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ABSTRACT 

A long term time-dependent mathematical model has been 
developed for predicting the salinity distributions in the 
upper York River System, including the tidal portions of the 
Mattaponi and Pamunkey Rivers. 

The method of calculating the longitudinal dispersion 
coefficient is discussed in detail.  The study area and field 
project are described.  The downstream boundary condition was 
found from a scheme combining a semi-explicit technique and 
linear extrapolation.  The mass-balance equation, averaged 
over a tidal cycle and solved numerically by the implicit 
finite difference scheme, provided a reasonable solution and 
afforded economy in computer time.  Field data were compared 
with the corresponding model results, indicating the general 
accuracy of the methodology. 

INTRODUCTION 

The York River System of Virginia includes the Pamunkey 
and Mattaponi Rivers.  The junction of the two rivers forms 
the York River which is an estuarine river with a 30 mile course 
from West Point to the Chesapeake Bay near Yorktown, Virginia. 
The tidal portion of the upper York River serves as a spawning 
and nursery ground for anadromous commercial and sport fish. 
The construction of a dam has just been completed on the North 
Anna River, a main tributary of the Pamunkey, and a second dam 
is proposed on the Pamunkey River.  The effects of these dams 
will be the regulation and reduction of fresh water flow, thus 
altering the salinity regime and affecting the existing biota 
in the estuarine system. 

This paper presents a mathematical model developed to 
study salinity intrusion in the upper York River System.  It 
was used to assess the increased salinity intrusion due to 
various degrees of reduction of fresh water flow in the Pamunkey 
River.  Predicted salinity distributions aid in regulating flows 
from the impoundments resulting from the dams. 
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MATHEMATICAL FORMULATION 

The transport of salt in a roughly sectionally homog- 
eneous estuarine river may be described by the one-dimensional 
mass balance equation 

^ (AS) +|j CADS) -kWK.fi ) (1) 

where t is time, x is the distance along river, A is the cross- 
sectional area, Es is the dispersion coefficient, u and s 

are 

the cross-sectional mean velocity and salinity, respectively. 
The lateral variation of axial velocity and the transport of 
salt due to lateral convection and diffusion are not explicitly 
represented in equation (1), but are lumped into a single dis- 
persion term.  The concept of dispersion in a shear flow was 
first illustrated by Taylor (1953, 1954), both theoretically 
and experimentally.  Aris (1956) gave a rigorous mathematical 
proof of the dispersion representation of the transport due 
to interaction between lateral diffusion and velocity shear. 
Harleman (1971) has given a brief account of the subsequent 
extensions of the dispersion concept to natural bodies of water. 

To describe the long term, such as seasonal, variation 
of salinity intrusion, a time increment of numerical computation 
larger than a tidal cycle is desirable.  This large time incre- 
ment can not be applied to equation (1) directly; it has to be 
applied to the equation averaged over a tidal cycle.  Okubo 
(1964) performed the time average of equation (1) and arrived at 

l-t^+fjttD^-fjOilf) (2) 

where the overbars represent the average over a tidal cycle, 
and Uf is the velocity due to fresh water discharge Q, given by 

nf- J- (3) 

E is a dispersion coefficient including the time average of 
Es and the effect of transport by oscillating tidal currents. 

Since the York River model was to be used to predict 
the long term effect of fresh water reduction on salinity 
intrusion, the 'slack tide approximation' was chosen.  In the 
model, only the maximum salinity in the tidal cycle, i.e., 
the salinity at high water slack, was predicted.  No attempt 
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was made to predict the salinity variation within a tidal 
cycle.  The variation of parameters within a tidal cycle may 
be written as 

A = A + A' (4) 

U - U + U' (5) 

S = Sh + S' (6) 

Es = I8 + E' (7) 

where A', U' and E' are the deviation from the respective 
quantities averaged over tidal cycle, S^ is the salinity at 
high water slack and S' is the deviation from SJ-J .  Substituting 
(4), (5), (6) and (7) into equation (1) and averaging over tidal 
cycle, the equation becomes 

3      _ 3      _ 3      -    3Sh 
St  <Ash> + 7Z (AUf Sh)  = Sx  (AE -53T > <8> 

with 

where 

E = Es + Et (9) 

(10) 
3Sh 

3x 

The  one-dimensional  continuity  equation may be  written as 

^ A + |j CAD)  = q (ID 

where q is the lateral fresh water inflow along a unit length 
of estuary.  Averaging over a tidal cycle, equation (11) becomes 

liA + h (AU^ =« (12) 

