
CHAPTER 99 

FLUID FORCE ON ACCELERATING BODIES 

Wallis S. Hamilton1 

Abstract 

The force exerted by a liquid on a moving body always depends on 
the preceding velocity and acceleration of the body. 

The Basset-Lai equation, derived from the linearized equation of 
motion, gives the force on spheroids when convective acceleration of 
the water particles may be ignored.  Examples prove that the history 
integral it contains accounts for a large portion (even all) of the 
force. Measured forces on a cylinder anchored in accelerating water 
show that history is equally important when convective accelerations 
are large. An important unanswered question is whether history terms 
that will fit a range of motions can be invented for simple non-linear 
problems. 

For non-linear repetitive motion, such as the force exerted on 
piles by regular waves, no explicit history term is needed. The usual 
division of force into inertia and velocity portions is possibly less 
sound than a suggested alternative form from dimensional analysis. 

One cannot expect to unravel the hydrodynamics of irregular wave 
forces, but he may use similarity principles to predict their probabil- 
ity distribution from measurements made elsewhere.  Irregular waves 
will be statistically similar, altho mean heights may differ greatly, 
if the probability distributions of suggested characteristics of the 
gage records are alike.  Given similar waves and structures scaled to 
the waves, the probability distributions of dimensionless wave forces 
also will be alike, and the forces at one place can be predicted from 
measured forces at another. 

Introduction 

Coastal engineering problems often involve the force exerted by 
water on a body when the water and/or the body are accelerating. 
Examples are wave forces on piles, the fluid force on a dam or under- 
water structure during an earthquake, and the traction on particles 
during bed-load movement. 

If a body moves unsteadily thru a liquid, as when one stirs coffee 
with a spoon, the velocity pattern in the fluid at a given instant 
evidently depends upon the prior motion of the body.  If, at the instant 
of interest, the velocity vector and its time rate of change were known 
at all points in the flow field, and if the shear and normal stress 
components at one point also were known, one could integrate the Navier- 
Stokes equations numerically to find the instantaneous stresses, and 
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consequently the force, exerted by the fluid on the body. Since the 
velocity pattern was generated by a sequence of body motions, the 
instantaneous force also will depend upon this sequence, i.e., upon 
the history of the acceleration of the body. 

Similarly, if irregular waves move past a stationary pile, the 
velocity and acceleration of the water particles near the body at a 
chosen time will depend partly upon the eddies in the wakes generated 
by antecedent waves. Consequently the instantaneous force on the pile 
will depend somewhat on the recent local wave history. Thus the maximum 
force exerted on a pile by a wave of given height and length is not a 
fixed number but a variable that depends upon the sizes of the two or 
three waves immediately preceding it. 

The above reasoning and example suggest that a comprehensive equa- 
tion for the force on a body accelerating in a fluid should contain the 
usual instantaneous velocity and acceleration terms plus corrections 
based on the acceleration that took place before the instant of interest- 
history terms. A review of the literature, however, shows that most 
authors have avoided using history terms in the force equation, even 
tho they recognized a general need, by choosing types of motion that do 
not require them. For example, References [l] thru [10] show that there 
is no lack of analyses of pendulums that oscillate harmonically in a 
fluid or of forces exerted by uniform oscillatory waves on cylinders and 
other objects.  In such uniform periodic motion, the fluid velocity 
pattern changes continually during a cycle,but the succession of patterns 
is repeated during the next cycle and the next.  Hence the force becomes 
a periodic function of time, altho not necessarily sinusoidal, and may 
be expressed in terms of phase or instantaneous velocity and acceleration. 

Another group of authors [ll] thru [14] has tried to avoid using 
history terms by treating other special problems such as (a) suddenly 
started, (b) constantly accelerated, or (c) freely falling objects. 

While the need to study different types of accelerated motion case 
by case is genuine, the analyst who always thinks about the influence 
of antecedent motion on the present force will have a better grasp of 
the physical problem than one who does not.  In some instances, moreover, 
he will be able to present the results of both mathematical analysis and 
experiment in best form if he uses a history term in the force equation. 

