CHAPTER 138

DEFORMATION OF TIDAL WAVES IN SHALLOW ESTUARIES

by
CLAUDE MARCHE® end HANS-WERNFR PARTENSCKY®

ABSTRACT

Several mathematical models have been lately presented which
describe the tidal wave propagation within an estuary. The existing
models derived from the method for damped co-ogeillating tides are based
on ginusoidal wave profile,

Meanwhile a tidal wave which moves upstream, generally exhibits
a progressive deformation which tends to unbalance the length of time
between flood and ebb tides. The actual profile ig therefore no longer
sinusoldal.

Our investigation uses the potential method, and takes into
account the wave amplitude which is usually neglected compared with the
water depth.

Finally, the veloclty potential is obtained explicitely, using
a double iterative method. Tidal elevation, particle velocities and
trajectories are given by the same computer programmed algorithm,

Our study shows that 1) the phenomenon can be clearly visualigzed
on the theoretical curves and 2) the magnitude of this deformation is
inversely proportional to the water depth, becoming significant when the
ratio T/h reaches the critical value of 1/10.

Damping and geometrical effects are also considered and the
theory was applied to the St.Lawrence Estuary. A partial positive
reflection of the incoming tidal wave 1s agsumed at the narrow section
near Quebec, whereas a complete negative reflection is assumed at the
entrance to Lake St.Peter. The calculated and obgerved wave profiles,
veloeity distributions, and phase shifts are in good agreement,

I, INTRODUCTION
Several mathematical models have been developped, describing

the tidal wave propagation in an estuary. The existing mcdels, for-

mulated by A.T. Tppen and D,R.F, Harleman, for the Delaware Estuary and

the Bay of Fundy [1], as well as that of H.W. Partenscky for the St,Lawrence

Estuary [2,3], made use of the method for damped co-oscillating tide,

based on a sinuscidal wave profile.

1) Lecturer, Ecole Polytechnique, Montreal, Canada.
2) Director, Franzius Institute, Technical University of Hannover,
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However, a tidal wave ascending an egtuary, generslly under-
goes a progressive deformation which tends to unbalance the respective
ebb and flood times of the water mass. The actual profile is therefore
no longer sinusoidal,The theory,developped in this paper, allows us %o
explain and retrace this wave deformation, by taking the influence of
the water depth into account.

1. DEFQ) I0N OF TI E I LOW RECTANGUL, NEL

1. Velocldty pofential and free gurface elevafion

The velocity potential of an ogelllating wave of small ampli-
tude propagating in the positive x direction is solution of the Laplace
equation

v g =0

where index 1 indicates the incident wave,
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Fig, 1: Definition sketch

We congider the hypothesis of the small amplitude wave theory verified;
however, we locate the free surface at elevation z = T, , variable,

and not at the mean elevation z = O, The boundary conditions to be used to
evaluate the resulting solution are:

__aiél_Jr—;-(__aﬁ-\a +__L_aﬁ2) tgM,;, =0

3t ox oy
at z = 1,
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By neglecting the higher order terms, the boundary conditions can be
written in a gimplified form:

ot
at z = M,

P A

at [t (2)
at z = - h 6_}25]_20

dz

We note that the boundary conditions (2) differ from the usual conditiong
for waves of small amplitude by an order of approximation, This leads
us to assume as a first approximation an initial solution of the form:

ag cosh G, (h+z) o _Ay g
== =1 eos(Gy x - ot) = cos(G, x - ot 3
2, I3 cosh Gy h cos(Cy ob) o (@ ) )

The boundary conditions (2) will now be applied to the velocity potential
function f . Solution (3) fulfills the boundary conditions if

o =g G, tenh G, (h+T,) (4)

is verified. In the above equations, a is the amplitude of the tidal wave,
TN, d1s the instantaneous surface elevation given by

-1 o
M z 5t and G, L,

is the variable wave number,

It should be stressed the importance of equation (4) which shows
that o and G, are related by a variable expression depending on the
elevation T, , the latter being a function of time and space, Fileld
measurements have shown the rigourous equality of the period of different
tidal waveg. This verification allows us to present the third equation
needed:

c = % = congtant

Equation (4) is an implicit equation in G, , and an iterative computer
programmed method will yield to a numerical solution in the gystem
formed by equations (3) and (4). The uniqueness of the solution of

this gystem is proved for all possible physical conditions. The defor-
mation clearly appears when a comparison is made between the wave profile
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obtained from this theory and the sinusoidal profile.

