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ABSTRACT 

The theory of wave-induced longshore currents is applied to problems 
of beach erosion.  An erosion equation is derived, relating the local erosion 
(or deposition) rate to the form of the beach and to the characteristics of 
the incoming wave field.  A numerical integration technique of the erosion 
equation is discussed and a specific example is examined: that of a linear 
coast line which is gradually eroded into a spiral-shaped beach in the lee of 
a headland. 

Introduction 

Hook-like beaches of the type shown in Figure 1 are quite common on 
exposed coasts.  Such beaches have received various names: Silvester (1960) 
calls them "half-heart shaped bays" and Yasso (1965) "headland-bay beaches". 
Half-Moon Bay in California is one of the best known examples (Bascom, 1951). 
It was Yasso (1965) who discovered that the planimetric shape of many such 
beaches could be fitted very closely by a segment of a logarithmic spiral. 
The distance r from the beach to the center of the spiral increases with the 
angle ijj according to 

r = r er (1) 

in which a is called the "spiral 
angle" and determines the tightness 
of the spiral.  Bremner (1970) has 
also shown the logarithmic spiral 
to give an excellent fit for each 
side of a recessed beach between 
two headlands. 

It is extremely tempting 
to attribute the characteristic 
shape of these spiral beaches 
(as I call them here) to wave- 
induced erosional processes. 
To confirm this suspicion, I 
have attempted to show, using 
available theories of longshore 
currents and beach erosion, 
how a spiral beach could evolve 
from a linear wave-swept coast- 
line. 

Figure 1.  An 
idealized spiral 
beach, showing the 
coordinate system. 
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Longshore currents 

It will be assumed that any erosion or deposition at the shoreline 
will be due uniquely to transport of material by wave-induced longshore 
currents.  The theory of such currents has recently risen out of a state of 
semi-empiricism following a re-examination of the role of waves in producing 
currents (Longuet-Higgins, 1970 a, b) and of the manner in which sand is 
transported by these currents (Komar and Inman, 1970; Komar, 1971). 
Longshore currents are produced by breaking waves in the surf zone; the1 

amplitude and direction of the incoming wave are determined by offshore 
conditions which are assumed to be completely uncoupled with surf zone 
phenomena. 

To be more specific, let's consider a straight section of beach, as 
shown in Figure 2. Approaching waves begin to break at the mean distance x. 
from the shore line, in a mean depth h^; their amplitude upon breaking is 
ajj and the angle made by their propagation vector with the x-axis is ^. 
The wave amplitude in the surf zone (0 6.  x ^ x^) is taken as proportional to 
the mean depth: a =a h (Longuet-Higgins, 1970a).  The local wave energy 
density is then E = — pga2h .  In beach coordinates (x,y) , the radiation 
stress of the waves has components 

13 cos^ <J> + sin^ <j>, - sin 2 $ 
S..-f 
1J      l^-sin 2 <J>, 3 sin2 <f> + cos2 $ j 

(2) 

The divergence of the radiation stress S^-j provides the driving force 
for the longshore currents in the surf zone; there is no net forcing in the 
offshore area.  Once a steady state has been reached, frictional forces will 
just balance the driving force and the mean longshore momentum equation will 
read 

3x 
yh^]   _ fV B   (9     s      + |_ s    ) 0 < x < * r 3xJ \ay    yy      3x   yxj o 

(3) 

=        0 xbix<» 

The assumptions and simplifications leading to these equations have been 
discussed by O'Rourke and LeBlond (1972).  The lateral eddy friction 
coefficient y is taken as increasing linearly with wave velocity and with 
distance from the beach: 

y = N p x /gh (4) 

(N is a dimensionless constant).  The bottom friction parameter f is propor- 
tional to the maximum orbital velocity 

f = - pa C v^ih (5) 

Where C is a friction coefficient for flow over rough plates.  Assuming a 
linear depth profile which is uniform along the beach 

h - Sx (6) 
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Figure 2. 

