
CHAPTER 34 

DIFFRACTION OF GRAVITY WAVES BY LARGE ISLANDS 

.  •     *) Peter L. Christiansen 

Abstract. The combined refraction and diffraction of long gravity- 

water waves for certain depth variations around large islands is 

investigated analytically in a circular-symmetric geometry.  Creep- 

ing waves are shown to exist for bottom profiles less convex than 

required by the trapping criterion due to Longuet-Higgins and Shen 

et al. From an asymptotic representation of the solution to the 

scattering problem the decay exponent and the diffraction coeffi- 

cient is extracted. These "canonical" quantities may then be used 

for the construction of diffracted fields around smooth islands of 

more complex shape in accordance with J.B. Keller's Geometrical 

Theory of Diffraction. 

INTRODUCTION 

Analytical investigations of refraction and diffraction effects 

for gravity water waves are not too frequent in the literature.  Sager 

[1-U] has studied the pure refraction phenomenon for various bottom 

profiles while the pure diffraction problem for constant depth is 

identical with well-known scattering problems in acoustics and elec- 

tromagnetic theory. Combinations of the two phenomena have been 

treated by Homma [5], Vastano and Reid [6], and Lautenbacher [7]. 

In the present paper another example is added to this collection of 

solutions. 
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GRAVITY WAVES OH FREE WATER SURFACE 

Small waves on shallow water. Waves on free water surfaces can propa- 

gate under the influence of gravity.  Such gravity waves satisfy the 

equations 

and 

(1)  Vn + ± vt 

(2)  V-(hv) + nt = 0 

where n = ri(r;t) is the elevation of the water surface above the 

undisturbed level, v = v(r;t) is the horizontal velocity field, 

h = h(r) is the water depth, and g is the constant acceleration due 

to gravity. The position vector of the field point is r and t is the 

time. The equations are valid for small amplitudes (n << h) and 

shallow water (h << L) where L is the wave length.  Combination of 

(1) and (2) yields the modified two-dimensional wave equation for n 

(3)  V-(hVn) = g" nu • 

We shall consider time-harmonic solutions with angular frequency u 

(fc)  n(r;t) = n(r)e"i',,t . 

Here n(r) must satisfy the modified two-dimensional Helmholtz's equa- 

tion 

(5) V.(hVri) +v  =0. 
g 

A special depth profile.  In the present paper we consider a special 

circular-symmetric depth profile (see Fig. 1) 

•». 2a 
(6) h(r) = h (f-) 0 S a < 1 

o 

where r is one of the polar coordinates (r,9) for r. The power of r 
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has been denoted 2a for convenience.  On the circle r = r h = h , 

the reference depth.  Insertion of (6) into (5) yields 

2a 
(T)  V-((^-)  Vri) + k2n = 0 

o 

where we have introduced the reference propagation constant 

(8)  *0=-^- 

The advantage of our choice (6) for h(r) is that the solutions to (7) 

can he expressed in terms of well-known functions of the polar coordi- 

nat e s. 

Concave bottom 

(0 < a < I) 
Conical bottom 

(a = I) 
Convex bottom 

(I  <  a < 1) 

d3 • V a 

h(rT 

2a 
Fig. 1.  Circular island (radius a and water depth h(r) = (—)  ). 

Short waves.  In the short-wavelength limit (k r >> 1) the elevation 

can be represented by 

ik S(r) 
(9)  n(r) - A(r)e ° 

where the phase S and the amplitude A are reel functions of r that 

remains bounded for k r •*•  <*>. The assumption (9) which is used in 

geometrical optics (see [8], e.g.) is sometimes called Debye's assump- 

tion.  Insertion of (9) in (7) yields the eiconal equation 

r 2a 
(10)  (VS)2 = (-£) 
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and the transport equation 

(11) ^rjf + 2VA-VS+AAS = 0 . 

The ray tracing and the phase variation. The wave fronts are the 

curves S(r) = const, where S = S(r) are solutions to (10).  Is is, 

however, easier to determine the wave orthogonals or rays as extremal 

curves to the Fermat's principle 

p2 r    a 
(12) 6  (-£)ds-0. 

