and 

calculated values are in good agreement. 

Fig.5-7 is the calculated distribution of equi-potential lines (solid 

lines) and its orthogonals (broken lines) for permeable breakwater in Fig. 

5-5 at (Nlt= 0' , 30c , 60" and 90'', when the incident wave crest approaches 

to the breakwater. 

VI Conclusions 

It is clear that the proposed method provides a convenient and simple 

analysis for two-dimensional boundary-value problems of small amplitude 

waves. And, if the difficulties arising in solving simultaneous equations 

of so many unknown quantities were overcome, this method is extented direct- 

ly to the problem of three-dimensional waves and also to the finite amplitude 

wave problems by means of perturbation method. 
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Fig. 5-1 Definition  Sketch for Permeable Seawall 

  c ' ' ' ' ' ' ' ' a' 
Fig.5-2 Calculated   Cross-Section of Permeable Seawall 
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Fig. 5-3   Kr for Sloped-Face Seawall 
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Fig. 5-4  Kr  for  Vertical-Face    Seawall 
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Fig.5-5Krand  Kt for Breakwater with  Sloped Faces 
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Fig. 5-6    Kr and  Kt   for   Vertical-Face Breakwater 
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a Distribution of Velocity Potentials for Type  A Breakwater at o-t = 0°,  o- h/g=0.6 

b Distribution of Velocity Potentials for Type  A Breakwater at fft = 30',  o*h/g=06 

: Distribution of Velocity Potentials for Type A Breakwater at (7-1=60", 0-zh/g=06 

— n io-——^—   —o— oi ]° " •    J 
Distribution of Velocity Potentials tor Type A Breakwater at O-U90 , o- h/g = 0.6 

Fig.5-7 