Substituting equation (12) into equation (8), the mass 
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balance equation becomes 

8 3      1 3  _ 3SJ,       Q 
— Sh + U£— Sh = - — (AE —- ) 3— Sh (i3) 
St       3x    A 3x    3x       A 

FINITE DIFFERENCE APPROXIMATION 

Equation (13) was applied to a part of the upper York 
River System, between transects upstream of the salt intrusion 
limits in the Pamunkey and Mattaponi Rivers and a transect four 
miles downstream of their junction in the York River.  The 
inclusion of Mattaponi River in the model was necessary, even 
if the expected fresh water reduction was to occur only in the 
Pamunkey River.  The Mattaponi River contributes about 35% of 
the fresh water discharge to the York River.  The increased 
salt intrusion due to fresh water reduction in the Pamunkey 
will depend on the fresh water discharge in the Mattaponi while 
the salinity regime in the Mattaponi will be altered by the 
fresh water reduction in the Pamunkey.  The two rivers are a 
coupled system and can not be separated. 

The equation was solved numerically with an implicit 
finite difference scheme for each of the three rivers.  Twenty, 
fifteen and four transects were chosen for the Pamunkey, 
Mattaponi, and York rivers respectively, with average distance 
between transects being about 3 miles.  Except for the end 
transects of the three rivers, equation (13) was approximated 
by the following finite difference form for each of the transects. 

^  At Sh,± + 2(AXi-l + Ax±) 
[Uf,i'<Sh,i+l' - ^.i-l'' + Uf,i<Sh,i+l " Sh.i-1>] 

.    1  (L [(^Ll^±l5i±l.) (
sh,i+i - Sh.i) _ fr-A-i + HH^ 

AXJ_^ + Axi / 5i        2 Axi 2 

,Sh,i - Sh>l-1   ,      1        r   Aj'Ej'  +Ii+i'E1+1' Sh>1+i'  - Sh>1' 
(        AXLI        

) J + It'    l ( 2 »     ( AX! ) 

Aj-l'Ej-i' +A1'E1')     (Sh 
>*'  ' $h'1-1')]] -   -^- Sh>1 (14) 

Ax±_i ) AA 

where the subscript i designates the quantities at the ith 
transect, subscripts i-1 and i+1 designate the upstream and 
downstream transects respectively, the prime quantities are 
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evaluated at the end of the time step At, unprimed quantities 
are evaluated at the beginning of the time step, Ax-^ is the 
distance between the (i-l)th and the ith transects. 

BOUNDARY CONDITIONS 

The finite difference approximation of the mass balance 
equation transforms the differential equation into a system 
of algebraic equations.  In this model, there are three systems 
of simultaneous equations, corresponding to the three branches 
of the estuarine river, the Pamunkey, the Mattaponi and the 
York.  These three systems of equations are coupled with a 
mass balance equation for the element including the confluence. 
The three transects bounding the confluence are chosen to be 
so close together that the salinity may be assumed uniform 
within the circumscribed water body.  This leaves two upper 
and one lower boundary condition to be established to close 
the whole system of equations.  The two furthest upstream 
transects are located far beyond the salt intrusion limits in 
the Pamunkey and Mattaponi, hence their boundary conditions 
may safely be taken as zero salinity.  The boundary condition 
at the downstream end in the York River imposes some difficulty. 
The technique used is a combination of a semi-explicit scheme 
and linear extrapolation.  The salinity of the downstream 
boundary at the beginning of a time step is used as a boundary 
condition to estimate the salinity of other transects at the 
end of a time step.  The boundary condition is refined by 
linear extrapolation from the estimated salinities at the two 
transects immediately upstream.  The refined boundary condition 
is then used to calculate the salinity distribution at the 
new time step. 

EVALUATION OF PARAMETERS 

Convective Velocity.  In this 'slack tide approximation' 
model, the convective velocity includes only the non-tidal 
component, which is given by 

"'^-ioS} (15) 

Q(x,t) is the fresh water discharge from the drainage area 
upstream of the transect at distance x.  This is estimated 
from the record of stream gauge stations located upstream from 
the tidal limits.  At the ith transect, the fresh water 
discharge at the mth day is estimated by 

QiCm) = Q^On-n) + Ii_x,i (m) (16) 
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where Ii_         
the (i-l)th and ith transects, and assumed to be proportional 
to the drainage area increment between the two transects. A 
delay time of n days is allowed for the discharge Qi_i to 
travel from (i-l)th transect to ith transect.  This travel time 
is estimated from the average drifting velocity suggested by 
Pritchard (1958) as 

Ud =4-- eutAt (17) 
A 

where Ut and At are amplitudes of tidal current and cross- 
sectional area fluctuations, g is proportional to the corre- 
lation coefficient between the variations of tidal velocity 
and cross-sectional area. 

