
CHAPTER 136 

The schematization for tidal computations in case of 

variable bottom shape. 

by J.J. Dronkers 

Synopsis. 

Mathematical and physical methods can be applied for tidal 

studies. After general considerations on these methods, some prac- 

tical aspects of tidal computations are discussed, in particular 

the schematization for tidal computations in case of variable bot- 

tom shape in shallow coastal waters. The relation with the coeffi- 

cient of friction is dealt with. A combined one- and two- 

dimensional tidal computation is considered. Also an example is 

given of the determination of the coefficient of friction in a 

very shallow region; the variations, which are found in this prac- 

tical case are discussed. 

1. General considerations on the application of mathematical 

and physical methods for tidal studies. 

Tidal problems may be solved by means of mathematical or phys- 

ical models. Both kinds of models are approximations of the reality; 

in some respects in a different way. 

In the analytical methods the water motion is represented in 

a continuous way. They can explain general physical aspects, e.g. 

progressive standing and Kelvin waves. These methods can only be 

applied in case of schematical tidal regions, and simplified as- 

sumptions e.g. the equations must be linearized. The value of the 

analytical method may be doubtful when it is necessary to use a 

computer for evaluating the solution in a particular case. An exam- 

ple is the evaluation of the harmonic method on a computer. This 

method can be applied in case one or two harmonic components must 
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be considered. In case of more components a computer evaluation of 

an analytical solution is not recommendable. 

In a physical model the practical solution is obtained by 

measurements at certain locations. They can represent the tide in 

complicated tidal regions. They show more details, e.g. eddy streets, 

which occur at sharp bends, and in case piers are present. Such phe- 

nomenae cannot be represented in a sufficient way in the mathemati- 

cal models considered till now. The shape of the bottom can also be 

represented better, although it is limited in case the distortion 

of the scale model is considerable. On the other hand it is diffi- 

cult to represent the Coriolis forces in a sufficient way in case 

these forces have a considerable influence on the water motion. 

The numerical tidal methods have qualities between the meth- 

ods, mentioned above. They can describe the tidal motion in rather 

complicated tidal regions, and the Coriolis force can be included 

in a correct way. To which extent these methods can be used is 

still a point of discussion and experience. This depends on the 

phenomenae, which must be studied, on the required data, and on 

the accuracy, which is demanded. 

The solution by means of a numerical method is a discrete 

solution of linear finite difference equations. In the finite dif- 

ference solution the water levels and velocities are computed at 

certain grid points. Usually the grid points for the water levels 

are different from those for the velocities. The discretization of 

the equations causes however difficulties, which do not occur in 

analytical solutions, and in physical models. Moreover it is diffi- 

cult to determine the accuracy of the finite difference solution 

by means of mathematical formulae. It must be obtained from expe- 

rience . 

Two numerical evalutation techniques exist: the explicit method 

and the implicit method. The non-linear terms in the finite dif- 

ference equations are often represented in a different way by vari- 

ous authors. In the explicit method the water levels, and the veloc- 

ities at a future time step are immediately computed from those at 

previous time-steps. In an implicit method they are obtained after 

the simultaneous solution of a set of linear equations. Therefore 
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the mathematical treatment of an implicit system of equations is 

more complicated than that of an explicit method. On the other hand 

in an explicit system the size of the grid net depends on a sta- 

bility condition. This condition, which determines the time step, 

depends also on the friction, and the Coriolis coefficient. Such 

a condition is not necessary for an implicit system. The time step 

in case of the application of an implicit method, can be chosen 

several times greater than for an explicit scheme; it depends on 

the accuracy only. In particular this is of importance in coastal 

waters were deep gullies and shallows are found. 