The purposes of this paper are:  (1) to present examples that show 
how important history may be; (2) to divide unsteady force problems into 
three categories according to the motion history, namely, (a) simple 
non-repetitive motion, (b) simple repetitive motion, and (c) irregular 
and random motion; and (3) to suggest a suitable way of expressing the 
fluid force for each category. 

Definition 

Both linear and non-linear flow problems will be considered in the 
paragraphs that follow. If the convective acceleration term (u-v)u2 in 
the Navier-Stokes equation is small enough, compared to the other terms, 

tt is the fluid velocity vector, a function of space and time. 
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to be ignored, the problem is linear.  Physically this means that 
separation and turbulence will be absent altho the maximum Reynolds 
number may be quite large. Conversely, of course, convective accelera- 
tions are not negligible in non-linear problems, and wakes behind blunt 
bodies are to be expected. 

Solution to a Linear Problem 

By neglecting convective accelerations, Lai and Mockros [15] were 
able to formulate a mathematical solution to the problem of the force on 
a spheroid moving along its axis of symmetry.  The resulting equation 
can be used to calculate the fluid force for linear problems of motion— 
repetitive, non-repetitive, and irregular. Further, it contains an 
explicit history integral and thus can be used to illustrate the impor- 
tance of accelerations that take place before the instant at which the 
force is calculated.  The Lai equation becomes identical to the Basset [16] 
equation when major and minor axes of the spheroid are equal, i.e., when 
the body is a sphere.  The general form is 

-F(t) = CAm^ + Cv3nnDv + CH/nTT ^ J |£(t - T)-% dr  (1) 

0 
in which F(t) is the fluid force at time t, C,, C , and C are the added 

mass, velocity, and history coefficients, m is the mass of displaced 
fluid, v is the velocity of the spheroid, and D its diameter normal to 
the axis of symmetry, u. and p are the viscosity and density of the fluid, 
and t and T are time measured from the beginning of motion.  For a sphere: 
CA - hi  Cv - 1; CH = 6. 

It is worth noting that the first term on the right of Eq. (1) is 
the resistance due to the irrotational added mass, and the second is the 
steady-state viscous drag. 

Simple Non-Repetitive Motion 

We introduce as an example a body that has been moving thru an 
incompressible fluid for a long time at constant velocity. An external 
force then stops the object quite rapidly.  During deceleration and when 
it is stationary the body obstructs the forward flow it previously 
generated. Thus the fluid will exert a forward force on the body, i.e., 
a force opposite in direction to the original drag force. The magnitude 
of the forward force cannot be expressed as a function of the instantaneous 
velocity and acceleration of the object after the object has stopped; 
history terms are required. 

Other examples of simple non-repetitive motion are:  constant 
acceleration or deceleration from one steady state velocity to another; 
acceleration from rest by a constant external force such as gravity or 
buoyancy; and the deceleration that a body falling thru air may experi- 
ence as it enters water.  In each of these examples the force at a given 
instant depends on the antecedent motion as well as on the instantaneous 
velocity and its derivatives.  By definition then, motion may be classified 



1770 COASTAL ENGINEERING 

as simple and non-repetitive if the fluid force on the body at any instant 
can be expressed by a manageable equation in which history terms need 
to appear. 

Suppose the body in the first example is a small sphere moving in 
oil. Then values of diameter, viscosity and velocity may be chosen to 
satisfy linear problem requirements and make Eq. (1) valid. The writer 
chose as a sample problem a sphere, 0.01 ft. in diameter traveling with an 
initial velocity of 0.1 ft./sec. thru SAE30 oil. The ball was brought to 
rest in 1/90 sec. by a suddenly applied external force that produced 

—I  = -9.  The resulting fluid force calculated from Eq. (1) is shown 

in dimensionless form in Fig. 1. Note that the time scale is made 
logarithmic to expand the deceleration period and that the actual time 
in seconds is one-tenth of the dimensionless time. The deceleration 
began arbitrarily at 10-4 on the dimensionless time scale. 
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Fig. 1 Influence of history on fluid force 
acting on small sphere stopped in oil 