According to (10) the water surface can he viewed as an inhomogeneous 

two-dimensional medium with refractive index (r /r)01.  The distance o 
element measured along the curves r = r(6) is denoted ds.  The varia- 

tional principle (12) therefore states that the rays from a point P, 

to a point P„ proceed in such a manner that the passage time becomes 

stationary. The obvious wave orthogonals, 9 = const., through the 

top of the profile at the origin of the coordinate system, 0, are not 

included in (12). 

By solving of the Euler equation corresponding to (12) we find 

that rays are sine spirals. Thus the family of rays through P 

(r ,9 ) away from 0 becomes 

r 1-a  sin(<j> -0-a)(9-6 J) 
(13) (_E)   . 

S
sin,s 

where the parameter 4 is the angle between the unit vectors r and 

t at P (see Fig. 2). The angle <j>  between the unit vectors f and £ s    s 
at P can be shown to be 

0*0  * = *s - d-«)(e-9s) . 

Integration of (10) along the rays through P given by (13) 

yields 
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Fig.   2.     Sine spirals through P    (r  ,6   ). 

a    1-a r    r 
(15) S(P) = S(P') +    ° _S

a     sin*s(ctn(<j.s-(l-a)(e-9s)) 

-ctnU   -(1-a)(e'-9o))) . 

Here S(P) (S(P')) is the phase at a point P (r,9) (P' (r',9'))- The 

points P and P' lie on the same ray through P .  (See Fig. 2.) 

Energy conservation. By means of (10) the transport equation can he 

converted into 

(16) ^= - i(^r.t + V-t)ds , 

where r and t are the unit vectors shown in Fig. 2.  Integration of 

(16) along the rays (13) yields after some calculation 

sin(<f> -0-a)(9-eJ)  1-a 2 
(IT) A(p)-A(p,)(.inu;-(w)(e.-;B))) 

sin((1-a)(e'-9s)) 2 
X (sin((1-a)(9-9s)) 

} 
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Here P and P' must lie on the same side of P . Like (11) equation 

(17) expresses the fact that the energy is conserved along a pencil 

of rays. 

EXCITATION OF GRAVITY WAVES 

Green's function. Gravity waves are usually excited by an incident 

plane wave. However, for r -+  «° our model is not valid because h •*• °° 

according to (6). Thus the shallow water condition (h << L) is 

violated. We shall therefore consider a point source placed at a 

finite point P (r ,9 ). The source has the somewhat artificial 

property that it adds the volume of water pr. length and time unit, 

q(t), in a vertical thin column from the bottom of the sea to the 

water surface. Furthermore, the source oscillates harmonically with 

time such that 

(18) q(t) = qse"
iut, 

where q is a constant. Mathematically, we have played for safety 

since the wave field excited by the source simply is a Green's func- 

tion. This is determined as the solution to the inhomogeneous Helm- 

holtz's equation 

v 2a 6(r-r )6(6-6 ) 
(19) v-((-£-) Vn) + k2n = - l — 

O 

which is obtained by addition of the source term, h(r )q(t)<5(r-r ), 

on the right hand side of (2). The position vector for P is r and 
s    s 

&  is Dirac's delta function. The source strength (a complex length) 

has been denoted 

r 2a q 
(20) ,s = -i.(^)  f. 
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Furthermore, the Green's function must satisfy the radiation condition 

3a+1 

(21) lim r 2   (g- i\(V-f)a*)  = 0. 

Separation of variables yields  the Green's function 

(22) .(r.ejr^o^^^)0 

s 

x   )     YL Hi—7 x~*—(k r  )   (k r  )        ) L      /a2+n2 1-a    o o'   v   o s 
n=-°° —:  1-a 

in(e-6   ) 
U/,± o   h—(k r  )    k r)       )e yg^+nz     1-a    o o o 

1-a 

for r < r    , 

where H      (z)   (J  (z))  is the Hankel function of first kind (Bessel 

function)  of argument  z and order v.    For the derivation of (22)  a 

standard result from [9]  has been used.    The excitation for r > r    is 

obtained by interchange of r and r    in (22) due to reciprocity. 

