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INTRODUCTION 

The two dimensional (directional) power spectrum gives an 

adequate description of water waves that may be regarded as 

a linear superposition of statistically independent waves. 

In such cases the sea surface is linear to the first order 

and the surface displacement is represented by 

CO 

n(t) = Z an sm(u> t + <(>n) 
n=l 

where a are the amplitudes of individual waves and <j>  is a n Tn 
radomly distributed phase angle, and the process is stationary. 

Under such circumstances the wave surface is Gaussian, which 
means that ordinates measured from MWL are normally distributed 

rf they are sampled at constant intervals of time.  It is equally 

important that the wave heights are Rayleigh distributed. 

This formulation of the wave surface is widely used e.g. in 

wave forcastmg. 

There are, however, phenomena such as wave breaking, energy 

transfer between wave components and surf beat which can only 

be described by higher order effects of wave motion (1, 2, 3, 

4). In this case the two dimensional power spectrum fails to 

give an accurate description of the wave surface. This means 

that the first and second order moments (mean and covariance) 

no longer give all the probability information, and we have to 

consider higher order moments (5, 6, 7). 

301 



302 COASTAL ENGINEERING 

Third order moments of non-zero value indicate positive values 
of the bispectrum. 

This paper gives an introduction to the bispectrum and some 

examples of bispectra calculated from wave records obtained 

during storm situations. 

THE BISPECTRUM 

The bispectrum, B(f , f_), of a random stationary wave record is 

defined as the Fourier transform of the mean third order products 

n  +0°       ~lfi Ti"xf 2T2 B(fl' f2> = uV^S(VT2)e dVT2       {2-X) 

where 

S(T1,T2) = n(t) n(t+Tx) n(t+T2) (2.2) 

and the overbar denotes ensemble means. 

If n(t) is real and stationary we have the following relations 

B(f1, f2) = B(-f1,-f2)* (2.3) 

and 

B(f1, f2) = B(f2, f±)   =  B(-f1# -f1"f2) = B(-f1-f2, f1) 

= B(f2, -f1"f2) = B(-fL-f2, f2) (2.4) 

where* denotes complex conjugate.  As a consequense of equations 

2.3 and 2.4 the bispectral values fall within an octant. 

For a purely stationary Gaussian process the bispectrum has the 

value of zero. 

It is of interest also to note that information on the relative 

directional spread of waves is derivable from the bispectrum 

which is calculated from one single wave record. 

If, however, the wave surface has a non-Gaussian distribution the 
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bispectrum has a non-zero value, which is also the case for the 

third order moments.  It then follows that the third order 

products n(t)3 are also non-zero.  This can physically be 

interpreted as the peaking of waves with harmonics that are 

in phase with the fundamental.  In other words, significant 

non-zero values in the bispectrum suggest that the wave sur- 

face can be approximated with an expression like 

n(t) = a, sin 2irft + a? sin 4irft +  (2.5) 

which is a surface as given by the Stokes wave theory.  The 

bispectrum thus indicates whether harmonic couplings between 

wave components are significant. 

The possibility of triple interactions could be evaluated by 

a trispectral analysis.  Trispectral interactions contribute 

nothing to n(t)3 but somewhat to ri(t)1* which means, physically, 

that the waves tend to be assymetric about the crest.  Such 

waves can be said to be close to breaking, and they are therefore 

in an irreversible state.  There is much evidence for assuming 

that assymetric waves are liable to formation of shock pressures. 

Trispectral calculations may therefore have practical consequences 
in that the probability of obtaining shock pressures on marine 

structures may be evaluated.  To the author's knowledge, such 

calculations based on ocean wave data have not yet been made. 

For confidence to be placed m the trispectral estimates the 

calculations would require such long wave records that problems 

pertaining to stationarity might occur. 

From elementary statistics the skewness g is known as third 

order moment that is used to estimate to which degree data 

have a Gaussian distribution. 

