
CHAPTER 11 

NON-STATIONARY SPECTRUM ANALYSIS OF OCEAN WAVES 

by 

Mehmet Aziz Tayfun, Cheng Yi Yang, and George Chia-Chu Hsiao* 

Priestley's method [1, 2, 3]  of non-stationary spectral analysis is 
extended to the case of digitally sampled records. A computation procedure pre- 
viously proposed in an earlier work [4] is further investigated. This procedure 
compensates for the inherent difficulties in the theory and computes time- 
dependent spectra from a sample in an iterative manner. Validities of the theory 
and the iterative procedure are tested with a simulated non-stationary process. 
Results establish a general agreement with theory, especially when spectra vary 
smoothly with time and frequency.  Consequently, the procedure is applied to 
estimate non-stationary spectra for two wave records.  A comparison is made 
between the non-stationary estimates and the stationary results derived from 
the same set of wave records. 

INTRODUCTION 

Since the pioneering work of Pierson and Marks [53, stochastic spectral 
analysis of wave records is well accepted.  Among many available published works 
on the subject, references [6, 7, 8, 9, 10, 11, 12] are excellent sources of 
information on the analysis, significance and the current state of the wave 
spectrum approach. 

The most important constraint of the conventional spectral analysis is the 
assumption of stationarity, i.e., the fundamental character of the wave field 
does not change with time.  Unfortunately, in many realistic situations, this 
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is an unsatisfactory restriction imposed by the lack of a physically meaningful 
and mathematically rigorous non-stationary spectrum concept.  A few analysts 
tried an intuitive approach to compensate for time-dependency. For example, 
Wilson [13] computes time-variant spectra from overlapping segments of a wave 
record.  Such attempts are useful but are still unsatisfactory because they do 
not have a formal basis for guidance and a clear design rationale for practical 
application. 

Recently, Priestley has made a major effort to define a non-stationary 
spectrum as a smooth extension of the classical concepts and discussed a method 
of estimating time-dependent spectra from a single realization. This method is 
a generalization of the conventional analog approach.  Therefore, it involves 
all the difficulties of the stationary analysis as well as new ones imposed by 
time-dependency.  Specifically, the optimal design of a spectral computation 
requires a prior knowledge of frequency- and time-domain characteristics of the 
spectrum of the underlying process.  These are normally unavailable in a realistic 
situation.  Tayfun, et al [4], suggested a practical procedure to compute these 
parameters and time-dependent spectra in an iterative manner.  The procedure was 
successfully tested on an artificially generated process in which spectral com- 
ponents have the same time-history, which is called a uniformly modulated process. 

Processes that arise in applications such as ocean waves are realistically 
non-uniformly modulated. The purpose of this study is, therefore, to investigate 
the validities of the estimation method and the iterative procedure in the more 
general case of a non-uniformly modulated process, and, consequently, to be able 
to apply the iterative procedure to estimate time-dependent spectra for ocean 
wave records. 

The discussion will mostly be limited to the basic ideas and the operational 
results in the case digitally sampled records.  The concepts are simple extensions 
of those of the continuous case given in references [1, 2, 3]. The reader is 
referred to these references for details and elegant mathematical analysis of the 
underlying theory. 

DEFINITIONS AND ASSUMPTIONS 

A zero-mean non-stationary process x(t) is represented in the frequency- 
domain as [1]. 

x(t) = [  A(t,oi) elt0t dZ(u) (2.1) 

where Z (to) is a process with uncorrelated increments, and A(t,w) is a determin- 
istic modulating function.  We see that, if A(t,w) equals one, the natural 
representation of a stationary process is recovered in terms of its generalized 
Fourier transform process, Z(to). 
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The above representation (2.1) provides a spectral decomposition of the 
process x(t) in terms of harmonic components with different frequencies and 
time-variant random amplitudes A(t,u)dZ(u). The mean-square function of x(t) is 

E|x(t)|2 = |   |A(t)(Jj)|
2 E|dZ(co)|2 (2.2) 

where E{•} denotes an ensemble-average. Note that EJx(t)] depends on time t, 
as expected, by virtue of the modulating function A(t,w). Prom the definition 
that the spectral density is the frequency distribution of the mean-square, it 
follows that the spectral density at time t is 

f(t,u)) = |A(t,to)|2 f(co) (2.3) 

f(to) dw = E|dZ(o))|2, 

with f(o)) regarded as the spectral density, say, at time t0 if we assume that 
A(t0,co) = 1.  Hence, the function JA(t,w) p describes the change or evolution of 
that density at subsequent times. 