Definition sketch 
for the linear 
beach. 

and transforming to a scaled coordinate £ = x/xk> &)  may be rewritten 

3   r 5/2 jv ")    1/2       3       1+1/2 

(7) 

This Is the same equation obtained by Longuet-Higgins (1970b), but with two 
more forcing terms. P is the ratio of lateral to bottom friction effects, 

V   2xC' 

*b 3ab 5it« 
8C 

gl/2xti/2s3/2) 

V = K sin<j), cos<|>. 

2K 

4K 

2 cosz 
bj ab 3y 

(8) 

V3 = 5~ *b sia%  cos\ W 

The three forcing terms are due respectively to  1) the obliqueness of wave 
approach, 2) and the non-uniformity of wave amplitude and 3) of wave angle 
along the beach.  The first term is usually the more important one. 

The solution to (7) which keeps V finite and both V and 9V/3£ 
continuous across the breaker line is 

V = BjS + 2 £ V 
(l+i)/2 

i=l 
(l+4i)P-2 

B,5 

0 < ? < 1 

1 S ? 5» 

(9) 

in which 

3 + 
4 " M) 

1/2 
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p(Prp2>   i=i 2Pi-(1+1> 

B, = 
P(PI-P2) i-i 

V. 

2p -(1+1) 

Whenever P = 2/(1 + 41) for any one of i = 1, 2, 3, a singularity appears 
In one of the coefficients of V in (9); the solution must then be modified. 
For 1 - 1, P = 2/5, the appropriate term is 5/7 V, Cln£; for i = 2, P = 2/9, 

V2 C3/2 in 5; and for 1 = 3, P = 1/7, -14/11 V3 ?2ln?. We will avoid any 
worries by simply choosing a value of P different from 2/5, 2/9 and 1/7. 

Sand transport 

In relating sand transport to longshore currents I have simply 
assumed that the volume rate of sand transport T will be proportional to 
the total water transport In the surf zone, Q, times a "sand fraction" y, 
so that T = Qu.  Q is defined by 

Sx£ I CV(5) d? 
' o 

(10) 

Sand transport is then an integral property of the surf zone, and is thus 
independent of E,.     It will thus not be possible with this model to examine 
variations in beach profile (h (£)) associated with differences in sand 
transport rates across the surf zone.  Such refinements could well be brought 
into more advanced models, by making T an explicit function of V, as in 
Komar (1971). 

It is useful to split Q into three parts, each one resulting from 
one and only one of the three forcing mechanisms mentioned earlier: thus, 

3 

Q = .1, Q 
^  1=1 : 

in which 

SX£Vi 
(<l+4i)P-2) (5+i) + P(Pl+2) (p^Pa) (2Pl-(l+i)) 

(11) 

(12) 

We recall the source of three components of the transport: Qj is caused by 
the obliqueness of the waves, Q2 and Q3 by the non-uniformities of the wave 
amplitude and angle of approach respectively. 

The Erosion Equation 

The rate of erosion will be directly proportional to the divergence 
of sand transport Qp.  As we have lost all information about the details of 
sand transport across the surf zone by relating the total sand transport 
directly to the integral of the longshore current, it will be reasonable 



SPIRAL BEACHES 1335 

to simply assume that the beach profile is not modified by erosion.  The 
slope S retains the same value, the beach being shifted laterally by sand 
removal or accretion, as shown in Figure 3.  The parallelogram of sand (of 
density ps) removed by erosion in a time At has a mass pgh^Ax0.  With xQ(t) 
the position of the mean shore line, the rate of sand removal is then 

3xn 
p h, -r-^.     This is balanced by the divergence of sand transport in the surf 
sb-1*" 

zone 
3t 

3x 

8y ^ + Pshb W~   = = 0 (13) 

Figure 3.  Beach shift 

due to erosion. 