Fisher (8) has developed a test for normality that is widely used 

in statistics. The test can be summarized in terms of the mquality 

~^=  > g^/2 (2.6) 
/var g      ' 
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where 

n(t)' 
"372 (2.7) 

n(t)' 

var g = 6N(N-1) 
(N-2)(N+l)(N+3) 

N    = number of values where n(t) is known 

If the inequality 2.6 holds, the hypothesis of a Gaussian 

distribution is rejected at the level a.  In other words, a 

is the probability that the hypothesis is rejected even if the 

distribution is Gaussian. 

BISPECTRA OF HARMONIC WAVES 

Bispectra were calculated for the following artifical waves 

r^Ct) = 10 cos 0.08t 

n2(t) = 10 cos 0.08t + 1.25 cos 0.16t 

n3(t) = 10 cos 0.08t + 2.5 cos 0.16t 

n.(t) = 10 cos 0.08t + 5 cos 0.16t 

n5(t) = 10 cos 0.04t + 5 cos 0.08t 

t),(t) = 10 cos 0.04t + 5 cos 0.08t + 2.5 cos 0.12t 
0 

n?(t) = 10 cos 0.04t + 5 cos 0.08t + 2.5 cos 0.12t 

+ 1.25 cos 0.16t 

n8(t) = 10 cos 0.04t + 5 cos 0.08t + 2.5 cos 0.12t 

+ 1.25 cos 0.16t + 0.625 cos 0.20t 

These are all harmonic waves with a fundamental frequency of 

0.04 Hz.  n2(t) to n?(t) are all of the Stokes type with peaked 

wave crests and we should expect significant skewness as well 

as bispectral  values. 
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Figs. 1 to 7 show bispectra calculated for n, (t) to n?(t) 

respectively.  The upper part in these Figs, shows the bispec- 

trum, whereas the central part indicates the spectrum and the 

lower parts show one wavelength of the wave surface.  The 

bispectral value of 1.9 in Fig. 1 means 10 l-9 m3 Hz 2. 

B(0.08, 0.08) = 10 1-s  indicates a weak interaction of the 

frequency 0.08 Hz with itself.  In fig. 2 we find 
B(0.08, 0.08) = 10" m3 Hz~2and a lower value at B(0.08, 0.16), 

from which we can conclude that the dominant component of ru(t) 
is that of f = 0.08 Hz.  Proceeding  to Fig. 4 we can see that 

the dominant component is still f = 0.08 Hz, but the inter- 

acting frequencies are now (0.08, 0,08), (0.08, 0.16) and 

(0.16, 0.16) Hz.  From the lower part of Fig. 4 we can also 

see that the deviation from cosine surface is very significant. 

The surface represented by n8(t) is the result of 5 harmonic 

components.  It is clearly seen from Fig. 8 that the inter- 

acting frequences are (0.04, 0.04), (0.08, 0.04), (0.08, 0.08), 

(0.12, 0.04), (0.12, 0.08), (0.16, 0.04).  The skewness is 

also computed for the 8 surfaces and the results are summarized 

below. 

Surface n1(t) n2(t) Vt) n4(t) n5(t) n6(t) n7(t) n8(t) 

Skewness 0.92-10"* 0.259 0.485 0.760 0.860 1.06 1.17 1.26 

The skewness increases with the number of harmonic components, 

that is with the peakedness of the surface. 

Kinsman (9) concludes from studies of the skewness of waves that 

values between 0.090 and 0.336 give rise to significant 

corrections of the Gaussian distribution. 

BISPECTRA OF WAVE RECORDS 

The data were recorded off the coast of Northern Norway at a 

depth of 80 meters, using a Waverider.  The sampling interval 

was 0.5 sec corresponding to a Nyquist frequency of 1 Hz. 
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Aliasing should therefore appear at frequencies higher than 

1 Hz, a situation whichis satisfactory because shorter waves 

are not measured properly by a Waverider and they are also 

without interest in this case. 

Three typical examples of storm wave situations were selected 

for bispectrum analysis.  The results are shown in Figs. 9, 10 

and 11, along with the spectra of the same wave records. 

In Fig. 9 there are four ridges of positive bispectral values, 

which indicate interactions of the spectral peak with itself 

and higher frequencies.  In  the same way the negative bi- 

spectral value is interpreted as interactions between the 

spectral peak and lower frequencies. 