In the application of implicit and explicit methods instabil- 

ities of special kind, so called space-instabilities, may occur in 

the computation, in case the non-linear convective terms are in- 

cluded in the tidal equations. They may occur in particular in re- 

gions where large velocities, and variations in their directions 

occur, e.g. at sharp bends in an estuary. These instabilities do 

not occur when the convective terms are omitted. These problems 

are discussed in detail by Grammelveldt, 1969, and Kagan, 1970, 

for explicit schemes. It is shown that an explicit scheme e.g. 

that of Hansen's has a "computational viscosity", which depends 

on the grid size. In case of non-linear equations the "mathematical" 

wave interaction can induce a transfer of energy into the short 

wave range, in which it accumulates with time. Only a finite number 

of numerical waves can be resolved in a finite grid. This type of 

instability can be suppressed by introducing an artificial viscos- 

ity term, which causes a smoothing effect. However it is the ques- 

tion to which extent the accuracy is affected. Kagan shows that 

the minimum possible wave length, which is determined by the grid 

size, cannot be suppressed by an artificial viscosity term. 

Obviously the introduction of the boundary conditions in math- 

ematical models is much more simple than in physical models, where 

special apparatus must be applied. 

From mathematical point of view the vertical tide, as well as 

the velocities should be introduced at the open boundaries, unless 

the convective terms in the equations of motion are small or may 

be neglected near the boundary. In this respect difficulties did 
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not occur in the two-dimensional tidal computations, applied in 

the coastal area of the coast of the Netherlands. At the open bound- 

aries the water levels are introduced. The velocities obtained by 

measurements depend often on the local conditions determined by the 

bottom shape. Therefore they are not used as boundary conditions. 

The finite difference solution of the tidal equations is correct 

at some distance from the boundary. The inaccuracy of the results 

at the coast line may be a serious objection from practical point 

of view. 

2. Schematization of tidal regions for two-dimensional 

tidal computation. 

2a. General considerations on the size of grids. 

A one dimensional case like a river is schematized into a 

number of sections of equal or unequal length. The length of a 

section is determined such that the variation in the bottom shape 

is limited as possible. Considerable variations can take place at 

the boundaries of the sections; if necessary a separate equation 

of Bernoulli must be considered at these transitions. Furthermore 

the length depends on the locations, where the water levels and the 

velocities must be computed, and on the required accuracy of the 

results. The length of the sections in the rivers of the Netherlands 

is about 5 to 10 km's. 

In two dimensional regions a square net is applied for numeri- 

cal computations. The size of such a grid depends on the bottom 

shape, and moreover on the importance of the convective terms in 

the equations of motion. 

In the sea the convective terms cause rotating currents or 

circulation. Circulation is also caused by the Coriolis forces. The 

extent of these circulations to be considered in the computations 

cannot be smaller than double the grid size. If smaller circulations 

have to be considered the grid size must be taken smaller. Therefore 

a finer net is required when the convective terms are important. On 

the other hand the number of velocity and water level points, that 

can be considered in the computations on the computer, determines 

also the size of the grid net. E.g. in the Atlantic Ocean the size 

must be chosen many times greater than in the North Sea, where 
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30 km's or smaller is to be preferred. Large grid sizes can be 

applied when ever variations in the bottom shape are small with 

respect to the depth. Such variations are much greater in the coast- 

al zones. Also the number of tidal data in the coastal zone to be 

required is much greater. 

The size of the grid, considered in the coastal waters of the 

Netherlands, is 1.6 km. This zone extends from the coast line up 

to 30 km in the sea, and 150 km along the coast line. For more de- 

tailed and accurate information near the coast a smaller zone is 

considered. The size of this zone is about 10 km perpendicular to 

the coast line. The grid size is 0.4 km. In this region shallows 

and gullies occur, and moreover the irregular shape of the coast 

line must be represented. The boundary conditions at the sea side 

of the smaller zone  are obtained from the results of tidal compu- 

tations in the bigger zone, Dronkers 1970. The boundary of a smaller 

zone must be chosen such that the tidal data are not influenced 

noticeable by the tidal motion in the smaller zone. 