_    The cross-sectional area averaged over a tidal cycle, 
A, is the cross-sectional area corresponding to the fresh 
water discharge Q.  Due to the large volume of average tidal 
discharge Qt, A is a very weak function of Q except at the 
transects near tidal limits and at the time of flood.  A is 
computed by the hypothetical formula 

A = Ar(l+5_)
b (18) 

where 

Qt = 7 utAr <19> 

Ar is the cross-sectional area at zero fresh water discharge, 
and b is a constant less than unity.  It may be inferred from 
calculations of Gallagher and Munk (1971) on the spectrum of 
tides in shallow water that Ar should be greater than the cross- 
sectional area below mean-sea level by less than 1% for the York 
River system. 

Dispersion Coefficient.  As shown in equation (9)^ the 
dispersion coefficient includes two components: one is Es, the 
time average of dispersion due to shear effect and the other is 
E-t, the dispersion due to the oscillating tidal current. 

For a homogeneous estuarine river with a large width to 
depth ratio, Harleman (1971) suggested that 

5/6 
Ec = 77 n h  lul (20) 
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where n is the Manning friction coefficient, h is the hydraulic 
mean depth.  If equation (20) is substituted into the dispersion 
term in equation (1) and averaged over a tidal cycle, it is 
determined that 

_5/6  
Es - 77 n h  |u| (21) 

to the first order approximation of two assumed small parameters. 
The parameters are the ratio of depth fluctuation to averaged 
depth h and the deviation of phase angle 8 from % 11,  where the 
angle 6 is the phase between tidal current and tidal height. 
Equation (21) needs to be modified for use in case the estuarine 
river is not well mixed.  No attempt was made to modify this 
expression for the present model for the following two reasons: 
first, the model was formulated primarily for predicting the 
effect of fresh water reduction on salinity intrusion (an 
estuary usually tends to be better mixed as the fresh water 
discharge decreases); second, since the empirical data for the 
dispersion coefficient in the 'slack tide approximation' model 
are much larger than Es, it was expected that the modification 
would not change the total dispersion coefficient appreciably. 

For this upper York River model, a simple dimensional 
argument was used to formulate the dispersion due to the 
oscillating tidal current.  Dimensionally, the dispersion 
coefficient may be written as 

ccu£ 

where u and l  are the velocity and length scale of the transport 
mechanism involved, a is a coefficient of order of unity.  The 
apparent choice of the velocity scale would be the amplitude of 
oscillating tidal current C-f  There are several possible choices 
of length scale.  The tidal excursion seems to be the obvious 
one.  In most estuarine rivers of the Chesapeake Bay, including 
the York River System, the amplitude of the tidal current 
averages about 1.5 fps, which gives an excursion of 20,000 ft, 
and u£ roughly equal to 100 square miles per day, which is an 
order of magnitude larger than empirical values.  Furthermore, 
if the tidal current is uniform throughout every cross-section 
of the river, the salt transported upstream during the flood 
tide will be carried downstream to the original longitudinal 
position in the ebb tide, even if some may have been diffused 
laterally or vertically.  Thus, neglecting the fresh water 
flow and longitudinal turbulent diffusion, the same amount of 
salt will return to the original transect after a complete 
tidal cycle, resulting in no dispersion regardless of the 
tidal excursion.  It is the non-uniformity of the tidal current 
within a cross-section which induces longitudinal dispersion. 
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Saline water is carried upstream faster in the mid-channel 
and part of it diffuses vertically or laterally.  That 
diffused out of mid-channel will not be carried downstream to 
the original longitudinal position because of slower currents 
outside the mid-channel. Therefore, after a complete tidal 
cycle, salt originally in one transect will be spread out to 
other transects, resulting in longitudinal dispersion.  For 
a straight estuarine river with large width-to-depth ratio, 
Holley et. al. (1970) showed that the time scale of lateral 
mixing due to turbulent diffusion is much larger than a tidal 
cycle while that of vertical mixing is much smaller.  There- 
fore, the depth will be the choice of length scale.  The depth 
averages 20 ft. for the upper York River and gives 

uJt m  0.1 mi2/day 

an order of magnitude smaller than empirical data.  In reality, 
in an estuarine river with large curvatures, secondary flows 
always exist; the time scale of lateral mixing may have the 
same order of magnitude as the vertical one.  In this case, 
the choice of length scale would be the characteristic length 
of the cross-section such as the square root of the cross- 
sectional area.  In this upper York River model, Et was computed 
as: 

Et = oUtvX 

where the coefficient a was adjusted until the model output 
agreed with 1970 field survey data, which gave a = 2.5.  The 
tidal velocity and cross-sectional area were calculated from 
field measurements. 