This derivation is strictly correct only for linear beaches. We will 
extend its applicability to curved beaches by appealing to the results of 
O'Rourke and LeBlond (1972) who found that, for semi-circular beaches, the 
supplementary forcing terms occuring in (3) because of beach curvature were 
negligible provided the radius of curvature of the beach remained much greater 
than the width of the surf zone. When that condition is satisfied, (13) still 
describes the erosional processes in a short enough section of the beach.  We 
may now redefine local variables (x, y) as shown in Figure 4; the orientation 
of the beach segment to fixed axes (X, Y) will be specified by the angle 8. 
The rate of displacement of a point P(X, Y) which always remains on the beach 
may then be found from (13) as 

8X 
• ^ (Qu) (14a) 

BY  sin6 3 
9t  p h, 3x 

s b 
(qy) (14b) 
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Figure 4.  Definition of 
local coordinates for 
extension to curved beaches 

Computational Scheme 

The initial planimetric shape of a beach may be specified by giving 
the coordinates (X, Y) of a sufficient number of points PJ (j = 1, . . . . N). 
Given the characteristics of the incident wave field (i|),a^), the initial beach 
geometry (S, x^, ps) and the empirical coefficients a, N, C, y it will be 
possible to calculate the sand transport Qy and its divergence along the 
beach.  Integrating the erosion equations (14) over a finite time interval 
yields values Ax-j, Ay-= by which the position of the jtn point is to be 
modified because of erosion or deposition during that time span.  Repetition 
of this process gives a series of positions for the forms Pj and hence a series 
of planimetric shapes for the beach.  This apparently simple-minded integration 
scheme is alas full of pitfalls!  Having fallen victim to many of them I 
would like to discuss the origin and the means of avoiding the worst of them 
before presenting actual computational results. 

First of all, there arises the problem of stability.  The natural 
processes described by this model occur over time-scales ranging from months 
to centuries.  The integration time-step should then be chosen large enough 
to make it possible to witness the evolution of the beachwithin a reasonable 
lapse of computing time.  A long time step is thus desirable; it is also 
dangerous.  Imagine for a moment a linear section of beach with a hump on it. 
With a uniform incident wave field (^ 4  0, 3a],/3y = 0, ^\yl^y =  0: 
Qj 4  0, Q2 = 0 = Q3) there will be a tendency for this hump to be eroded 
away.  A strong divergence of sand transport will occur on the hump, leading 
from (13) to a large rate of erosion (3x0/5t < 0).  If the time step is small 
enough, the hump will gradually be reduced to insignificance.  Should the 
time step be chosen too large however the correction AxQ to the beach shape 
during the time At may be large enough to transform the hump into a hole I 
This is already nonsense, but not yet instability.  If the hole is less deep 
than the hump was high, an oscillatory approach to equilibrium will result. 
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Only when the hole is deeper than the original height of the hump will 
instability occur.  It is clearly not sufficient to choose a time step small 
enough to avoid instability of this type; one must avoid over-correction: 
violent transformation of humps into holes and vice-versa within a single 
time step.  The computer model should behave very much in the same way as a 
real beach does, and be endowed with a similar tendency to gradually minimize 
its curvature, except possibly at a few well understood and identified points, 
such as sand spits. 

The problem of stability has to do with the mechanics of numerical^ 
computation, and is readily taken care of. A more fundamental difficulty is 
that of correcting the incident wave field to account for the change in 
planimetric shape of the beach.  As indicated earlier, one of the fundamental 
premises of the theory of generation of longshore currents is that there is 
no coupling between the longshore currents in the surf zone and the wave 
field in the offshore zone.  The longshore currents are caused by the incident 
wave field but do not in turn influence it.  This may well be so on a time 
scale short compared to that during which significant modifications of the 
sea shore occur, but as the planimetric shape of the beach departs more and 
more from its initial form, the incoming wave field will suffer from refraction 
or diffraction to a significant extent and the forcing function for the long- 
shore currents will be altered.  There is thus a larger-time-scale coupling 
between longshore currents and the incident wave field, and it must be taken 
into account in problems of beach evolution. 