Often a square grid cannot represent the bottom shape in the 

mouths of estuaries, where deep gullies and shallows occur, in a 

correct way. One square of the grid can cover the shallows as well 

as the gully. In this case it should be desired to determine sepa- 

rately an irregular net for the gullies and the shallows,. Then the 

length and the width of the various rectangles of the grid may be- 

come unequal, and the accuracy of the finite differences in x- 

direction is different from that in y-direction. 

In the immediate neighbourhood of the coast line beaches occur, 

which are dry during a part of the tide. The slope of the bottom may 

be of the order of 1 m per km or more. Because of the small depths 

it is necessary to consider very small grid sizes. Such detailed com- 

putations are not carried out till yet. 

It is necessary to check the results of tidal computations by 

means of vertical tide and velocity measurements. In particular it 

is important in coastal waters, where small differences in the ver- 

tical tide may affect the directions of the velocities considerably. 
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2b. Improvement on the accuracy of tidal computations by 

introducing modified Chezy coefficients. 

The most important forces, which determine the tidal motion 

in the sea are the inertia forces, the Coriolis force and the 

gravity force. Usually the friction is of less importance, Also the 

convection terms can often be omitted. Friction and convection be- 

come more important in coastal waters. 

The results of the computations in the coastal region of the 

Netherlands1 Delta show that the computed velocities in the gullies 

are often lower, and on the shallows higher than the velocities ob- 

tained from the measurements. Accordingly the schematization must 

be improved by taking smaller grid sizes, or by modifying the Chezy 

coefficient. 

Fig. 1 shows the effect of modifications in the Chezy coeffi- 

cients for a part of the mouth of the Haringvliet. The Chezy coef- 

ficient has been changed in the regions within the dotted lines 

from 60 to 90 m2/sec. 

From tidal computations in rivers a general knowledge exists 

about the values of the friction coefficient C (Chezy) or n (Manning), 

as a function of depth and bottom material. In all applications it is 

necessary to compare the resulting velocities and water levels with 

those obtained from measurements. In ease considerable differences 

occur four factors must be considered: the size of the grid net; the 

influence of the location of the boundary conditions; the values of 

the Chezy coefficients, and the influence of the convective terms, 

due to the variations in the velocities. In the following it will 

be shown how the schematization can be improved by introducing mod- 

ified Chezy coefficients, which take into account the variation of 

the bottom shape. 

The modified Chezy-coefficient of a square (Ax, Ay) will be 

determined in case of the following assumptions. The values of C 

are known as a function of the depth. The velocity vectors in the 

square are parallel, and its magnitudes do not differ considerably 

from the mean value. These assumptions include that the convective 

terms in the equations of motion can be neglected in the square. 

Finally it is assumed that at a certain moment the difference in 
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head, due to the friction forces, is constant over the square,, 

The formula for the modified Chezy coefficient will be applied 

to the particular case that the velocities have directions paral- 

lel to the x-axis, and the variation in the bottom figuration only 

occurs in the y-direction. Let the square be subdivided in y- 

direction in n parts of equal depth. The total quantity of water 

in a cross-section of the square A x,Ay in the x-direction is, 

a u Ay = ai u1 A y1 + ag u2 A y2 + ••• + an 
u
nAyn       (l) 

in which a. are depths and u. are velocity components in x- 

direction. Because the values of the slope of the water surface 

i— are assumed to be constant in the square in x-direction, it Ax H 

holds according to the formula of Chezy, 
2 2                2       p 

Ah _    ul u2               _^n   uf_        ... 
Ax ~ „2 e „2    ~   ~ r2            ~ r2     '                Kd> 

S al L2  a2             °n an    ° a 

in which the velocity u, the Chezy coefficient C, and the depth a 

are the mean values over the square. 