Assume that a sea-surface record collected at a fixed spacial reference as 
a continuous function of time is a sample of a zero-mean process which admits 
a representation of the form (2.1),  If the record is digitally sampled at a 
periodic sampling interval of At sec, then we form the sequence X]_, X2, ..., x^, 
where xt = x(tAt), and N = T/At with T the total record length in seconds. 
Furthermore, assume that the interval At is so chosen that 

f(tAt,u) = 0 , |co| > ir/At, all t (2.4) 

so as to make sure that no error will be introduced due to the well-known 
aliasing effects. 

At this point it is convenient to regard the sequence xt as if it consisted 
of prints at unit time intervals.  This is equivalent to transforming the original 
frequency scale into a standardized dimensionless frequency, say to', which is 
defined in (-IT, TT) and such that w' = wAt.  Consequently, the spectral density, 
say f(j(t,a)'), of the sequence xt and that of the actual wave record x(tAt) relate 
to each other in the form 

f(tAt,a)'/At) = At • f (t,u') , |o)'| < TT (2.5) 

Associated with the discrete process from which the sequence x^- is assumed 
to be sampled, three dimensionless parameters, Bx, BQ and Bf are respectively 
defined as the "characteristic width," the time and frequency domain bandwidths 
of the spectral density f<j as a function of t and co'.  The characteristic width, 
Bx, is a measure of the maximum interval over which the statistical properties 
of the process are approximately stationary.  BQ and Bf are of the order of mag- 
nitudes of the physical bandwidths based on the "half-power points" of the major 
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peaks of f{^(t,tu'*) as a function of only t, and then w", respectively.  Both 
Bx and B0 are imposed by time dependency introduced through the modulating 
function A(t,w"). They relate to the inverse time-rate of change of A(t, u), 
and therefore, to one another in the sense that if one is large, so is the 
other, and conversely.  The explicit definitions of these parameters are given 
in [1, 2, 3]. 

3.  ESTIMATION OF NON-STATIONARY SPECTRAL DENSITY 

The "raw" and "smooth" spectral estimates of f^.(tiiji'")  in the neighborhood 
of t and to-* are given respectively by 

lVoO|2= I l       guXt_ue-
lM'<t-»>|2 O.I) 

and 

1u-t-N 

t 

fd(t,u.') = I V u I'W')! (3.2) 
t-N   * 

where gu is a digital "filter," and W^-* u is a weight-sequence which depends on 
a parameter T-*. Associated with the filter gu and its Fourier transform r(W*)» 
two parameters, Bg and Bp are respectively defined as measures of bandwidths in 
time and frequency.  These parameters indicate the concentration of the functions 
gu and [r((iO|2 near their origins. We likewise define a parameter % as a 
measure of bandwidth for the weight-sequence WT")U.  Explicit definitions of the 
parameters Bg, Bp and B^  as well as certain suitability conditions which gu and 
^T",u  must satisfy are given in [1, 2, 3]. 

The raw estimate, |u| , is essentially a digital filtering of the sequence 
xt through a filter gu with a frequency response, r(co'), centered on frequency to-*. 
Under the conditions, Bg « Bx and Br « Bf, Priestley [1] shows that 

E|Ut(aO|
2 * fd(t,uO (3.3) 

Hence, |u|  is an approximately unbiased estimate of f^t,^).  The condition 
Bg << Bx implies that this filtering is to be done through a filter with a 
narrow bandwidth so that over the effective range of the filter the statistical 
properties are approximately constant.  The condition Bp << Bf requires that the 
spectral window, j T(co^) | ^3 be narrow enough just like a slit through which the 
value f(j(t,w'*) can be observed without any contamination from neighboring values. 
As is well-known, a small bandwidth, Bg, in the time-domain corresponds to a 
large bandwidth, Bp, in the frequency-domain.  Consequently, the estimation 
would be accurate for processes with spectra changing slowly over time and fre- 
quency (i.e., large Bx, B0 and Bf), so that a fulfillment of one of the conditions, 
Bg << Bx an<* Bp <<: Bf> would not delete the other. 
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Note that the raw estimate is derived through a linear transformation of 
the random sequence xt. Hence, it also is random in character, and not a useful 
estimate for practical purposes.  It may be recalled that, in the conventional 
analog approach when xt is in fact stationary, a stationary spectral estimate 
is obtained simply by averaging the raw estimates of the form (3.1) over the total 
length of the record. This enables one to approximate an ensemble-average as well 
as to obtain more stable estimates.  Such an approach is not valid in the non- 
stationary case, since one cannot replace an ensemble-average with a time-average. 
Therefore, in order to account for the unstable nature of the raw estimate, |Ut| > 
it is smoothed over neighboring^values of t, as implied by (3.2), resulting in a 
more stable "smooth" estimate, ft.  This smoothing is done through a weight- 
sequence WT' U depending on the parameter T" which satisfies the condition 
Bg « T' « N.  The last condition implies that smoothing with W-j^u should be 
over a range that is substantially larger than the effective width of gu to 
achieve satisfactory stability.  On the other hand, T" should be small enough 
so as to prevent excessive "smudging" of the temporal characteristics of the 
raw estimates. 