Let us see how the above theory of longshore currents and the scheme of 
integration of the erosion equation may be applied to account for^the presence 
of spiral beaches. We shall assume that at some initial time (t - 0) a 
completely uniform wave field is incident at an angle $0  upon a linear beach 
(Figure 5).  To simulate the presence of a rocky headland it will be assumed 
that half the beach (Y £ 0) is a rocky strip, from which no sand can be eroded, 
and hence on which u = 0.  The longshore water transport Q is thus initially 
uniform, but not the sand transport Qy, which has a discontinuity at the origin. 

shadow line 
Figure 5.  The initial linear beach 
configuration and qualitative estimates 
of some consecutive shapes ( at tls 
t,, • • •)• 
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It is simple to see, at least qualitatively, how the beach will evolve. 
Because of the sand fraction discontinuity at the origin, the sand transport 
divergence will be large and positive there arid, from equation (13), erosion 
will occur rapidly.  The beach will be gradually deformed as shown in Figure 5. 
As the beach changes its orientation in the (X, Y) plane, so that the angle 0 
in (14) is no longer zero, the local angle of attack ^ will change from its 
original value of <J>Q to a new value ^  = <f>0 - 6.  Those parts of the transport 
which depend on the angle ^ (Qx) or on the longshore variation of (f^ (Q3) 
will be changed accordingly.  Further, as the nick dug in the beach gets deeper 
and the beach segment near the origin approaches the "shadow line", the influence 
of diffraction by the tip of the rocky strip (which has now become a headland) 
will become more noticeable, and the amplitude and direction of the waves 
arriving at the breaker line will have to be modified to account for the 
changing geometry of the shore line.  The variation of Q along the beach will 
gradually become as important as the initial discontinuity in y in determining 
the erosion rate. 

The actual computations have been made following the procedure outlined 
earlier.  A number of points, labelled j = 1, 2 . . . N, are initially strung 
along the half line Y i 0, and are gradually displaced according to equations (14). 
The beach thus consists of N - 1 linear segments, the j*" segment being between 
the jth and (j + l)th points, and making an angle 0, with the Y-axis.  Transports 
are calculated at intermediate points and are characteristic of a segment, not 
of a point (see Figure 6). 

The rate of displacement of a labelled point will be proportional in 
magnitude to the difference in the transport in the segments on either side of 
it.  The direction in which the point moves must be defined with more care: since 
the labelled points are at the intersection of beach segments, where there is 
usually a discontinuity in slope, as characterized by the angle 8, one cannot 
use equations (14) in exactly the form in which they appear. We define an 
angle a which is the average slope at a point: 

Vi =
 -JL +1 

+e. 

X 
A 

Figure 6. 
Computational "molecule1 

th around the (j+l)tn point. 
The transports Q are evaluated 

at mid-segment (starred) points 
and their derivative at labelled 

points.  The (j+l)tl> point moves 
normally to the curve of angle ct-?+i, 

as shown by the arrow beneath it. 
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and allow the erosion to proceed at the (j+l)th point as If the beach had an 
orientation given by the angle ou+1 there.  In finite difference form, (14) 
now reads: 

-ycosa (i±L«J *v • -»A     vr" 

AY 
J+1 pshb A

j+1 

QJ±i^J (15b) 

where 2(Aj+1)* ^V^VV7 t/^X^ +  (Y Y  )2 

Since there can be no erosion of the rocky spit, the first point 
(j = 1) does not move: (Xj, Yj) = (0, 0) at all times. 

Qualitative considerations 

Even before proceeding with the integration of (15) it is possible 
and advisable to consider what kind of qualitative results are expected. 
First, as already indicated, the beach erodes at the corner, as shown in 
Figure 5.  From the definition of a, it should be clear that erosion at point 
j = 2 should take place in a direction which will take it towards decreasing 
values of Y, so that erosion behind the rocky strip will ultimately result. 
This back-cutting is indeed seen to occur in the computed configurations 
(Fig. 7, 8) and is a necessary step towards attaining spiral shape (or anything 
which resembles a spiral). 

