
CHAPTER 13 

THE LOSSES OF INNER ENERGY IN SEA WAVES 

By Prof. Dr. Eng. Sci. 7.K. SHTENCEL.* 

As it is known Lamb in his time suggested that ener- 
gy losses in waves stipulated by liquid viscosity should 
be calculated by a formular: 

2 
W, = 2%2fZ \ V (1) 

.A 

where ))   is kinematic viscosity coefficient 
The following prototype observations and laboratory 

experimental data showed that actual losses tens and 
hundreds times exceed those calculated by this formular. 
This can be explained by the turbulent character of ac- 
cording to Lamb, suggested to substitute the turbulent 
viscosity coefficient determined depending on wave para- 
meters (instead of the kinematic viscosity one). The best 
known are the suggestions of Dobroklonsky who puts for- 
ward the following dependence for turbulent viscosity 
coefficient: 

2 
vL = 2,51 • 10~2 £- (cm2sec~1) 

and Bouden: $ =  2,8 • 10"5 ---- (cm2sec""1) 
* X 

Even these dependences give nearly 100 times divergence 
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in calculation. 

Considering suggestions of other investigators one 

can find out more than 300 times discrepancy. 

Such variability testifies that recommended functional 

connections betwee wave parameters and turbulent viscosi- 

ty coefficient are not correct. 

Modern knowledge on liquid structure can explain 

these discrepancies. 

A number of latest works in this field bring to con- 

clusion that the main kinematic elements of water are 

particles consisting of several hundreds of molecules. If 

we cease to consider water particles as some part of con- 

tinuous medium without definite dimensions, and begin to 

consider it as the transfer and deformation of real par- 

ticles, we can notice that the conventional division of 

motion to laminar and turbulent is not complete. 

As we know, any fluid motion which can be described 

as periodical or which is to some extent a regular vor- 

fex model is not a turbulent flow is that the turbulent 

pulsations by their nature are of chaotical character. 

At present, wiit,a considering waves, the majority of ex- 

perts find turbulent and laminar regimes in them by ana- 

logy with water flows. In fact, looking at real waves 

during storms, when it is even difficult to determine 

their characteristic owing to chaotical combination of 

crests and troughs, one can suppose turbulent nature of 

motion. If we consider two-dimentional waves in laborato- 

ry chute, however, strict regularity of surface periodi- 

cal fluctuations becomes evident; pressures and veloci- 

ties at a point vary strictly periodically as well. Not 

a single experimenter could find high-frequency pulsati- 

ons characteristic for turbulent regime in swell waves 

and standing ones. 

Therefore, it should be admitted that regular wave 

motion itself is not turbulent. On the other hand, due to 
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periodical velocity and pressure variations ale a point, 

it could not be considered as laminar. 

Fluid pressure is the motion of material particles 

having definite geometrical dimentions at each moment. It 

can be supposed that with laminar motion there are either 

no particle deformations or they result from outer acti- 

ons (the change of distance between boundary surfaces, 

for instance). With turbulent motion the particle defor- 

mations undoubtedly take place which can be seen from va- 

riations of all parameters measured. These deformations 

have accidental character which is characteristic for 

turbulent motion. With wave motion particle deformations 

occur strictly periodically and that causes particular 

properties of wave flow. Therefore, it seems expedient to 

consider the wave motion as the third main type of fluid 

motion. Comparing various types of fluid motion we can 

see clear indications of difference between them. 

Laminar motion. 

1. There are no particle deformations or they are 

connected with external local actions (broadening or nar- 

rowing boundary surfaces). 

2. Motion has laminated character, separate jets move 

parallel each other without mixing. 

3. Velocity value and direction at each point of area 

occupied by moving fluid with set motion are constant. 

4. Inner energy losses are stipulated by fluid mole- 

cular viscisity. 

5« .Energy losses due to friction are proportional i.o 

the first degree of velocity. 

Turbulent motion. 

1. Particle deformations are of accidental character 

with high frequencies. 

2. Particle motion has chaotical character; fluid 

continuously mixed. 

3. Value and direction of velocity at any point are 
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continuously varying. It has frequencies of hundreds of 

hertz. Variations are of accidental character. 

4-. Inner energy losses are stipulated by mixing in 

the thickness of final fluid masses (by turbulent visco- 

sity). 

5« Energy losses due to friction are proportional to 

the velocity in degree 1,75 - 2. 

Wave motion. 

1. Particle deformations are strictly periodical with 

low frequencies. 

2. Particle perform oscillatory motions along defi- 

nite trajectories. This motion is accompanied by lamina- 

ted "orbital" motion reducing when the depth increases. 

Particles are not mixed. 

3. Value and direction of velocity at any point peri~ 

odically vary. Frequency is equal to wave period. The 

fluctuations of velocities are strictly regular. 

4. Inner energy losses are stipulated by molecular v 

viscosity and particle deformation losses. 