The dimensionless force on the sphere changed from a steady state 
drag of -2 to -1.5 as soon as the deceleration began, rose to a maximum 
value of 3.88 (in the forward direction) just as the body stopped, and 
then decayed toward zero during a comparatively long period. The large 
effect of the history iutegral is apparent, since the maximum forward force 
is 0.5 if this term is omitted and no force occurs after the motion stops. 
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Other authors have used the fluid force given by Eq. (1) to study 
such matters as spheres falling thru a fluid and the response of a 
submerged sphere mounted on a vertical cantilever spring. Hjelmfelt 
and Mockros [17], for example, published the curves shown in Fig. 2, 
which show that a spherical sand grain falling from rest in water 
(density ratio 2.65) will take about three times as long to reach 0.6 
of its terminal velocity as it would if there were no history force. 
Mockros and Lai [18] compared the same linearized falling-sphere theory 
with experiments. They found better agreement between the two when the 
history term was included than when it was not. 

/.0\— 

DIMENSIONLESS TIME—j^z 

Fig. 2 Influence of history on velocity of 
sand grain falling from rest in water 

For a submerged spherical mass on a spring Hjelmfelt et al., [19], 
discovered that the history term prevents critical damping if the mass 
is displaced from its equilibrium position and released. The moving 
fluid always pushes the mass past the equilibrium point. 

We now turn to non-linear problems in the simple non-repetitive 
motion category.  In the first place no general mathematical solution 
like Eq. (1) is available for any shape of body.  Second, one must 
suppose that prior motion influences the present force altho the Basset 
history integral may have little resemblance to the kind of history terms 
required.  Third, an empirical equation should give the proper force 
when the body has been moving with constant velocity for a long time and 
when it begins to accelerate from rest or from a long period of constant 
velocity. 
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Suppose we choose that the history terms, whatever their form, 
amount to zero after a long period of rest or constant velocity and 
hypothesize that the correct force is given by 

-F(t) = CAm|^ + CV
P-MV + History terras   (2) 

in which A is the appropriate cross-sectional or wetted area. To satisfy 
the constant velocity condition, C must be the steady state drag 

coefficient, and to give the proper force at the instant acceleration 
from rest begins, C, must be the irrotational3 added mass coefficient. 

Consequently if the hypothesis is to be correct, the irrotational C 
A 

must apply at the instant a body begins to accelerate from constant velo- 
city.  Hamilton and Lindell [20] have shown, using spheres towed in water, 
that it does apply for low velocities (Reynolds numbers less than 35,000). 
More evidence is desirable. 

The history terms of Eq. (2) remain to be invented by studying 
experimental data. As an example of the job that these terms need to 
do, the writer has used Eq. (2) and data published by Sarpkaya [21] to 
prepare Fig. 3.  Sarpkaya measured the fluid force on a 2.75-inch circular 
cylinder fixed in a water tunnel.  Its axis was normal to the flow. The 
water, initially at rest, was given an essentially constant acceleration 
for about 0.12 sec, producing a velocity which thereafter remained 
essentially constant at 3.1 ft./sec. 
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Fig. 3 History force on a cylinder fixed in rapidly accelerated water 

3For supporting evidence see Mellsen et al. [14] and Hamilton and 
Lindell [20J. 
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For Fig. 3 the history force was calculated by subtracting the 
calculated added mass force and the calculated steady state drag from 
the measured force.  The irrotational coefficient C, for fluid accel- 

erating past a fixed cylinder is 2.00 and the steady state drag coef- 
ficient C was taken from a standard plot.  The instantaneous velocity 

was used to compute the Reynolds number. 
Referring now to Fig. 3, we see that for a short time after 

acceleration began the history force was positive, meaning that the 
added mass and drag terms were not quite large enough to make up the 
total force.  This is compatible with linear theory, which may be 
expected to apply for a very short time after the beginning of motion. 
But after about 0.02 sec. the required history force begins to depart 
from what the linear history integral would indicate, and by the end of 
the acceleration period it reaches a poorly defined negative value. 
This simply means that, although separation has begun, the wake is much 
smaller than the steady state wake at the instantaneous velocity. Thus 
the drag term is much too large and a negative correction is needed. 
On the other hand, the wake overexpands by time =0.2 sec. and the 
steady state drag is inadequate from then until about time =1.3 sec. 
In this region a positive history correction is required. 