From the nature of the erosion and deposition processes, it is also 
clear that humps and holes (regions of high curvature) will be rapidly 
smoothed away in a real beach, and should suffer the same fate in our model. 
Such regions of sharp curvature would appear wherever the sand transport Qy, 
has maxima or minima along the beach.  We thus expect that once an equilibrium 
profile has been reached, there will be no such extrema in Qy, which will 
increase monotonically from zero at the headland to a maximum value at the far 
end of the beach.  From the very beginning, the eroded beach is concave sea- 
wards near the headland, convex seawards further on.  If Qy increases mono- 
tonically from the headland, this situation will prevail at all times and 
there will be only one point of inflexion. 

If there exists a planimetric shape which the headland beach 
asymptotically approaches, it must have the following properties:  1) it is 
first concave outwards, near the headland, and then convex outwards; 2) the 
sand transport increases monotonically along it; 3) erosion, by causing the 
beach to be displaced (inwards) normally to itself> does not change the 
qualitative shape of the beach.  This last statement requires some explanation. 
If a planimetric shape is defined as a curve f (X, Y, ax . . . a ) = 0 
where ax . . . an are parameters which define the centre, the size, the 
orientation, etc., of the curve, then what is stated is that a displacement of 
the curve normal to itself produces another curve of the same n-parameter family. 
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A trivial example of such a curve is a circle (x-xQ)
2 + (y~y0)

2 = r2, which is 
a three-parameter curve; displacing every point of the circle normally outwards 
by an equal amount gives another circle of greater radius. A more appropriate 
example would be that of a logarithmic spiral displaced normally to itself 
by a distance L proportional to the radius vector from the origin: L = £r. 
Such a shift, as could be caused by erosion, transforms a spiral into another 
one of the same angle but different intercept r0.  The spiral does not fulfill 
the first condition however.  There must exist more complicated curves satisfying 
all of the above three conditions, and one cannot decide a priori which one will 
be the equilibrium one. 

Because of the diffractive influence of the headland on the incident 
wave field, the region in the shadow of the headland, i.e. the head of the hook, 
is the most difficult to describe.  All three terms (Qj, Q2, Q3) may be important 
in the longshore volume flow there and it is not clear which one will dominate. 
The tail of the beach on the other hand should behave in a much simpler 
fashion since the wave field there should be nearly uniform in the longshore 
direction.  The only contribution to longshore transport will come from Qj, 
which, from (12), (8) and <f>, = $Q  -  0, may be written 

Qi = Q0sin(2(<)>o-e)) 

In the tail region, 9 is a small angle, and tan0 - dX/dY.  For the same 

reason, TT- - Trn- , so that 
' 3y  tfY 

5i . _2Q M „ _   3fx 
3y    Z4o 3y     4o 3Y* 

The shape of the beach may then be found from 

9Y2    20  3Y 
o 

Analytic determination of the solution curve which will satisfy the 
three fundamental criteria in this region and connect to an equally satisfactory 
curve in the head region is beyond the present effort. We may choose for the 
moment any Qx which will tend to Q so as to make X and all of its Y derivatives 
vanish as Y tends to infinity.  For example, the tail region at t = 80 hours 

-8CY-Y }2 
in Figure 7 is very closely fitted by X = - X e ^  o' ( with XQ = -143 m, 

Y0 - 130 m, and 0 = 3.15 x 10"
sm-2, so that Qx = Q (l - 43X0Ye"

e(Y_Yo) ) 

in that region. 

Computed Beaches 

The computed beach profiles fall into two categories according to the 
type of approximations made in describing the wave field in the vicinity of 
the headland. 
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It was first simply assumed that there was no diffraction whatsoever 
and hence no wave energy behind the "shadow line" Y = -X tan^0.  The transport 
along the beach segment which intersects the shadow line (at the point Ps 
with coordinates (Xs, Ys)j was reduced in proportion to the fraction of it 
that lies in the shadow.  The reduction factor is 

(<xj+1-xs)
2 + (VrV2)1'2/ h+i~x/ + (VrY/)1/2      (16) 