It follows from (l) and (2) after replacing u (m =s 1,2 ... n) by 
1 IYI 

T— , that 

C a—Ay «, Ct a^Ay, + ^  ^"A^ +  + Cn a^'^y,, 

C a 

3/2A„_„  „ 3/2 . r     ^  r 3/2 . r     ^ ^r 3/2 

In case the depth changes continuously over the cross-section Ay, 

the following relation is obtained for the mean value of the Chezy 

coefficient, C, and the mean depth a, 

C a3/2 Ay=   fY  C(y) a(y)3/2 dy . (3) 

In the general case the velocity has components in the x- and the 

y-direction. Then the variable y in (3) must be replaced by the 

variable y , which is determined by the rotation of the axes x 

and y over the angle Ct to the axes x  and y ; a is defined by 

the direction of the velocities in a square. Then the factor uV, 
2    2 ^ respectively vV, in which V = (u  + v )  must be considered in 

the resistance terms. Because the velocitv vectors are parallel, 



2386 COASTAL ENGINEERING 

V can be replaced by   , respectively —:  . 
cosa     r sina 

Let a square subgrid be formed over the square (Ax, Ay) (fig,2). 

Then for each column in the y-direction formula (3) holds good. 

After addition of the results of the equation (3) for the sub- 

sequent columns, it is found, 
x y 

/ / 
C a3/2AyAx =  /  / C(x,y) a3/2(x,y) dx dy,        (4) 

0  0 
3/2        • 3/2 

in which C a   is the mean value of C a   over the square (Ax, Ay). 

The formula (4) holds for the general case that the velocity vector 

is not parallel to the x-axis. 

The modified value C  of the square is obtained from 
3/2     3/2 m 

C a   » C a   , in which am is the mean depth in the square. mm i" r ^ 
Generally it holds Cm>C. The analogous method can be applied to 

the river sections, Dronkers, 1964, Chapter XI. 

3. The schematization for a combined two- and one dimensional 

tidal computation. 

In this section the combined two-dimensional tidal computa- 

tion for a part of the sea, and the one-dimensional computation for 

a river is demonstrated (fig.3). In case the grid size and the di- 

mensions of the sections of the river are different, the schema- 

tization of the transition zone must be modified such, that the 

grid and the sections of the river fit together. In the transition 

section of the river this means that the width will become equal to 

the size of the grid: Ax = Ay, and that the mean velocity and the 

total quantity of water passing through the cross section, the dis- 

charge, does not change. This discharge is determined by the tidal 

conditions upriver of the transition section. Moreover the differ- 

ence in head due to the resistance force must not change. Hence 

2       2 
b a  =Ay a, and C  a. = C a , (5) 

in which a is the mean depth of the modified section, a^ the depth 

of the original section; C and C  are the corresponding values of 

the Chezy coefficient. 

These equations determine the modified depth a and coefficient C. 

If the width of the mouth of the river, b., is more than twice 
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the value of Ay, more sections with equal width Ay, next to each 

other in the river mouth, must be considered. 

The finite difference equations for the transition zone are 

mentioned below. The method for the solution of the tidal equations 

is dealt with in general terms. 

In fig.4 the points are denoted, where the velocity components 

u and v, and the water levels h are computed in the transition zone 

from the sea to the river. An implicit scheme is applied, Leendertse, 

1967. For the river the formulae of the third implicit scheme are 

applied, Dronkers, 1969. The water level and discharge, Q, or ve- 

locity, u, are taken at the same location, the beginning, or the 

end of each river section. The advantage of this method is that 

river sections with unequal length can be considered for the sche- 

matization of the river. An analogous method is applied in the sche- 

matization for the application of the harmonic method. 

The convective terms are not considered in the formulae for 

the sea, however the Bernoulli term is included in the equations 

for the river. 