Peaks of the energy spectrum are associated with ridges in 

the bispectrum. 

As expected, there is a positive bispectral ridge at the spectral 

peak which indicates interactions within the peak m Fig. 9. 

B(0.125, 0.125) = 1011 m3 Hz"2 indicates that the secondary peak 

of the spectrum at ~ 0.125 Hz is real, whereas B(0.094,, 0.031) = 

- 10 m3 Hz2 can be interpreted as an interaction which produces 

parts of the secondary peak. 

Fig. 10 reveals three main ridges in the bispectrum and a 

singly peaked spectrum.  The strongest interactions appear at 

f, = 0.188 Hz where 0.188 and 0.094 Hz contribute to the peak 

in producing the difference frequency 0.09 Hz.  As a result of 

the bispectral ridges in Fig. 11 one may raise the question as 

to whether real peaks in the spectrum have been smoothed out. 

In Fig. 11 the three peaks in the spectrum are beautifully 

accompanied by three distinct bispectral ridges, indicating 

that all three peaks are real.  The peak interacts strongly 

with itself which gives the sum frequency of ~ 0.156 Hz i.e. 

the second spectral peak.  The third peak is believed to be 

caused by interaction between 0.125 and 0.094 Hz, as indicated 

by the middle bispectral ridge. 
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The test on normality, as described in the text, was applied 

to estimate the deviations from normality of the three re- 

cords, and the results are summarised in the table below. 

Situation a G g1-a/2 g 

Pig. 10 
0.20 

1.4734 
1.2816 

0.075 
0.10 1.6449 

Fig. 11 
0.20 

1.9245 
1.2816 

0.102 
0.10 1.6449 

Fig. 12 
0.20 

1.1132 
1.2816 

0.059 
0.10 1.6419 

From these results it is clear that wave records represented 

by Fig. 9 and 11 are closely normally distributed, but there 

are sizeable deviations from normality in the record of which 

Fig. 10 shows the spectrum. 

CONCLUSION 

The bispectrum can be used to estimate the extent of harmonic 

couplings between wave components in an irregular wave surface. 

Significant bispectral values thus indicate some evidence for 

using the Stokes wave theory in describing waves on inter- 

mediate and deep water. 

Secondary spectral peaks are found to be real, and not intro- 

duced by the analysis methods, when they are associated with 

significant bispectral values at the same frequency.  In cases 

where bispectral ridges are not accompanied with spectral peaks, 

it may be questioned whether such peaks are smoothed out in the 

analysis.  Finally, it is shown that both the bispectrum and 
skewness are good measures of the wave surface deviation from 

the Gaussion distribution. 



308 COASTAL ENGINEERING 

The wave records from which significant nonzero bispectra 

were calculated, were all obtained during relatively extreme 

wave conditions. 
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Fig.l.       Bispectrum    of    V),  (t) = 10 cos 0.08t 
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Fig.2.     Bispectrum  of   ^    (t) = 10 cos0.08t + 1.25cos0.16t 
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Fig. 3 Bispectrum  h , (t)   =  10 cos 0.08 t  + 2.5 cos 0.16 t 
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Fig.4.     Bispectrum of   ^4 (0 = 10 cos O-08*' + 5 cos °-16 f 
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Fig. 5        Bispectrum  of t)5 (t)   =   10 cos 0.04 t  + 5 cos 0.08 t 
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Fig. 6     Bispectrum  of Yi , (t)  =  10 cos 0.04 t  + 5 cos 0.08 t  + 2.5 cos 0.12 t 
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Fig. 7    Bispectrum  of h? (t)   =  10cos0.04f  + 5 cos 0.08t  + 2.5cos0.12t  +  1.25 cos 0.16t 
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Fig.8.     Bispecfrum of   \s (t) = lOcos 0.04 t + 5 cos 0.08 t + 2.5 cos 0.12 t 
+ 1.25 cos 0.16 t +0.625 cos 0.20 t 
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Fig. 9     Bispectrum  of wave  record   711219.03. 
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Fig. 10.     Bispectrum of wave record      711218.21 
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Fig  11.     Bispectrum of wave record   711208.21. 
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