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SYNOPSIS 

The critical force for the entrainment of sediment on the ocean floor 
is the maximum, instantaneous shear force. A numerical estimate for the 
stress is made from the third approximation of a second order boundary 
layer theory for oscillating laminar flow. The analytical derivation 
satisfies both the case of flow in an oscillating water tunnel and the 
case of a progressive (Airy) wave, where the shear distribution depends 
on the form of the velocity distribution in the boundary layer.  Solution 
for the velocity is on the basis of iteration in an infinite series, where 
the convective terms are numerically evaluated from lower order solutions. 
For the boundary shear, the phase lead is found to be less than predicted 
by linear theory, and although the correction at the third approximation 
is small compared to lower approximations, the modified vertical distri- 
bution provides a basis for the correction of shear measurements, obtained 
by indirect means, to the boundary value. 

INTRODUCTION 

In coastal engineering, one of the critical problems is the prediction 
of the motion of sediment or solid pollutants in the marine environment. 
Although it is realized that the critical parameter for the entrainment of 
sedimentary particles is the instantaneous shear force, an accurate assess- 
ment of its numerical value for various wave and boundary conditions has 
been difficult to obtain.  In part this stems from the difficulty in 
analytical modeling of the velocity and shear stress distributions near a 
solid boundary, but it is also the result of the scarcity of experimental 
data on these parameters in the zone of shoaling waves. The importance of 
understanding boundary layer behavior under ocean waves can be well illus- 
trated with the findings of Stone and Summers (1972) who have determined 
that 95% of the total load moves within 15 cm of the bottom in the nearshore 
zone and 80% of which is carried as bedload.  These figures agree with 
Saville's (1950) results, where 40-100% of the sediment was found to be 
transported as bedload in a model basin. 
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In this paper we are concerned with the modeling of the velocity 
distribution in laminar flow of oscillating boundary layers of the form 
found in oscillating water tunnels and of a progressive (Airy) wave. Con- 
sequently, we evaluate the shear stress distribution analytically and 
appraise the contribution the third approximation makes on the phase and 
amplitude of the instantaneous friction in order to understand the force 
distribution at the boundary. 

The boundary layer theory of Schlichting (1932) is the basis of 
developments reported herein, with higher approximations of Kestin and 
others (1961, 1967) and Shah (1970).  Similar approaches can be found in 
the studies of Hill and Stenning (1960), Hori (1962), Hunt and Johns (1963), 
Dore (1968), Noda (1971) and others. 

THE BOUNDARY LAYER 

1, The velocity distribution 

The distribution of velocity in the potential flow region of harmonically 
varying flows without displacement is of the form: 

U (*, i ) « U0 (x) COS cot* Re ( U0(K) tlu>t) CD 

where Li0  is the velocity amplitude at the edge of the boundary layer, 
Oi'-ITT/T   is the characteristics frequency of oscillation of period T , 
and Re.   denotes the real part of the complex variable. 

The periodic flow in the free stream region produces oscillations in the 
fluid near the solid boundary.  If the amplitudes of fluctuation are small, 
such as (K(X, a/d)4f.l    , the boundary layer behavior can be calculated by 
using Fourier series for arbitrary fluctuations of the free stream with time 
(Hill and Stenning, 1960). This method involves linearization of the stream 
function yl^y.i) , which is expanded in an infinite series 

yrx,y.^;ej = e(yim + tyt(z) + txYs(z) + ...)e t'toi C2) 

following Schlichting's (1932) technique. According to Kestin and others (1967) 

y -- S"U0(K) L X(*i.t) C3) 

given 

</£ (4) v y- 
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and 

S, ((M/2vf (S) 

where d  is the thickness of the boundary layer. The parameter ^^ represents 
the dimensionless stream function. 

For incompressible, irrotational flow the stream function and the velocity 
potential can be equated through the velocity terms, so that 

(6) 

- at, 11 _. a 

where "WX,]/.^)  and <J(x,u,t) meet the requirement 

VZ(j)-VZ1p°0 (7) 

Considering now,  that motion is  only periodic in the potential  flow region, 
i.e.   steady flow is  externally not  superimposed  on the boundary layer,  we can 
write the velocity distribution  in the two-dimensional  case in two Fourier 
series 

u(x,Lj,i)= ua (x,u) + 2_un(K,u)e''n7ri+l_u?,(x,y)e 
J J      n*t J n*i 

<x> £ 

(8) 
00 • -.       <= jn1ri 

e 

where U0 , Vt     are components of the steady "streaming" arising from the 
second approximation and u*, V*  represent the complex conjugates of u, V. 
Complex variable theory is used to minimize computations in this expansion 
procedure. 
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We shall now establish the motion in the boundary layer by writing the 
appropriate momentum equation to 0(t2) 

du, du, ^u, 

m 

If initially we assume    U = 0(1) and   V=0(fi) 
where     c -   U0/oo<$ is the perturbation parameter, we can 
neglect all convective acceleration terms involving v/(1 3 and "\£ 
We also assume the pressure gradient across the layer to be small compared 
to its magnitude just outside the layer, and use this term to match the 
flows across the upper boundary. We now make use of the reduced equation: 

