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A NUMERICAL MODEL FOR THE HYDROMECHANICS OP LAGOONS 

J. van de KREEKE1 

ABSTRACT 

A numerical model is presented to describe the hydromechanics of lagoons 
connected to the ocean by relatively narrow inlets.  Because special atten- 
tion is given to the flushing, all second order terms in the hydrodynamic 
equations are retained.  The study is restricted to lagoons with a one- 
dimensional flow pattern and water of uniform density.  In designing a 
numerical solution to the equations, the inlet equations are regarded as 
implicit boundary conditions to the equations describing the flow in the 
lagoon proper.  The advantages of this approach are: (1) the size of the 
computational grid in the lagoon can be chosen independently of the relatively 
small dimensions of the inlets and (2) the flow at branching inlets (an inlet 
connecting a lagoon to the ocean such that branching of the inlet flow can 
occur) still can be described by a one-dimensional tidal model. 

The predictive capability of the numerical model is confirmed by 
favorable comparison between measured and computed particle paths and net 
transport for a series of laboratory experiments.  In the experiments 
a canal of uniform width and depth is freely connected to a tidal basin at 
one end and at the other end is connected to the same basin by a submerged 
weir. 

INTRODUCTION 

The computational model presented in this paper is designed to simulate 
the tidal motion in the inland coastal waters found along the Florida Atlantic 
coast and the Gulf of Mexico coast. Many of these waters, from now on 
designated as lagoons, are characterized by (1) an elongated shape, (2) narrow 
inlets connecting the actual lagoon to the ocean and (3) fairly large tidal 
amplitude to depth ratios.  The elongated shape of the lagoons permits the 
use of the one-dimensional tidal equations.  Because of (3), the non-linear 
terms in the equations are retained.  Also, these terms must be accounted for 
to correctly reproduce the tide-induced flushing. 

The numerical scheme for the lagoon proper is based on an explicit 
difference scheme described by Reid and Bodine [3].  The inlets are 
incorporated in the model using Dronkers [2] work on river junctions and 
the computational scheme presented by Balloffet [l].  The performance of the 
numerical model is evaluated by comparing computed and measured results for 
a series of laboratory experiments. 
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NUMERICAL MODEL 

Equations 

The equations used to describe the flow in the lagoon are the equation 
of continuity 

M + 55 = M 
&t  bx (1) 

in which T| = water surface elevation, q = discharge per unit width M = storage, 
t = time coordinate, x = space coordinate, and the equation of motion 

5t  h 6x 6x    (h + T|) (2) 

in which h = mean depth, g - gravitational acceleration, F -  resistance co- 
efficient.  For the inlets, because of the complexity of the flow (contraction, 
lateral stresses), recourse is taken to a semi-empirical representation 

Q-±(Mr»r)*[i + |^p-> ]* \/K>" V'      (3) 

- sign for f\j£  T]o 

+ sign for %£ 7]o 

in which Q = total discharge, P = wetted perimeter of inlet cross section 
measured at mean ocean level,R = hydraulic radius for the inlet cross section 
measured at mean ocean level, L = length of inlet, B = width of inlet, T| - 
ocean tide T|i = lagoon tide, m = coefficient which accounts for entrance losses 
and the non-uniform velocity distribution. 

Numerical Scheme 

The numerical scheme for the lagoon is space and time staggered. Water 
levels are computed at n.At and discharges at  (n + l/2)At.  The water levels 
apply at the center of the grid blocks and the discharges are computed at 
the gridlines; see Figure 1. The mean depth h and the lateral inflow or 
rainfall are given at the time level and location of Tj.  The basic recurrence 
equations for the one-dimensional tidal equations are 

q,(i) = Sa^iy Cq(i) + iff (D(i) + "(i-^oia-i) - Tid))]    (4) 

1t'(i) = TRi) + H (q'd) - q'(i+D) + M(i)At        (5) 
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FIGURE 1.  LOCATION OF VARIABLES IN THE NUMERICAL GRID 

FIGURE 3.  FUNCTIONS REPRESENTED BY EQUATIONS (6) AND (7) 
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in which 

D(i) = 71(1) + h(i) 

G(i.D = i +  4F At Jq(i?l     + ^ (S(i-H) - q(i-l)) 
(D(i) + D(i-l))2 Ax  (h(i) + h(i-l) 

Primed symbols denote values of the variables at time step At later. 
Equations (4) and (5) are based respectively upon the differential 
Equations (2) and (1),  The differential quotients in these equations 
are replaced by difference quotients using central differences.  The 
difference quotients for Equation (1) are centered about (n+ l/2)At 
and the location of T|.  The difference quotients for Equation (2) are 
centered about time level n.At and are centered in space about the 
location of q.  Starting from the initial conditions all the q's are 
computed for the next time level by means of Equation (4), then the 
T]'s are computed using Equation (5).  It is noted that because of the 
convective acceleration, the recurrence formula (4) includes values as 
far apart as 2 space steps; see expression for G(i-l).  This leads to 
difficulties when the boundary conditions at  open boundaries are given 
as water levels.  In that case, the convective acceleration is taken off 
center for the grids adjacent to those boundaries.  After some algebraic 
manipulation, the following result is obtained. 