Only the oblicity component Qx was retained in this case, to lighten the 
computational burden.  Even under such gross approximations the results are 
encouraging. The successive beach shapes shown in Figure 7 were computed 
for P = 0.2, S = 0.02, xb - 62.5 m., C = lO"2, a  = 0.4, (J>0 = TT/10, ab = 1 m., 
y = 1 kg m~3, p = 2 x 103 kg m"3 and a time step At of 1 minute.  The small 
time step was necessary to avoid instabilities.  Except for the incredibly 
rapid rate of erosion of the beach, which may be attributed to the presence 
of an unrealistic discontinuity at the origin as well as to the absence of the 
Q2 and Q3 terms, the erosion proceeds in a reasonable fashion.  Note in 
particular that the first two of the qualitative criteria established earlier 
for an equilibrium shape are satisfied:  1) the beach is concave outwards at 
first, convex afterwards;  2) the transport increases monotonically along the 
beach. 

Encouraged by this moderate success I have started computations in 
which diffraction effects are included. As it is not in general possible to 
obtain closed-form solutions to the diffracted wave problem for arbitrary 
coast geometries, any diffraction correction to the incident wave field will 
necessarily be an approximation.  The most obvious correction, Sommerfeld's 
solution to wave diffraction by a wedge (Stoker, 1957, p. 109), is too compli- 
cated for practical computations.  Once the beach has been eroded back 
sufficiently behind the rocky coastal strip, one would expect the solution for 
a wedge of zero angle, i.e. a thin barrier, to be a useful approximation.  The 
theoretical results for that case have been verified experimentally (Putnam and 
Arthur, 1948).  In order to take into account the fact that the barrier is not 
infinitely thin, nor the corner angle identically zero, I have used the following 
correction for the wave field: if FQ(X, Y) is the wave amplitude function for 
the thin barrier case (as given by Putnam and Arthur) then the correction factor 
for the amplitude used in the computations was 

F(X, Y) = 1 - (l-F0(X, Y))(01/TT)
n (17) 

where Q1   is the angle of the first segment (j =1), as defined in Figure 4 
and n is an adjustable exponent.  Clearly, for Q1  = IT, F = F and the wave 
field is that behind a thin barrier; for 0j = 0, F = 1, and the waves have 
the same amplitude everywhere.  Inside the geometrical shadow (behind the shadow 
line: Y < - X tan <f>0) the waves are now assumed to radiate from the origin 
(i.e. the headland), and $b  = tan-1 (-Y/X) - 0; outside the shadow area, 
^b = ^o ~ ®> ^s before.  An upper bound (f^x was also imposed on the angle of 
incidence. 

Computations including all components of transport (Qa, Q2 and Q3) 
as well as diffraction corrections have not so far been very successful. 
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As a matter of fact, they have been plagued with, instabilities to such an 
extent that it will be necessary to review the whole of the computational scheme. 
One of the more successful efforts is shown in Figure 8.  In this computation, 
P = 0.3, S = 0.083, xb = 32 m, C = 10~2, a  - 0.42, c}>0 = 0.17, ab = 1 m. , 
M -  1 kg m_1, ps = 2 x 10

3 kg m~3, At = 10 sec and n = 3, 4)max - 0.35.  The 
computation was first run for 1 hour without diffraction corrections and with 
Q2 = Q3 = 0; the shape arrived at then (t = 0) provided the base line for the 
more sophisticated calculations.  It is clear from Figure 8 that, after some 
adjustment (t = 5, 10), the beach digs in behind the headland, as it did in 
Figure 7.  The transports do not become monotonic, as they did in the previous 
example however and a catastrophic instability occurs soon after t = 80 min. 

Conclusions 

I have shown, using the theory of wave-induced longshore currents and 
a simple model for beach erosion, how waves obliquely incident upon a non- 
uniform coast could initiate beach erosion which would eventually lead to the 
formation of hook-like beaches.  I have however not succeeded in explaining 
why these beaches are such good fits to segments of logarithmic spirals, although 
I have presented qualitative arguments which indicate that such a shape would 
satisfy the requirements of an equilibrium planimetric shape. 
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