FIELD MEASUREMENTS 

Intensive hydrographic surveys were carried out in 
October, 1969.  A total of 37 transects were occupied.  Each 
transect had between one and four stations, depending on river 
width.  Distance between transects averaged three miles. 
Transects located near sharp bends were positioned at least 
four river widths from the bend to insure representative 
measurements for the reach. 

Salinity, temperature and velocity measurements were 
obtained at hourly intervals for twenty five consecutive hours 
at each station.  Sampling depths were at six-foot increments 
from surface to bottom.  Bathymetry of each transect was obtained 
with a recording sonic depth sounder. 

Cross-sectional averages of the longitudinal component of 
velocity were calculated and plotted as function of time over 
25 hours which gave the time variation of current for two 
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consecutive tidal cycles.  The tidal amplitude was calculated 
as the average of the maximum flood and ebb currents.  Cross- 
sectional areas were determined by planimetry of the bottom 
profile data collected from sounding. 

For the purpose of model verification, a series of slack 
water surveys have been conducted since August, 1970.  Salinity, 
as well as temperature, dissolved oxygen and biochemical 
oxygen demand, were measured at local slack water before ebb 
tide or slack water before flood tide.  One station on each 
transect was sampled with measurements made three feet below 
the surface and three feet above the bottom. 

RESULTS AND DISCUSSION 

A mathematical model for salinity intrusion has been 
developed for the upper York River System.  The model is based 
on the one-dimensional mass balance equation averaged over a 
tidal cycle.  In the model, only the salinity at high water 
slack is predicted.  No attempt is made to predict the salinity 
variation within a tidal cycle.  The objective of this model is 
to simulate the long term variation of salinity intrusion and 
to assess the increased salinity intrusion due to various degrees 
of fresh water reduction in the Pamunkey River. 

Figure 1 shows the comparison of the model output with 
field data of the York and Pamunkey Rivers.  The slack water 
run data of August 14, 1970 was used as the initial condition 
of the model.  Saline water intrudes further upstream in the 
dry season as indicated by the model output and the field 
data of late September and mid-November.  Figure 2 shows the 
same comparison for the Mattaponi River.  The agreement is 
not so good as that for the York and Pamunkey, particularly 
the comparison on November 15, which was four days after a 
large increase in fresh water discharge.  It was observed 
that the model failed to yield satisfactory results with very 
high fresh water discharge, because the model responds too 
slowly to sudden large increases in fresh water discharge. 
Once it responds to flood conditions, all of the saline water 
is flushed out of the modeled portion of the estuary.  Even 
after the flood recedes, the salt will not return because of 
the scheme for setting up the downstream boundary condition. 

Figure 3 shows a sample of increased salinity intrusion 
due to fresh water reduction.  With the dam on the North Anna 
River completed, one of the proposed fresh water flow regula- 
tions is a minimum of 40 cfs discharge from the reservoir 
during the dry season.  Using the 1968-1969 fresh water dis- 
charge record as input, the solid curves show the salinity 
distributions with natural discharge and the dashed curves 
show the salinity distributions with the proposed regulation. 
In addition to the salinity increase at a particular location, 
it is also possible to follow the upstream movement of a 



2284 COASTAL ENGINEERING 

particular isohaline.  The ecologist is usually more inter- 
ested in this increased intrusion distance for given salinities, 
e.g. the 5$, isohaline.  Figure 4 shows the similar comparison 
for the Mattaponi River.  Since only the discharge in the 
Pamunkey is regulated, the effect of the fresh water reduction 
decreases with distance upstream from the river's junction. 

The model was developed to predict the effect of fresh 
water reduction on salt intrusion. The critical time of this 
effect is the dry season when the saline water intrudes furthest 
upstream. Therefore, the present model was verified with field 
data taken in the dry season and the constants in the model 
adjusted accordingly.  It has been mentioned that the model 
failed to yield reasonable results for high fresh water dis- 
charge and caution should be taken in the application of the 
model. 
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