This example shows that adopting Eq. (2) for non-linear force 
problems puts the burden of correcting the drag for transient wakes 
onto the history terms. They would also need to compensate for the 
existence of a laminar boundary layer when the steady state drag at the 
instantaneous Reynolds number presumes a turbulent one--and vice versa. 

In the more general problem we have a change from one speed to 
another. The magnitude and duration of the corrections depend upon 
the initial and final velocity, the magnitude of the acceleration (or 
deceleration), the fluid properties, and the size and shape of the 
object. And the essence of the force problem is to discover whether or 
not there are similarities in flow behavior that permit unique history 
terms or any other explicit expression to apply to a range of problems 
rather than to one special case. 

Simple Repetitive Motion 

An example of this kind of motion is a steady state oscillation, 
not necessarily harmonic, but with an easily identified period.  Uniform 
waves are repetitive; a damped oscillation is not.  The basic reason 
for introducing the repetitive category is that no history terms or 
history integrals are needed in a fluid force expression.  The force is 
a function of phase. 

To illustrate the linear case let us consider a sphere oscillating 
in a liquid according to 

v = ba sin at  (3) 

in which b and o* are the amplitude and frequency. 
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When Eq. (3) is differentiated and substituted into Eq. (1) and 
the integral evaluated from T = -», when the motion began, to T = t, 
the present time, the result may be put into the alternative forms 

-F(t) =mg+f a) ^ + 3TTUD(I + ^)V  (4) 

-F(t) = C(a)mba2sin [at + cp(a)]     (5) 

in which C(a)  is  a force coefficient,  cp(o)  is a phase  shift,   and 

C(a) = \ [(1 + 9a)2 + (9a + 18az fj* .(6) 

Form (4) is due to Stokes [l].  Since the coefficient of dv/dt 
contains a  and thus depends on viscosity, this form is sometimes used 
to support the argument that added mass coefficients depend on viscosity. 
But whether they do or not is entirely a matter of definition since 
there is no a priori rule that says all multipliers of the instantaneous 
acceleration must be included as part of the added mass.  The writer 
prefers to regard m/2 as the added mass, which is the value for a sphere 

/q  \dv 
from irrotational theory, and recognize ml j <*)— as part of the history 

integral. 
In form (5) the force is a harmonic function with a known amplitude. 

It leads the velocity function by a known phase angle. By deriving a 
similar expression with the history integral omitted and comparing it 
with Eq. (5), one may show that the amplitude of the force always is 
increased by the history integral. This is consistent with the result of 
Hjelmfelt and Mockros [22J who determined how well sand particles would 
follow straight line oscillations of a liquid in which the particles 
were suspended. They found that including the history integral increased 
the ratio of the amplitude of the particle motion to the amplitude of the 
water motion. Their result applies to sand transport by waves. 

Stokes' [l] form for expressing the fluid force on an oscillating 
sphere in the linear case, Eq. (4), has been carried over to non-linear 
oscillation problems by numerous authors who like to use 

-w <*%+%**£-   (7> 
in which C^ and C are experimental inertia and velocity coefficients 

which may or may not vary during a cycle. 

'For example, see References [5] thru [10] and [23]. 
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This form has become a standard one for expressing the wave force 
on piles.  The horizontal components of acceleration and velocity of 
the approaching water particles are calculated from one of the oscilla- 
tory wave theories, and the coefficients, assumed constant thruout a 
cycle, usually are based on tests. Values often are chosen to produce 
the proper maximum and minimum forces. 

It is instructive to compare Eq. (7) with Eq. (2)  Eq. (2) has 
been recommended for non-repetitive motion, but is valid for periodic 
motion.5 The equations are similar except that (2) contains explicit 
history terms and (7) does not.  Since the wave force on a pile at any 
chosen value of the phase depends on the prior motion, C„ and C in 

Eq. (7) must absorb the influence of history. Hence, at best, their 
values can equal C, and C in Eq. (2) only under particular circumstances. 