Each time step consists of two parts. In the first half time 

step t + jl , the values of the velocity component in x-direction, 

u , and the water level with respect to the mean water level, h , 

are computed by means of implicit equations. The velocity component 

in y-direction in the sea, v', is determined by an explicit equation. 
1      II      " 

In the second half time step t + 5 T , v  and h  are determined im- 

plicitly, and u  is obtained from an explicit equation. No values 

of v have to be computed in the river, and therefore some modifi- 

cations are to be made in the computational scheme. 

In the following the finite difference equations are mentioned 

for the transition zone from the river to the sea. In fig.4 the lo- 

cations of the variables with indices n and m are denoted. At the 

coast m = M, and for the river n = N. The most upriver section is 

denoted by m = M . 

The squares of the grid in the sea which are on the same line as 

the river, have index m,N. For M + l^m^M., the equation of motion 

for the river is: 

5h     1  5u    |u| u     1    5u ,,, > 

^    g  5t   C2(a+h)   
g   5x 
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in which h is the water level, u the velocity, a the mean depth, 

and b_the mean width of the river at time t and place x. This 

equation is replaced by 

(Ax)m r ,     -] 
h  , - h a  -     (u  . - u  „) - (u ~ u )  - 
m+1   m     xg   L m+l   m+l     m   m J 

(Ax>m   l>+l•mJl'W+um) 1   , ,,   . t. 
-    -.       =   -   77—   (u       .+u   )(u       .-u   )    , 

C  (a + h )       e  m       ra 

(7) 

in which (Ax)  is the length of the m-th section and 2 X is the 

half time step. 

The equation of continuity, 

5h    5Au , . 
b St = " 5x~ (8) 

in which A is the area of a cross-section, and b the storage 

width, is replaced by 

,     ,    (Ax)_ b_ 

m+1   m      x 

These equations are written in the form: 

h  _ - h + T]  u.+ 9  u=ii  . m+1    m   ' m  m+1 m  m  ^m-1 

—•   T(h' ,-h „) + (h'-h )1      (9) A    m+1  m+1      mm m L J 

(m = M+1,....,M1) (10) 

v(h  „ + h ) + u  „ - u  =f 
m m+1   m    m+1   m  = m * 

in which the coefficients depend on those of (7) and (8). 

By means of the application of the sweep method in the up- 

river direction, the set of equations (10) can be rewritten in 

the form 

u =  -  q h     -t     u     +s      .   +  b     .,   h   . ^ 
m-1 ^m-1     m mm m-1 m-1     M+1 

1 , , (11) 
h cs-p     u    +r    +a     hw   . ,       M +  2< m< M. 

m rm    m m m    M+1 *•    ^   1 

Similar formulae are derived for the application of the sweep 

method in the downward river direction. Recurrent formulae for the 

computation of the coefficients q, t, etc. can be derived, 

Dronkers 1969. 

After the successive elimination of h  and u  in the set of 
m     m 

equations (11) in the upriver direction, and elimination in the 
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set of equations in the downriver direction, respectively, by means 

of the sweep methods, the following relations are obtained between 
i       '       i i 

UM+1 N' ^M+l N' UM  M and ^M  N a* *ne beginnin6 an<^ a* the^end of 

the river: 

! i i 

hMt,N 
+ PM,N UM1,N 

+ aM+l,N hM+l,N + rM+l,N ~ ° 

*      i        t        *     i       # *•1^/ 

PM+1,N UM+1,N + hM+l,N + aMx,N 
hM ,N + rM+l,N ~ ° 

The finite difference equations for the transition zone from 

sea to river follow next. First  the equation of motion in x- 

direction is applied to square ABCD of fig.4 for the first half 

time step. This equation 

5u  _       5h   gVu 

in which fi is the coefficient of Coriolis, is replaced by 

u'    « u      - a. (h'       _ h*   > + ip_ (v     + v       ) _ 
m,n   m,n  2k  m+l,n   m,n    8   m,n   m,n»l 

m 
4 J (u  .,+u  „ „)  + (v  ,,+v  „ „ )  I  + 2 u  . „ 
[[  m,N  m-l,N       m,N  m,N-l  J       m+l,NJ 

um,r 
(13) 