Asymptotic representation.    By transforming (22)   into a contour 

integral we obtain the representation 

ik (S(P) -S(PJ) 
(23)       n(r,6;r   ,9   )  -  I D  U   )e    ° S      ^L 

sWe A(P'   J s, 1 

in the short-wavelength limit (k r ) (k r )  /(1-a) >> 1 "by means 

of the Debye representations of the cylinder functions, the method of 

steepest descent and (13) after a lengthy calculation. We have 

written (23) in a form which shows that the field, n, can be viewed 

as being produced by a ray through P and the observation point P 

(r,e) (see Fig. 2).  The angle <j,s is then determined from (13) by 

insertion of the value of (r,e) at P.  In the phase factor, 

exp{ikQ(S(P) -S(P ))}, the difference between the phases S(P) and 



608 COASTAL ENGINEERING 

S(P ) at P and P , respectively, is given by (15) with 6' = 6 . The 
s s s 

point P1 - (r',6') on the ray P P is a reference point with the 

property 

 a__ i 

(210  rs
i[sin(l-a)(e'-es)]2[sin(*s-(l-a)(6'-es)] 

1_a * = 1 . 

As a consequence of (17) the divergence fac.tor for the pencil of rays 

emanating from P becomes 

A(P)    (•in(y(i-a)(e-eB))' 
1-a 

MP
S,1

;    r 5(sin((l-a)(6-e )))5 
s s 

For a  = 0 this expression reduces to r„ _  where r,-. „ is the distance 
S S 

from P to P. Finally, the source factor 

if   r 3a     i      __a_ 
(26)  D U ) =^=(r2)2 (l-a)5(sin4 ) 1~a s s   /gST rs s 

o 

describes the emission of rays from a unit source at P . For a | 0 

the radiation is anisotropic due to the sloping bottom at the source. 

The asymptotic representation of the Green's function (22) thus con- 

firms the ray interpretation of the field and yields a determination 

of the source factor D ($ ) (26). 

SCATTERING OF GRAVITY WAVES 

A circular island. As an example of a scattering problem we consider 

diffraction by a circular island with center at 0 and radius a (see 

Fig. 3). The mathematical formulation of the problem then consists 

of (19) for r i  a and r %  a, (21), and the boundary condition 
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Dp(a) 

Dp(a)Ds(f) 

P (r ,e ) s  s' s 

s sVYs,d 

Fig. 3. Diffraction by a circular island. 

Propagation in negative direction and 

multiple circulations are not shown. 

(27)  f£ = 0   for r = a 

which expresses full reflection at the island. 

Sommerfeld's method. The solution can be written in the following 

form 

l       r    2a »    cosv  (6-6 +ir) 
(28)     ntr.ejr.ej - ^ <-?)     I    * ^— s'  s        k a     a , o p=1 smv w 

P 

R    (k r  )R    (k r) v      o s    v      o 
__E P , .    .. 
R, (k a) 

32 
R    (k r) 

for 

v      o      3k r3v    v      o P op r=a 
v=v 

by means of Sommerfeld's method [10].    Here 
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(29) F. (k r) = ] ^Mzn (T~ U r  )a(k r)1  a) '        v    o ,,      Na    Ya.2+\>*    1-a      o o        o (kor)   —\=sr 

and v    is the p'th root  in the equation 

(30) feTRv(kor)| =° o |r=a 

in the first quadrant of the complex v-plane. The advantage of an 

expression like (28) is that it gives a rapidly convergent represen- 

tation of the diffracted field in the short-vave length limit 

(k r ) (k r )  /(1-a) >> 1. The diffracted field is present every- 

where outside the island.  It is, however, only a dominant part of 

the total field in the geometric-optics shadow region, i.e. the region 

where no incident or reflected field is present (see [11], e.g.). 

Such a region can he shown to exist "behind the island with respect 

to the source point when 0 S a < I. For larger values of o the rays 

become so curved that every point "behind the island is reached "by a 

direct ray from the source. The rest of this paper is devoted to an 

investigation of the diffracted field. 

Asymptotic representation. By insertion of the Debye representations 

and the transition region representations (see [12], e.g.) of the 

cylinder functions in (28) we have obtained the following result 

ik (s(P,)-S(P  )) A(P.) 
(31) n(r,6;rs,9s)  -  V.<*B,d>« A?FTT 

s ,1 

xI D  (a) 
p=1  P 

(iko(T)a-gp(a))a(Ved) e 

r    a r    a 
(ik (—)   -6  (a))a(2ir-6 +e,)l      ~    (ik„(-f)   - 3ja) )a2irq. 

o   a p e + e 
q=0 

.  £)       .    . o   a p 

xVa)Ds(2)e Atpf-y 
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Below we shall discuss the symbols used in this formula.  It turns 

out that the diffracted field at P (r,6) can he viewed as heing pro- 

duced hy the ray system partly illustrated in Fig. 3. 