Cw and C„ depend on phase and wave height divided by pile diameter, 
M     D 

whereas C, and C are irrotational added mass and steady state drag 

coefficients respectively. 
Eq. (7) cannot be put into the harmonic form of Eq. (5) because 

the drag force in (7) is proportional to the velocity squared. Never- 
theless, the fluid force in any repetitive motion is a repeating function 
of the phase, which may be expressed non-dimensionally as t/T, where T 
is the period. The dimensionless displacement of the body (or of the 
fluid in the absence of the body if the fluid moves), say S/D, is presumed 
to be a known function of t/T. (Here D is a suitable body dimension, 
usually transverse.) It produces a measured fluid force pattern F(t/T) 
which may be written in dimensionless form as 

F 

©=:#^*<D <*> pD^/T2   W       PDV/T3 

whereff—) = the measured F( — I divided by the measured F  , and b is a 
\i/ \1/ max 

pertinent amplitude such as the maximum displacement 
F 
m 

pl^b3/!2 

F 
Further, for a particular repetitive motion  " *—- will depend on 

— and ——.  Consequently 

F 

pirV/T2 (f)     ptf^/T8 (D '   v?) x £
(T)  (9) 

The form of Eq. (9) makes the maximum force an easily described function 
but provides the option of expressing the force detail thruout the cycle 

by plotting f (|) . 

sOdar and Hamilton [24] used Eq. (2) for the force on a sphere 
oscillating in oil and invented a history term based on the Basset history 
integral. 
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For the force exerted on objects by regular waves the counterpart 
of Eq. (9) is 

F 

(f) = pD3H2/Ts (D' D' il3"' ^T7 X \T)      (10) PD
2
H"7T

2
 \TJ     pD3^/!3 \-D> D> gT2> ^Tj 

in which H is the wave height, h is the water depth, and g is the 
acceleration of gravity.  Eq. (10) assumes that surface tension may be 
neglected and that the wavelength will be fixed by the choice of h, H, 
and T. The viscous parameter may be unimportant. Also for objects that 
are large compared to the water particle displacements, acceleration 
forces will dominate, and a more suitable dimensionless force is 

•••„,„B . Garrison and Perkinson [25] have used a set of dimensionless mn/1 
parameters somewhat like those suggested to express the maximum wave 
force on horizontal cylinders. 

Obviously the writer prefers Eq. (10) to Eq. (7).  Eq. (7) uses inertia 
and drag coefficients that are too easily confused with irrotational added 
mass and steady state drag coefficients. 

Irregular and Random Motion 

In this class belong vibrations generated by earthquakes, turbulence, 
and the particle motions caused by irregular waves. The dispersion or 
settling of particulate matter in turbulent flow is a linear force 
problem involving random motion. A non-linear problem, of course, is 
the force exerted by irregular waves on piles. 

As in previous examples, the fluid force at a particular time is 
conditioned by eddies or velocity patterns set up by prior motion. Thus, 
since irregular motion is not repetitive, an attempt to express force 
details in terms of instantaneous velocity and acceleration is funda- 
mentally unsound.  But if the motion is truly irregular or random, the 
task of unraveling the contributions of innumerable possible histories, 
except in special linear problems to which Eq. (1) applies, is overwhelming. 
Therefore non-linear problems, at least, should be handled statistically. 
For an example, let us focus on forces exerted by irregular waves. 

Grace [10] found that seemingly identical ocean swells produced 
quite different forces on a submerged sphere.  He attributed the dis- 
crepancies to probable differences in water particle motions under waves 
of equal height and period. But suppose waves (a) and (b) have identical 
particle motions, yet wave (a) is preceded by a smaller wave and wave (b) 
by a larger one. Then the forces exerted by (a) and (b) would differ 
because the motion history is different. 