C2  (2a   +h +h  .  J m,n   m,n  m  m+l,n 

Then the equation of continuity is applied to the square EFGH, 

5h   5au    5av   ~ 
5t   5x    5y ~ 

The finite difference equation becomes, 

h'   t=h    +-pr(a    +h   )u m, n    m, n   4k  m, n    m, n   m, n 

-(a.   + a  .   „ + h   +h^)u.   + (14) 
m-l,n   m-l,n-l   m,n   m-l,n  m-l,n 

+ (a    + a  .   +h    +h   , „ ) v    + m,n    m-l,n    m,n    m,n+l   m,n 

+ (a   ., + a  „   ., + h   +n   „ ) v    .. m,n-l   m-l,n-l   m,n   m,n-l  m,n-l 

The explicit equation for v   follows from the finite difference 
m,n 

equation of the motion in y-direction (see square IJKL); 
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5v       r, 5h        e  Vv 
Bt * Q - " -« 37 - ^- • 

(u'  +u  .  +u    „ ) - §f (h    „ - h   ) 
m,n m-l,n m,n+l   2k  m,n+l   m,n 

(15) r 1   ,    '                i                     t           ,2 2        1   2 

•^  (u         + u     „       +u         „ )     + v 
T    L9       m,n m-l,n m,n+l m,n  J     v' 

C2       (a + a     ,       + h'        + h'        J 
m,n       m,n m-l,n m,n m,n+l 

The unknown values in equations (13) and (14) are 

tit i i 
u   , h   , h  .  , and u  .   etc.: v    is the unknown value in 
m,n'  m,n  m+l,n      m-l,n     '  m,n 

equation (15). 

In the sea these equations are applied to the grid for l^m^M; at 

the coast m B M. The index n varies between n = 1 and n a N+l and 

from n ts N+l up to n t: N . A solution by means of the sweep method, 

determines these values (Leendertse, 1967). Equation (15) determines 

v in the sea. 

However for n = N the equations (12) for the river must be 

added to the system of implicit equations mentioned in (13) and 

(14). Furthermore a relation between u „ and h„ . „ (see fig.4) 
m ,J\     M+l ,I\ 

must be added to the equations (12). Applying the equation of con- 

tinuity to the rectangle FBCG (fig.4), it follows, 

a „ (u„ . „-u ,,) a -  — 3(h., „ „-h„ . .,) + (h ,,-h ..)   (16) 
m,N   M+1,N  m,N      41 [  M+1,N  M+1,N      m,N  m,N J 

The boundary condition at the coast is: u   = 0 (n / K). Also 

h    etc. are given at the boundary in the sea. The equations for 

the second time step can be set up in a similar way. 
it   n      it 

In this time step the unknown quantities are u , h  and v . Then 

an implicit set of equations similar to (13) and (14) hold for h 
it ti 

and v , and an explicit equation for u . 

In equation (13), u  is replaced by v , and the finite differences 

in x-direction are replaced by those in y direction. Furthermore 

the quantities which are defined for the time level t in equations 

(13-15) are replaced by the time level t + J T , in a way that they 

get the index ( ). The equation of motion for the velocity compo- 

nent v is applied to square IJKL in fig.4, and the equation of con- 

tinuity to the square EFGH. 
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Because in the equations for the river, v  and v  do not occur, 

the solution of the complete set of equations of sea and river is 

different for the second time step. The values of v  and h  in the 

sea are determined by the set of implicit equations. The boundary 

value of uu  at the mouth of the river is taken at time level M,N 
t + | 1 , which is computed at the previous half time step. The 

equations for the river are not considered in this set of equations, 

because after the computation of v  and h , the values of u  in the 

sea is determined by an explicit equation. Next values of u  and h 

in the river are again found from a set of implicit equations  for 

which u   and h„ „ are the boundary condition. This set of implic- 
m,N      M.,N 

it equations are solved in the same way as described above for h 

and u „ 

From the preceding computational scheme it appears that the dimen- 

sions of the section FB of which the length equals half of the size 

of the grid, must be modified such that the width is equal to the 

grid size k. The formulae for the modified dimensions are given in 

formula (5). The lengths, widths, storage widths and depths of the 

sections upriver of point follow from the schematization of the 

river. 