(10) 

to the third approximation. Each of the velocity terms in Eq.10 must sepa- 
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rately satisfy continuity, therefore 

ax + ay   ° 
As Uz= Uit + ^2z > where UZI is the periodic and u42 is 

the steady component, the boundary conditions appropriate to Equations 10, 
11 are 

U, 

U«.= UJ=[ 

0 at ij = 0 

£/,at y = c^ 

0 at <j = 0 

0 at y = oa 

f" 0 at y = 0 

[ 0 at y = O 

According to Stuart (1963), the steady velocity at the outer edge of 
the boundary layer is of the order   zXie , which defines a Reynolds 
number   R5» L/*/cov » a'/a1 .    This second perturbation parameter 
is of O(i) when  £ « 1   , which condition is required for maintain- 
ing a non-decaying man transport velocity in the "outer boundary layer", de- 
fined by Stuart (1966), and also to validate linearizing the equations of 
motion. When Rs  is large, Ult progressively diminishes in the outer layer, 
the interaction between flow within and outside the boundary layer can be 
shown to remain negligible, and the steady streaming will not be influenced 
significantly by the presence of potential flow. 
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Following Kestin et_ al_ (1967), the general expression for the stream 
function to the nth approximation is of the form: 

(12) 

Differentiating and retaining the real part, three approximations of the 
horizontal velocity components are obtained. 

(13) 

(14) 

Asu-»othe steady component becomes 

U„ - - 3/4 ( U./ui  c(Ua Id* ) (16) 

The third approximation for the velocity component normal to the boun- 
dary, and the differential equations for 5 with their pertinent boundary 
conditions are omitted for the sake of brevity.  These can be found in the 
article by Shah (1970). The first two terms have been determined by Schlichting 
(1932). 

r   i\   r    /--vl     i + 'V^f'^l   i «a-(l*c)l    L-i 
Sutf'SuiW-'W* +Tle -4fi US) 

Qensm rti 
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For the third approximation Shah (1970) obtained 

 . £ + a" ^       J 
C20) 

(21) 

^>-5«^--i5i|(«*l)(l-«Je'O(l*'>,-[il-^a-0j- 

(23) 

Distribution of the horizontal velocity for phase angles <x>t = 0,ir/5,n"/z/Zn/?,li' 

±it\+&i{-iU + 3Mi) 

Distribution of the horizontal velocity tor phase angles COC = U,II/9,I 
is shown in Figure 1 for 4/a>(dU./dx)»l^oI(Lr<)d'U./dx5)4.Comparison of the 
velocity profiles indicate that the third approximation is effective near 
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the outer edge of the boundary layer, and especially near flow reversal.  It 
does not, however, contribute to the mass transport velocity owing to the fact 
that all velocity functions in the third approximation are periodic. 

2. Case of a progressive wave 

When the external flow is represented by a progressive gravity wave, 
the appropriate form of the stream function, according to Dore (1968) and 
Johns (1968), is 

VM.*>'V&i[WY.e)*~lei'*M 

K- 

The boundary conditions are 

y0 = v, = o     at * = d 
W„   = Y, = constant at  2 =2d*% 

where the free surface is specified by 

and the depth a   , has its origin at the still water surface. 

(23) 

where , 
Z -• y +d (24) 

and the wave number can be expanded as 

k -. k„ + ^ k, +... (25) 

The second term was given by Biesel (1949) as 

kid (in) 
Zk.di-5inhZk.dl (26) 
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With a change of variables for the zero order stream function we can 
write 

MI ,      i(k.*-<*>t)       a      .      -i 
Y0(H)Z - Asmik.z 5m(k0x-cot) (27) 

where 

A au) 
k0smhk0d (28) 

Retaining the real part and displacing the coordinate system by Tt/4, 
we obtain the horizontal velocity by differentiation of Eq. 27 

- £&.. U0---Ak0 <uxh k.i c0s(kox-u,t) 

at the outer edge of the boundary layer.  Similarly, 

(29) 

m s -- A k Cosh L z sin (k„x -cot) (30) 

%P?,-Ak*Coshk02aos(k.x-u>t) (31) 
OX- 

We assume now, that as T\  —* i , terms of 0(£,£')      in kea 
remain small for the fixed viscosity in order that the condition of viscous 
effects outside the boundary layer be avoided. Therefore it follows, that 
the zero order velocity is considered to adequately describe the free stream 
oscillation.  This is justifiable, since the point of interest is not in the 
flow far from the boundary, where mass transport and interaction terms are 
significant; rather in establishing the magnitude of shear stress near 7\-0 ; 
which is discussed in the following section.  The argument is based on K$  being 
large, whereby interaction between the mass transport velocity and the inviscid 
flow in the potential region are neglected, following Stuart's (1966) arguments. 
When K5 is of 0(1),  however, the periodic component of the horizontal velocity, 
obtained in the second approximation, must be matched asymptotically with the 
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first order velocity £ Ui  at the interface, so that the boundary con- 
dition reflected in Equation 9 is satisfied. That is, 

M«.»l-&[#2Ji ?»''"*• ««<M-«I (32) 

as shown by Longuet-Higgins (1953) and Noda (1971).  Evaluation of inter- 
action terms resulting from the simultaneous perturbation of inner and 
outer flows remains a continuing research interest of the author. 