The data published by Wiegel [7] for forces exerted by ocean waves 
on piles show practically no correlation between wave height and force. 
Nevertheless, according to Borgman [26] an analysis of some of these 
data showed that the spectral density of force was similar to the spectral 
density of height except in the high-frequency off-peak rtgion.  Borgman 
used constant coefficients in Eq. (7), first-order wave theory to get 
particle motions, and a Gaussian wave-height distribution to prove that 
this similarity should exist.  He set up a procedure for transferring 
from one spectrum to the other. 
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Aware of Borgman's work Paape [27] measured the forces exerted on 
piles subjected to irregular waves in the laboratory.  Spectral densities 
of force and wave height calculated from his data were not similar and 
he failed to find a satisfactory transfer function.  Thus one must 
conclude that the spectra may or may not be similar and that Borgman's 
assumptions oversimplified matters. 

It is unfortunate that the designer cannot rely upon similarity 
between force and wave height spectral densities.  For resonance problems 
he needs to know the frequency at which the force "energy" peaks. 
Perhaps Paape's tests and others may be used to find how much the fre- 
quency at the peak of the force spectrum may differ from the frequency 
at the peak of the wave height spectrum. 

Because wave forces and heights do not correlate, Bretschneider [28] 
recommends ranking the heights and maximum forces5 in order of magnitude 
and working with cumulative probability plots of wave height and force. 
His idea makes sense because it avoids any inference that the present 
wave alone is responsible for the present force.  Bretschneider developed 
the idea into a method for analyzing measurements and predicting magni- 
tudes of design forces for statistically similar wave sequences. An 
alternative method follows. 

Suppose we have force and wave height measurements for a particular 
body shape in a particular irregular sea. How can one arrive at the 
force that, say, would be equaled or exceeded five percent of the time 
if a similar sea of greater magnitude acted upon a similar structure? 
Note first of all that this is a model-prototype kind of problem and one 
must be able to identify a similar sea. Criteria will appear presently. 

We attribute the force at a given instant to the unbalanced shear 
and normal stresses exerted by the fluid on the body. They are caused 
by the instantaneous velocities and accelerations of the fluid particles 
in a rather large region surrounding the object. The motion pattern 
in the region, of course, is caused by the waves and the presence of the 
object, but the only index of velocity available is H/T and of accelera- 
tion H/T2.  H may be defined as the height of a crest above the surface 
depression"! before «nd after it and T as the time interval between the 
two depressions.  Both are often a matter of judgment. 

Altho these indices represent the particle motion quite inadequately, 
the dimensionless acceleration H/gT2, where g is the acceleration of 
gravity, is certainly a variable on which the force depends. Using Y as 
specific weight, we may write for a particular wave 

Fmax  Fmax fh    YDH H  H  „. _  \ /11X  — =   —, —~, r,  , History)  (11) 
YD3   VD3 VD &VJ

    
D gTE        ' 

The history term is a reminder that a range of values of F  /YD
3
 may 

max 
accompany each set of values of the other four variables. 

He separated drag and inertia forces by picking values at wave 
peaks and zero crossings respectively. 
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For a given sea state and a particular structure the variables 

YDH  H  H      ,,   Fmax 
—~ » TT > ~3"> as well as —r- , gu-T  D gt2 yD3 

will have permanent probability distributions. That is, if the gage 
height record may be taken as a stationary time series, the statistical 
properties of the force record also will be permanent. Hence we may 
avoid history and hydrodynamics by writing 

CFmaxl   fFmax /h /YJMtl  /Hi  f H "jM 

lyD3 J " WD3 ^D' *-6P.T»' "®' VSJ/J  (12> 
in which the braces are used (unconventionally) to mean the probability 
distribution of the quantity enclosed. 

Let us compare these variables for two cases, model m and prototype p. 
If the model is built to the proper length scale ratio and the model sea 
is similar to the prototype sea, 

ill       =      £|  (13) 
D'm Dip 

». • a, <»> 
m.~iMP <•» 
©.'©„ <«> 

Because of Ineq. (16) -JF  /yD3} will not be exactly equal to {F  /YD
3
} • ^    ' (. max   Jm J C max   Jp 

In what follows we shall assume that all the Reynolds numbers are large 
enough and the structure blunt enough to make the inequality unimportant. 
Then 

fFmax 1    ~  rF, 
\D

3
 Jp        ^yu-'n fe}    <17 

WD3Jm 

and if the right hand probability distribution is known, the probability 
distribution of F|  is obtained simply by multiplying the numbers on 

the abscissa scale by the constant YD3[p as indicated in Fig. 4.  (In 

the figure the measurements have beet: grouped into eight class intervals.) 
Then the distribution of F   „ may be summed to get the cumulative max1 P ° 
probability of the prototype force and answer the question of what force 
will be equaled or exceeded five percent of the time. 