4. The Chezy coefficient in very shallow regions. 

The execution of tidal computations in very shallow regions 

of which the depth is small at low water or in which some parts are 

dry, encounter many difficulties. The convective terms can usually 

be neglected on the shallows because of the very small velocities. 

However the values and the directions of the velocities may change 

considerably in the transition zone from the channels to the shal- 

low region. In this zone the values of the convective terms maybe 

of the same order or larger in comparison with those of the other 

terms in the tidal equations. A very fine net must be considered 

for computations in such regions. 

Friction forces are most important on the shallows. To get 

an impression about the Chezy coefficients in very shallow region, 

detailed tidal and velocity observations in a part of the Brouwers- 

havense Gat of the Delta region in the Netherlands are carried out. 
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results are shown in relation to the depth. 

It appears that considerable variations occur in the values 

of the Chezy coefficients for a certain depth, though in general 

the values decrease with decreasing depth in accordance with the 

expectation. Accurate computations cannot be carried out on shal- 

lows, because of the variable bottom-shape in the shallow region. 

This example appears too complex for schematization. Nevertheless 

the storage of the shallows must be taken into account in the tidal 

computations. Furthermore the friction term should be the only term 

to be considered in the equations of motion. 

The determination of the Chezy coefficients in a river is 

dealt with by Dronkers, 1964. The measurements and computations 

mentioned in this section, are carried out by the Measuring Station 

at Zierikzee, Delta Works, 
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The mean slope of the shallow in the direction of the coast is 

about 1:1500. The bottom material consists of fine sand (150 \i  ), 

mixed with silt. 

Fig.5 shows the detailed contourlines of the depths of this 

region, and the locations where vertical tide and velocity meas- 

urements were taken. 

The dimensions of this region are about: length 3 kms and 

width 2 kms. The region has been divided into 32 rectangles of 

which the dimensions are: length 750 m (x-direction), and width 

250 m (y-direction, perpendicular to the coast). The mean depth 

in each rectangle has been determined with respect to the mean 

water level. The velocity vectors are resolved into the x-direction 

(u-component) and into y-direction (v-component). The tidal range 

was about 2.9 m. The maximum depth, where velocity measurements 

are taken was 3 m below mean sea level, and the minimum depth 1.4 m„ 

The vertical velocity distribution are determined at intervals of 

15 minutes. The minimum distance from the bottom was 0.2 m. The 

water levels are measured at intervals of 5 minutes at each gauge 

(see fig.5). A very accurate levelling of the gauges has been car- 

ried out for this purpose. The maximum differences in water level 

are of the order of 5 cm per km. 

The mean velocities and their directions at any 15 minutes 

are represented graphically on the maps and decomposed in the x- 

and y-direction. The mean velocity components are determined on 

the sides of each rectangle (fig.5) by interpolation of the meas- 

ured velocities. 

After this preliminary work the equation of continuity, and 

the two-dimensional tidal equations of motion are applied to the 

water motion in each rectangle. The equation of continuity has been 

applied for the checking of the velocity measurements, because the 

quantity of water flowing to and from each rectangle at a certain 

instant must balance the quantity of water remaining within the 

rectangle at rising tide, or leaving the rectangle from high water 

to low water. The computations are carried out after each period 

of twenty minutes. The equations of motion are applied for the de- 

termination of the values of the Chezy coefficient. In fig.6 the 
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