Figure 2 illustrates the type of deformation which a five
feet amplitude wave undergoes, during propagation in a channel of
fifteen feet depth., We note in particular a descending time of
gix tenth (6/10) period versus an ascending time of four tenth (4/10)
of a period, Several similar curves, calculated for different water
depths showed that the importance of the deformation becomes appreciable
for a ratlo of amplitude to depth of

n/h> 1/10
approximately.
The application of this theory to the potential of a wave

reflected at x = B in the same rectangular channel leads to the
following expression, with index 2 being used for the reflected wave:

8 :a_gwcog(gex_gt+é) =é-a—gcos(G2x-c't+6) (5)

3 cosh Ggh ¢
with: Ga _2n
La
c =g Gg tanh Gy (h + Mg )
and §=2nm -2 G, B

The velocity potential of the resulting wave is given by

§=g1+xr¢2 (6)

where L™ is the reflection coefficient of the reflected wave at x = B,
2. Intro io; o i £

The generalization of this theory to a practical application
requires the introduction of two additional parameters: geometry and
friction, In the most general case, the resulting wave profile is
given by the expression

b3 b, & - (x-B) (x-B)
N = a(gB) (h"“B)4 [Al e n sin(C, x - ot) - %, Ap eM * sin(Gg x—ct+6)] (7)
X X -



2409

TIDAL WAVES

A3INNVHD "VINONVLO3Y V NI
3AVM VvAaIL V 40 NOLLYWHO043Q ¢ "pId

0l 5] 8

dd/; 4Q0i¥3d 40 SNOISIAIQ TVWIO3Q Ol/)

L S

<

4 4 < 1

A7

|

N

/

NOILVAZT3 TVaAIOSANIS ©
NOILVA3T3 TvNidy ¥

{ L

0'9-

ov-

[O)r A

02

ov

09

(L334 NI) W NOILVA3T]



2410 COASTAL ENGINEERING

with the supplementary condition:
6® =g G, tanh G, (h+ My ) = g Gy temh G, (W + Ty) (8)

where:

h  is the mean water depth

b is the mean width

h  is the overall damping coefficient

A, and A, are terms as defined in equations (3) and (5) respectively

Fxpression (7) is valid and may be used for any real estuary, with the
condition that Green's Law be satisfied.

3. ¥ater particle velocity

By virtue of the definition of the velocity potential, the
horizontal and vertical components of a local fluid particle velocity
due to the passage of the incident wave in a rectangular chamnel without
friction are cbtained by differentiation of the velocity potential in
each direction:

_ 3% _ 8g G, cosh G;(h+ 1)
U=~ =80 F1 2088 M 1y g _
ax o cosh G, h sin(G; x - ot) (9)
. _3 _ _eg G, sinh Gy(h+s) )
Vs 3% o cosh G,h cos(Gy x-at) (10)

The implicit equation

% = g Gytanh G, (b * Ty)

defining the term G, = 2r/L, used in the expressions (9) and (10).
A numerical golution is utilized to determine the velocity components
U and V as functions of x and z. Figure (3) shows a characteristic
variation of the horizontal velocity during a wave pericd. We note
from this curve a difference between the absolute values of minimum
(5,20 feet/sec) and maximum (4.15 feet/sec) velocity of the particle
considered: The velocity of reflux is of greater importance than the
velocity of flux.

Therefore, for incompressible, two dimensional motion in the x, z
plane the continuity equation requires that the corresponding period
of time of rise and fall be unequal., This last observation corroborates
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the mathematical and physical results concerning the tidal elevation,
shown on figure (2).

4. Yeter particle trajectories

Another modification of importance given by this theory
concexrns the trajectories of particles. These are solution of the
differential gystem

& . dz -
T at (1)

In the integration of this gystem, we do not use the small
particle movement hypothesis, thus allowing us to consider that
particle velocity is only a time fonetion., The complete integration
of the system (11) may be made numerically, and without particular
hypothesis, and leads to the following algorithm:

T
o L
m
n
x, = &
tn 2 Uz, 4 tn_l)dt+x0 (12)
T >
(n-1)53
T
n X
m
n
=
Pty o1 Wi 4ot _J)db + g (13)
T
(n-1)g

where:

X.
tn and “tp are the instantaneous horizontal and vertical displace-
ments from O to iy respectively and,

T/m is the increment of the numerical solution expressed as a
fraction of the period.