Q = + DD \J\   1). - H0| ' 

+ sign for H. > 11 (6) 

- sign for T\.  < T\ 

in which 

Q'(i+1) + Q(i+l) 
2 

I     2 11 + T], 
-2&  (5 + I _^_1 , 3/2 
2FL + mR P 

In the computational procedure the inlet equation, Equation (3), may 
be regarded as an implicit boundary condition for the flow in the lagoon. 
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The way in which this boundary condition is incorporated in the numerical 
scheme depends on the inlet configuration.  The following two cases are 
considered: 

- An inlet connecting a lagoon to the ocean such that no branching 
of the inlet flow occurs; see Figure 2A. 

- An inlet connecting a lagoon to the ocean such that branching 
of the inlet flow can occur; see Figure 2B . 

Consider the "nonbranching inlet"; see Figure 2A.  The total discharge Q 
rather than the discharge per unit width, q, is used as a dependent variable. 
An auxiliary water level T^ is introduced which is computed at the same time 
level as the water levels in the lagoon.  Starting from the initial condi- 
tions, all the discharges in the lagoon except Q(i + 1) can be computed 
using the procedure described before.  The value of Q(i + 1) is then 
computed as follows.  Q(i + 1) is related to the known ocean level Tj0 and 
the auxiliary level Tl^ by means of the inlet equation.  A second equation 
relating Q(i + 1) and 111 is found by applying the dynamic equation, Equation 
(2), between the discharge stations Q(i + 1) and Q(i).  Note that when 
computing the flow in the lagoon, the dynamic equation is applied between 
two water level stations. The difference form of the dynamic equation 
applied between Q(i + 1) and Q(i) yields 

Q = AA(71. - T] ) + BB + AA T] ,_. 
l   o o {f) 

Q = Q'd + 1) + Q(i + 1) 
2 

AA 

BB 

-g D(i) Bl At 
GAx 

tQ(i+l)+Q(i) -Q'(i) . G + " B1 »W  At 

[H(i) + 11(1-1)]} /2G + Q(1^i;) 

r  - , , FAtlQ(l+l) + Q(i) |   2At[Q(l+l) - Q(j) ] 

2D(i)2Bl Axh(1)B1 

In determining the difference form, the terms in both the inlet and dynamic 
equation are centered about n . At. 

The general shapes of the curves Q = f(T|. - r{\  ) represented by the 
Equations (6) and (7) are indicated in Figure 3.   Equation (7) represents 
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a straight line. The slope of this line, AA, is for most practical cases 
negative. Therefore, the sign of (BB + AAT) ), which is a known quantity, 
determines the sign of (T]. - T] ) which in turn determines the sign to be used 
in Equation (6) .  Eliminating %T\.   - 1] ) between Equations (6) and (7) yields 

AA 
4 —r (AAT] + BB) 
DD2 

AA 

w2 

for (BB + AAT] ) > 0 

and 

for (BB + AAT] ) < 0. 

1 - \ / 1 + 4 ^-   (AAT) + BB) 
DD     ° 
AA (9) 

DD2 

Note that only the first order terms in (T^ - T]0) are eliminated because 
second order terms are still present in the factor DD.  Equations (8) and 
(9) therefore may be regarded as being quasi-linear, which suggests finding 
a solution by means of a perturbation method.  First the value of (T^ - H0) 
in DD is taken equal to the value at the previous time step,  The value of 
Q can then be found from Equation (8) or (9) depending on the sign of 
(BB + AAT10) .  Knowing Q, the value of (% - Tl0) is determined from either 
Equations(6)or (7).  This value of (\  - T]) is substituted in DD.  The 
Procedure then is repeated until the difference between the computed and 
previously computed value of Q is within certain limits. 

The numerical scheme for the "branching inlet" (see Figure 2B) involves 
four unknowns Q'(i+1), Q'(i+2), Q'(i+2), Q'^ and T\s   as compared to only two, 
Q(i+1) and Tli, for the "nonbranching inlet". The four unknowns are related 
by the following four equations 

- the inlet equation which takes the form of Equation (6) 
Q\ + Q. 

with Q=—^_—i 

- the dynamic equation applied between the locations of Q(i) 
and Q(i+1) ; this equation takes the form of Equation (7). 