THE SHEAR STRESS DISTRIBUTION 

To assess the potential force available, say for the entrainment of 
sediment, it is important to know the maximum value of the instantaneous 
shear at the bottom, its distribution normal to the boundary and its phase 
advance in respect to the horizontal velocity. 

In laminar flow, the shear stress distribution is derived from the 
velocity gradient 

Z - vp(^-) dy (33) 
which expanded to the third approximation becomes, in general 

l*'-pm>%'%] (34) 

where U,; U2 and Ui  are given in Equations 13, 14, and 15 respectively. 

The boundary conditions for the auxiliary functions are 

XfW^uW  <£*>> Wfiniteat    ,, a O 
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Solutions for all £  are: 

^(rj) --(i + t)e (35) 

•W7)1 ~e e       C7- fi-o; (36) 

J        (38) 

i0   I J 50 40 
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Equations 35-37 are the auxiliary functions of the first and second ap- 
proximations; these are depicted in Figures 2 and 3 separated into real 
and imaginary components. Similarly, Figures 4 and 5 show components of 
the third approximation (Equations 38-41).  It is evident, that £' (?]) 
considerably outweighs the numerical contribution of all other components, 
except that of ^jojtf) •  However, this function is only effective in cor- 
recting the first approximation. 

We can now write the complete expression for the shear stress dis- 
tribution correct to 

$/<*>]• 
The first term on the right side is the steady contribution equivalent 

to ^t-'zi y^ij   •   The phase advance is represented by 0.    It is seen from 
this equation, grouped to equivalence in the harmonic terms, that the con- 
tribution made by the third approximation is two-fold, one of which is cor- 
rect terms of 0(6) .  In fact, this is numerically more significant, than 
all terms of 0(Sl)    •    In other words, the contribution of the third ap- 
proximation to the distribution of Tlu)      is small. 

An example of the shear stress distribution of Equation 42 is given 
for an Airy wave of H = 2.0 ft, T = 10 sec and d = 30 ft in Figure 6, 
where the normalized shear is shown as a function of 1\  . Phase advance of 
the maximum shear over the forcing velocity is found to be near 6* IT/6   in 
absolute units, instead of TT/4   predicted by linear theory. This is 
equivalent to 30°, and compares well with the experimental phase lead ob- 
tained by Jonsson (1966) in an oscillating water tunnel, although the flow 
in his boundary layer was turbulent.  It appears, therefore, that the ad- 
ditional nonlinearity due to the Reynolds stresses, or the diffusion of 
vorticity into the inviscid region reduces the phase lead of the stress; 
this is supported in part by the analytical work of Srivastava (1966) who 
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obtained progressive reductions in the phase by increasing the order of' the 
solution for the shear stress. 

CONCLUSIONS 

An analytical solution for the shear stress distribution to the third 
approximation in the boundary layer of laminar flow established the following: 

(1) The maximum, instantaneous shear stress has a phase difference 9 = tf/6 
over U , agreeing with Jonssons's (1966) experimental data; 

(2) The third approximation modifies the numerical estimate of the 
second approximation boundary shear by no more than 6 percent, which is 
below the experimental error associated with shear measurements; 

(3) When the shear stress is measured indirectly at some elevation 
above the solid boundary, the perturbation procedure described herein 
enables one to correct the experimental data for the true value of the 
bottom skin friction.  This is particularly applicable to experiments where 
current meters or Preston probes are used to survey the velocity distribution 
near the boundary. 
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NOTATION 

H 
i 
k=2ir/L 
L 
Re 
Rs=UD/tov 
T 
t 

1,2,3 

Wave amplitude 
Local water depth 
Exponential 
Gravitational acceleration 
Wave height 
•Ci 
Wave number 
Wavelength 
Real part of complex number 
Reynolds number 
Wave period 
Time 
Free stream velocity 
Velocity in the boundary layer 
horizontal component 
Velocity in the boundary layer 
vertical component 
Horizontal distance or 
coordinate 
Vertical distance or coordinate 

z=y+d 

5 
n=y/6 

(A)=2TT/T 

X 

V 

Normalized distance or 
coordinate 
Boundary layer thickness 
Perturbation parameter 
Function of n 
Dimensionless coordinate, 
normal to boundary 
Phase advance of the shear str 
Kinematic viscosity 
Vertical displacement of 
water surface from 
still water level 
Density of fluid 
Horizontal shear stress 
Wave number 
Velocity potential 
Dimensionless stream function 
Stream function 
Laplacian operator 