Figure (4) illustrates the trajectory of a particle under the
effect of a wave propagating in a very shallow region. We note
that the initial ellipse obtained from the small amplitude wave theory
is downward deformed.
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Trajectory of particles/L._/

under a wave of shallow
depth (theory of d'AIRY)

Minor Axis

Trajectory of particles
under a wave of very
shallow depth

o C——Major Axis

Flgure 4

This deformation ig easily explained by continulty by observing the
veloclty differences of flux and reflux, The caleculated trajectories
for different water depths show that there exists a variation in
trajectory comparable to the well-known variation of ellipses in

small amplitude wave theory. The major axls of the deformed ellipse
remaing congtant at any depth, whereas the minor axis, in the vertical
direction decreases with depth.

TIL, APPLICATION OF THE THRECRY TO THE ST. LAWRENCE ESTUARY

1. Physical characteristics of the estuary

The St. Lawrence Egtuary is composed of two parts of different
geometry. The first concerning the estuary itself is a convergent form
between its ocean entry and Quebec City. It is prolongated by a second
part of more constant width and far challower depths, bounded at the
location of the enlargement known as Lake St, Peter.
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These two distinet parts of the estuary, bring us to conslder
two successive reflexions of the ascending tidal wave: one partically
positive at the straightening of Quebec (Section R, ), the other total
and negative, at the sudden enlargement at Lake St, Peter (Section Ry) .

2. Regults

Some physical parameters are required for the solution of the
actual conditions in the estuary. These are:

- The reflectlon and transmission coefficients particularly in the
sections Ry and Ry . These are furnished by a geometric study
in that sector.

- The height of the tidal wave in the sections of reflection,
These are found in the bibliography.

~ The precise geometry of the estuary, the surface width and the
average depth of each section under study.

Based on these informations, the application of the mathema-
tical model allows us to predict the tidal elevation, the particle
velocity and their trajectory at each section of the estuary, the
instantanecus wave profile and the velocity distributions along the
estuary at any time,

A comparison of the recorded and calculated elevations at the
tidal stations of Neuville and Grondine (figure 5), which are located at
the upper shallower part of the estuary, is shown on figure 6 and 7.
These curves show the expected deviation from the pure sinugoldal motion
due to the restricted water depth in this region. In the deeper part of
the estuary, the graphs of 1(t) regain a more sinusoidal form,

Figure 8 presents the variation of the horizontal velocity
of the particles at three sections of the upper part of the estuary:
Neuville, Grondines, and Batiscan. We note from these three curves
a difference between the absolute value of minimum and meximum
velocities, which is proportional to the maximum velocity iteelf.

Figure 9 shows the trajectory of a particle initially located at
Grondines and at a distance of seven feet above the bottom, We note
that since the displacement is a periodic function of time in the
expressions (12) and (13), the trajectories are closed curves. For
comparison, the trajectory of a particle initially located at Batiscan
above Grondines is shown on the same flgure, We note that the conjugated
effects of the damping and the geometry of the estuary tend to reduce
the particle displacement in accordance with the wave propagation, In
the deeper part of the estuary the trajectories appear elliptie,
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An ingtantaneous profile calculated for the upper part of
the estuary is shown in figure 10, The calculation was made for
5 AM. on May 5, 1963, a date for which a detailed recording was
available., A comparison with the recorded data shows the accuracy
of the theoretical values of the tidal elevations, On the other hand,
these curves clearly show the effect of the total negative reflection
of a tidal wave and its decline in the upper part of the estuary.

CONCLUSION

The mathematical model herein developped and applied to the
St. Lawrence Egtuary gives a good approximation of the tidal motion
in both, the deeper and shallower part of the estuary. Especially
in the shallower zone, the results show the well-known deformation of
the wave profile which could not be predicted by preceeding mathematical
models, The thecoretical development used here, allows a computer
oriented approach which could be modified to incorporate into the
equations some of the more complex aspects of propagation of the tidal
wave in an estuary, particularly the effect of the fresh water discharge,
which was not yet included in the present study.
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