The creeping wave. The essential feature of the ray tracing is the 

existence of a creeping wave travelling around the island in positive 

and negative direction (from P. (a,6.) to P (a,6 ) in Fig. 3). The 

creeping wave which is excited by a tangentially incident ray, P P,, 

continuously launches tangentially diffracted rays, P P e.g., into 

the surrounding sea.  In this sense the creeping wave is a "semi- 

trapped" wave which only exists for 0 s a  < 1. According to a crite- 

rion due to Longuet-Higgins [13] and Shen et al. [1U] trapped waves 

around circular islands are found when 0(h(r)) > r2, i.e. for a > 1. 

The creeping wave travels with the free space propagation constant at 

the boundary of the island (= k (r /a) ) and is strongly damped due to 

the energy loss to the diffracted rays. This phenomenon is described 

by the decay exponent, S (a). As a consequence, the phase factor for 

the creeping wave, P,P , becomes exp{(ik (r /a) -g (a))a(6 "9^)} as 

seen in (31). From the asymptotic representation of (28) follows 

_1 _ •£      2        J. 
(32) B (a) ~ 2 3 e lg x'(l-a)3 (k (^a)3 a"1 

P P       o a 

where -x' is the p'th zero of the derivative of the Airy function of 

first kind 

(33) Ai(x) =-  cos(4 t3+xt)dt . 
* Jo   3 

Finally, (31) shows that the creeping wave possesses a modal structure 

which is expressed in the summation with index p. 

The incident ray and the diffracted ray. For the incident ray, P P., 

*s d is Siven by <|> in (13 and Ik)  with (r,e) = (a,ed) and $ = 1. 

The emission of rays from the source is described by I    (20) and 

D (4  J given by (26) with <f> = <$>     ,. The phase factor and the 
»  o ,u. S     S ,u 



612 COASTAL ENGINEERING 

divergence factor becomes exp{ik (S(P.)-S(P ))} and A(P,)/A(P' .) 

given by (15) and (25), respectively, with 6' = 9 ,6=6, and 

*S = *s,d- 
We obtain the coordinate 8 for P by letting r = a, $ = 7; , 

and (r,8) equal to the coordinates of P in (13). The emission of a 

pencil of diffracted rays from P is described by D {-^)  given by (26) 

with <)>=—. The phase factor and the divergence factor for the ray, 

P P.are exp{ik (S(P) -S(P ))} and A(P)/A(P' ,), respectively, where 

P1 . is a reference point on PP corresponding to P' - on P P,. These e y 1 e s 9 1    s & 
factors are still given by (15) and (25), respectively, but now 

6'=6 =6,r =a, and A = 7; . s   e'  s   '    Ys  2 
The diffraction processes. The remaining factor in the asymptotic 

representation of (28) is viewed as describing the diffraction pro- 

cesses at P, and P where the creeping wave starts and ends. Due to 

reciprocity the description of these two events must be the same 

function of the radius of curvature of the island (and of the depth 

at the coast line), D (a). As a consequence D2(a) occurs in (31) and 

we find 

1 _-JL        1 1 

{3k)      D (a) . 23* (l_a)"6 (JL}2 (k A)V • 
P    V^Ai(-x )        ro 

P     P 

The asymptotic representation of (28) thus confirms the ray inter- 

pretation of the field in terms of creeping waves and ordinary rays. 

Furthermore, a determination of the decay exponent 8 (a) (32) and the 

diffraction coefficient D (a) (3*0 is provided. 

APPLICATION OF THE RESULTS 

According to J.B. Keller's Geometrical Theory of Diffraction 

(see [15] e.g.) the decay exponent and the diffraction coefficient 

are "canonical" quantities which apply for the construction of the 
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Fig. k.    Diffraction around an island of complex shape. 

diffracted fields around scatterers of generalized shape. In the case 

of gravity water waves 6 (32) and D (31*) are conjectured to be 

applicable at islands of more complex shape (see Fig. h)  at least when 

the gradient of the bottom profile is perpendicular to the coast line. 

The local variations in radius of curvature, depth, and profile shape 

must then be taken into account in the proper manner in (31). 
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