Similar seas have been assumed. Now we must face the question of 
how to identify statistically similar seas. The definition itself can 
vary, depending on why they are defined. We are interested in making 
Eq. (17) true when surface tension and viscosity are unimportant. 

The first requirement is that Eq. (15) be satisfied, but it says 
nothing about the sequences of changes in wave height. From a history 
standpoint these sequences have an important influence on the force 
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distribution. Hence -j——$Y  is a necessary but insufficient index for 

similar seas and an equation involving differentials such as 

'(H.-Hjf/H5]     k-Hf/r 

(tj-t.rvT* |(t.-t.f/T2 
.(18) 

;p 

is indicated. Wave j follows wave i. 
Moreover, since Eq. (14) scales the structure to the waves it does 

not pertain to identifying wave similarity only. Hence for sea simi- 
larity an equation such as 

{H
3
/P}    = {H2/1?}   (19) 

m   ^    Jp 

is more appropriate. Thus for the present purpose, similar seas probably 
exist if Eqs. (15), (18), and (19) are satisfied. Experimental data 
are required to find if they are adequate or not. For example, altho 
the orientation of the structure with respect to the dominant wave direc- 
tion presumably is part of the modeling, no account has been taken of 
the directions of component waves in the description of the sea. 

In addition to dimen- 
sional analysis and hope- 
fully some physical insight 
in the choice of dimension- 
less variables, the writer 
has used two rather self- 
evident requirements if 
force and wave height records 
from one situation are to be 
used to find forces in 
another: 

(a) The wave records 
at the two locations must 
have certain similarities. 

(b) The structure size 
must be scaled to the wave 
size, Eq. (14). 
These conditions are no dif- 
ferent from the ones required 
in the case of regular waves, 
Eq. (10), for which wave 
similarity is implied by a 
choice of h/D, H/D, and 
H/gT2. 

For regular wave problems engineers use data from tests containing 
a range of dissimilarities, get a range of coefficients of some sort, 
and use average coefficient values to calculate approximate forces.  Some- 
times they calculate extremes to find how much error may be involved. 
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If similarity requirements are ignored, corresponding errors will 
occur when statistical quantities, such as probability distributions, are 
used for analyzing irregular wave and force measurements. To isolate 
variations due to scale differences, one might well test several sizes 
of pile, for example, as Wiegel [7] did, but test them simultaneously 
in the same wave environment. 
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Notation 

A >» cross-sectional or wetted area 
b *  amplitude of a harmonic or periodic motion 
C = dimensionless force coefficient 

C, = added mass coefficient--irrotational motion 
A 
C «• velocity coefficient--unsteady motion 

C = history coefficient 
H 

C = inertia coefficient 
M 

C = steady state drag coefficient 

D = diameter or other significant length 
F = force exerted by fluid 

F   = maximum fluid force in repetitive motion or when a wave passes 
max 

f = force-variation coefficient 
g = acceleration of gravity 
H = wave height 
h = water depth 

i,j •» subscripts to indicate one wave and the next 
m = mass of fluid displaced by a body; also subscript indicating model 
p = subscript indicating prototype 
S = displacement during repetitive motion 
T = period of a repetitive motion or time interval between waves 
t = time at which force is calculated or measured 
u = velocity of fluid particle 
v = speed of body 

a  = (2u. /poD2)^ 
Y = specific weight of fluid 
|o. = viscosity of fluid 
p = density of fluid 
CT = frequency, radians/second 
T =» time during history of motion—an integration variable 
V =  space derivative operator 

{} indicate probability distribution of the quantity enclosed 