Finally, note that, once f^t^m") is computed, we can obtain the smooth 
estimate, say f(tAt,w). corresponding to the actual wave process through the 
transformation (2.5), i.e., 

f(tAt,w7At) = At • f (t,w') , |w*| < TT (3.4) 

is a smooth estimate of f(tAt,co) at time t • At (sec) and frequency u = w'/At 

SAMPLING PROPERTIES AND DESIGN RELATIONS 

The overall sampling quality of the estimate f(j(t,o)'*) is measured by its 
relative mean-square error at time t and frequency to", i.e., 

M(h.T*)-—i = * lf*- + -y +^\       |r(<n|W  (4.1a) 
fd (t,<0 

where h is a parameter related to the functional form of gu, and C is a constant 
determined from the weight-sequence WT> 

Design of a spectral estimate involves determining the functions gu and 
WT'JU*  Functional form of these may be chosen from a standard collection of 
filter windows that already exists in the classical analysis.  For example, in 
terms of the parameters h and T-*, we may choose a rectangular filter gu and a 
discrete Daniell window W-^  of the forms 

, u = 0, ±1, ..., ±h 
/27r(2h+l) 

0    , |u| > h 
(4.2) 
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and 

b- 
(4.3) 

The above functional forms will be adopted in the subsequent discussion and 
applications for illustrative purposes. On the basis of (4.2), (4.3) and from 
(4.1a), we may show that, for large values of h and T" 

(4.1b) 

where Bw = T'/vTT and Bf ~ ir/h, an approximation based on half-power points of 
the major peak of jr(w*)p. 

The parameters h and T" may now be determined as follows: 

(a) Fixed Frequency-Domain Resolution: For each t, f^(t,LO is required 
to have a prescribed degree of resolution in frequency-domain, i.e., 
we require Bp/Bf = X» where X is a small prescribed constant. Here, 
Bp ~ ir/h. Hence, given Bf, h is the largest integer smaller than 

XBf 
(4.4) 

Now, T"  is chosen so as to minimize the relative mean-square error, 
M, now a function of only T'.  Subject to the condition Bg < I"" < N, 
the optimum value of T-* is easily obtained from (4.1b) as the largest 
even integer smaller than 

1/5 
[192 h B  ] (4.5) 

(b) Fixed Resolution in Time and Frequency-Domains:  In this case, we set 
Bp/Bf = X  and B^BQ = y, where y is likewise a small prescribed constant. 
Assuming B0 and Bf are available, h and T' are determined from 

h - •— ,  and T' ~ /l2 B y (4.6) 
AJJ- O 

The sampling quality of the estimates is now determined by the above 
conditions and from (4.1b), the relative mean-square error. 
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5.  FEATURES AND INHERENT DIFFICULTIES 

The estimation method described above is a smooth generalization of the 
conventional analog approach to non-stationary cases.  Especially with the 
particular choice of W^ u here, the technique is roughly equivalent to esti- 
mating spectra from overlapping segments of a record.  This is achieved through 
a formal consideration of the temporal characteristics (i.e., Bx and B0) of the 
underlying process.  In the limit case of stationarity, Bx and B0 both become 
infinite and smoothly disappear from the formulations as the analysis reduces 
to the conventional results.  In that case, a stationary spectral estimate, 
say f(u), is obtained by 

N-h 
I        |u.(a>')r, (5.D 

=h+l  C 

where jut|  is given by (3.1) and limits are chosen over the range of t in 
(1, N) for which |UtP can be evaluated from (3.1) by using a filter gu of the 
form (4,2).  This simply corresponds to an averaging of the squared filter 
output, |Ut| j over the complete record length, just as in the conventional 
analog approach. 