- the dynamic equation applied between the locations of Q(i+2) 
and Q(i+3) ; this equation takes the form of Equation (7) with 
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Q(i) replaced by Q(i+3) , Q(i+1) replaced by Q(i+2) , T|Ci> re- 
placed by T](i+2), 11(1-1) replaced by T](l+3) , h(i) replaced by 
h(i+2), Ax replaced by -Ax, and Bl replaced by B2. 

the continuity condition which, when assuming that the water 
level in the hatched area is the same everywhere, takes the 
form 

Q(i+1) = Q. + Q(i+2) 

Elimination of Q(i+1) and Q(i+2) between the two dynamic equations and the 
continuity equation yields a relation between Q. and T], similar to Equation 
(7) .  This equation together with the inlet equation tn"en can be solved 
following the procedure described before. 

Finally, it is noted that in one-dimensional flow computations, it is 
often necessary to divide the lagoon into parts with different widths; 
see Figure 2C.  The flow at the boundary of two such parts may be computed 
following a procedure similar to the one applied to the "nonbranching 
inlet", replacing the inlet equation by a second dynamic equation between 
the locations of Q(i+1) and Q(i+2). 

COMPARISON WITH LABORATORY EXPERIMENTS 

To evaluate the capability of the computational model, to predict the 
water motion in lagoons, computed and measured float paths were compared 
for a series of laboratory experiments.  A straight canal of uniform depth 
and width simulating a lagoon, was constructed in a tidal basin; see Figure 
4.  The canal was open at one end and at the other end provided with a sub- 
merged sharp crested weir.  The average water depths used in the experiments 
were 5 cm and 6.5 cm, the wave amplitudes varied between 0.7 cm and 1.2 cm 
and the wave periods varied between 70 sec and 120 sec. Maximum velocities 
in the experiments varied between 3 cm/sec and 5 cm/sec, depending on water 
depth, amplitude and period.  Reynolds' numbers (Re - ~&   were larger than 
800 (the limit for fully turbulent flow) 60% - 80% of the time (the exact 
percentage depending on depth, period and amplitude). 

The floats used in the experiments were cylindrical and had a diameter 
of approximately 0.5 cm, the top was given a conical shape to minimize 
effects of surface tension.  The length of the floats was chosen as large 
as possible to arrive at an average over depth particle path, but short 
enough that the float did not contact the bottom.  Floats were released 
one at a time either in the middle of the lagoon or 5 cm from the side 
walls.  Positions of the float were marked at each slack tide for a period 
of at least five tidal cycles. 

Typical examples of measured and computed float paths are presented 
in Figure 5.  In the computations the flow over the weir was described by 
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FIGURE 5. MEASURED AND COMPUTED FLOAT POSITIONS 
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an equation similar to Equation (3) 

qw=±,±hw    \/^i\ " \l ' (10) 

H-  sign for Ti. > 1] 
i ~~ o 

sign for 7] > 11. 

In Equation (10) 

q  = discharge per unit width over the weir 

u^_ = weir coefficient 

h  = total depth over weir 
w 

T\      = water level in tidal basin 
o 

Tj,  = water level in canal 

For all the experiments the net discharge q was determined from the 
measured particle path using an empirical method described by van de 
Kreeke [4] and compared with the computed net discharge.  The results 
are presented in Figure 6. 

SUMMARY AND CONCLUSIONS 

The numerical model presented in this paper is especially designed 
for lagoons connected to the ocean by relatively narrow inlets and 
for which the flow field can be described by the one-dimensional 
tidal equations.  The flow in the inlets is described by a semi- 
empirical relation.  In the equations all non-linear terms are 
retained in order to correctly reproduce such phenomenon as tide- 
induced mass transport and variations in mean level along the 
longitudinal axis of the lagoon. 

- The tidal equations are solved using an explicit difference scheme. 
In the computational model the inlet equations are regarded as im- 
plicit boundary conditions to the tidal equations.  The advantages 
of this approach are: (1) the size of the computational grid in the 
lagoon can be chosen independently of the relatively small dimensions 
of the inlets and (2) the flow at branching inlets (an inlet connect- 
ing a lagoon to the ocean such that branching of the inlet flow can 
occur)  still can be described by a one-dimensional model. 

- The predictive capability of the model is confirmed by favorable 
comparison between measured and computed float paths and net dis- 
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charges  for a   series  of  laboratory experiments.    For  the 
experiments   the  relative magnitude  of   the different  terms 
in the  equations  differs   substantially  from those  found  under 
prototype  conditions.     Therefore additional  corroboration of 
the  computational model at  the prototype   level   is  recommended. 
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