5. Though some authors suppose that the losses due 

to friction are proportional to the square velocity, this 

problem should be specially studied. 

One should distinguish real waves and that we call 

wave motion. Wave motion itself, as any other, is an ab- 

straction. Under wave motion we understand one of the 

components of real fluid motion namelyj oscillatory par- 

ticle motion along definite trajectories and connected 

with them periodical deformations of particles, without 

breaking the nearest order between particles. Beal waves 

are the result of summing up turbulent motion to the 

system of wave motions. Cutting to minimum the effect of 

external turbulizing factors, it is possible to get more 

or less pure wave motion in laboratory. The effect of 

turbulency becomes quite essential for storm waves in 

open weakens for ocean swells' waves the relation bet- 
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ween wave motion and turbulent one will vary in behalf of 
the first one. To estimate this phenomenon properly it is 
rather useful to divide motion to its compounds: wave and 
turbulent ones. 

With wave motion the fluid particles are subjected to 
the periodical deformations. Analysing these deformations 
one can obtain [ijequations for swell waves in Lagrange 
variables: 

x = x© + r sin ip 4- k r ( —5— + jr  s-ua 2 if   ) 
(2) 

y = y0 + r cos \f  + k r ( -- + ~- cos 2 if> ) 

where: ID =  6"t - k x0 , 
x and y varying particle coordinates, 
x0 and y0 - coordinates of particles at rest, 

•>oi. ?4T     h ""2 ^ y« 

h, A and T - height, length and wave period cor- 
respondingly. 

Now let's define deformation energy losses. If we take 
two moments t, = 0 and t„ = t and consider the position 
of two closely situated particles, the distance change 
between them during t will be: 

k2 r2 dx - dx0 = - kr coaif   dx0 - ---— cos 2if dx0   (3) 

Relative deformation of each centimeter of infinitely 
small fluid layer is: 

2 2 
£ = ax^dXo =„kroos(n- fc_ E_ Cos 2 U>       (4) 

dx0 2       T 

Then the rate of deformation will be: 

---- = k 0 r sin if +6 k2 r2 sin 2 ip      (5) 
dt ' ' 
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R.N.Ivanov in his works [2] on film extension based 
on a great number of experiments showed that the force of 
resistance to film extension is proportional to velocity. 
If these conclusions be spread to the case of infinitely 
small fluid layer deformations considered, the energy ab- 
sorbed bj 
form of: 
sorbed by 1 cm of this layer may be obtained in the 

dwd = aJ> -f^" d£ , (6) 

where a - proportionality constant factor, which can be 
called deformation dissipation coefficient. 

Substituting all the values in formular (6) we obtain 
the following expression: 

dW£ = ap   ( k 6  r sin if + k2 6" r2 sin 2 if   ) dt (7) 

As the particle deformation sign changes in a half of 
a period (half a period goes compression and the other 
half - extension), integrating expression (7) when x0= 0 
for a half a period and doubling it we obtain energy los- 
ses by an infinitely small fluid layer, whose area is 

2 
1 cm for the whole period; 

ff£ = X a f> 6" (k2 r2 + k* r4) (8) 

To obtain energy loss values over all water thickness, 
we integrate expression (8) over the depth: 

7° 2 2 
wd s J w£ dy0 = -t- % a p k € rf ( 1 + £--£* ) 

Or substituting values k , 6 and r0 we get: 

LLH! 
2At L 2 d        2 AT L 2 •* J 

i.e. , energy loss value of disturbed fluid related t© 
2 

1 cm of surface during the period. Obviously, energy 
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losses during a second will be equal to: 

Coefficient dimension a from formular (9) cm sec 

coincides with the dimension of kinematic viscosity coef- 

ficient and hence from the dimention condition we may 

assume the following dependence: 

a * a &£- (10) 

Generally, it seems possible to consider that inner 

energy losses in wares can be represented as: 

W = W0 + wd + Wt (11) 

where: W^ - kinematic viscosity losses 

f^ - particle deformation losses 

W^ - turbulency losses. 

Taking into account Lamb dependence (1) we can write 

down: 
2 

W = 2%2p  g ~ ( v + Y>d + v?t > (12) 

where y) , J* and ^K the coefficients of kinematic visco- 

sity, deformation energy dissipation and turbulent visco- 

sity, correspondingly. 

Comparing (12) and (9) we get: 

where m, is an empirical coefficient. 

If determining coefficient  v d experimentally it 

turns out that it varies with depth as the turbulent vis- 

cosity coefficient does, this may be taken into account 

by exponential dependence for m, . In the latter case we 
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have to integrate equation (8) to make the numerical co- 

efficient more exact. 

As the waye turbulency depends on external turbulizing 

factors, when looking for functional dependence for ^t , 

the wind parameters (velocity and action duration) should 

be taken into account first of all. The existing depen- 

dencies for ^ t accounting only wave parameters do not 

meet this condition and therefore they give results dif- 

fering 300 times and more from each other. 
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