The method involves all the difficulties associated with the classical 
analysis as well as new ones imposed by time-dependency. A rational application 
requires a knowledge or a rough estimate of the parameters Bx, B0 and Bf as a 
background information for design.  These are unavailable a priori on the basis 
of a given sample record in a realistic situation such as ocean waves, and 
therefore, form the major source of difficulty in application. 

6.  A PRACTICAL PROCEDURE 

Consider a practical situation where it is required to estimate the non- 
stationary spectral density, f(tit,w), of a wave process on the basis of a 
digitally sampled record x(tAt), where t = 1, ..., N. 

The first objective is to determine the process parameters Bx, B0, and Bf 
in a. rational way.  At present, there seems to be no way of estimating a lower 
bound for the characteristic width Bx on the basis of a sample record.  However, 
we recall that the parameters Bx and B0 are related to each other in the sense 
that if one is large, so is the other, and conversely.  Hence, if we could 
estimate BG, then it could be used as a measure of the temporal characteristics 
of the wave process.  Furthermore, design relations are dependent on B0 and Bf. 
A rational design for the parameters h and T" requires, therefore, a background 
information about B0 and Bf.  An iteration scheme may be suggested to compute 
the parameters B0 and Bf, and consequently, h and T^ in the following manner. 
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We perform a pilot-estimation by using "trial values" for h and T' such that 
h < T' < N. Accordingly, a value h can be chosen arbitrarily. Then, we may 
choose T"* ~ rh, where r is a constant larger than unity, and f^^to"*) is 
"pilot-estimated" for several values of t.  Recall, from (4.1b), that the 
dimensionless variance of the estimates is given by 

var f ,(t,iO   ,, 7 

—5-* %- 0&                                                       (6.1) 
f/(t,a>')    5T r 

d 

Therefore, the larger r is, the more stable the pilot-estimates will be. It now 
becomes possible to estimate B0 and Bjp on the basis of the pilot-estimates of 
fd(t>w') ant* according to the definitions of these parameters conceptually 
illustrated in Figure 1.  After B0 and Bf are computed, using one of the design 
criteria discussed in Section 4, we determine "refined values" h and T".  The 
same procedure is iterated for enough number of times until the parameters B0 
and Bf (therefore h and T^) simultaneously attain a convergent behavior.  The 
spectral estimate f(tAt,to) corresponding to the wave process is derived from 
the values f(j(t,co'*) in the convergent cycle through the transformation (3.4). 

Intuitively, the success of the procedure would be affected by the degree 
of "smoothness" of the true spectral density f(tAt,a>) as a function of t and to. 
This is due to "blurring" and "smudging" effects of filtering and smoothing 
operations as discussed previously.  The more detailed features of true f(tAt,to) 
as a function of t and to are likely to be obscured by the estimation procedure. 

7.  APPLICATIONS 

An Artificial Non-Uniformly Modulated Process 

This example is a non-stationary process in discrete time with a frequency- 
domain representation of the following general form, i.e., 

xt = I  A(t,w) eitC0 dZ(to) (7.1) 

In general, a process xt of the form (7.1) has an equivalent interpretation in 
the time-domain in terms of a linear time-variant filter and a suitable stationary 
process (see Priestley [1]).  For example, we may write 

(7.2) 
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if we formally define 

\,umh\*«'>»> elu"du (7-3) 

as a time-variant filter, and specify V as a second-order stationary process 
of the form 

J-TT 

>ltw dZ(to) (7.5) 

in the frequency-domain.  Note that E|dZ(to)|  = fv(to)dto, with f„(to) defined as 
the spectral density corresponding to the stationary process Vf 

The theoretical spectral density, say fx(t,to), of the non-stationary 
process xt is, by definition 

f (t,u) = |A(t,w)|2 f (w) (7.6) 

In order to illustrate and test the estimation method and the iterative 
scheme on a non-uniformly modulated process of the form (7.1), we may now choose 
some explicit functional forms for the processes V. and Xt such that 

Vt+2 + °'5 Vt = Nt (7,7) 

2 
in which Nt are independent random variables, identically distributed as N(0,3 ), 
and 

^      2   -0.2LI   ,2     n vl I  - 
At,u " ^soo* 

{—4  (6M) -e     600 + 1>        (7-8) 

where |to| < IT, and t = 0, 1, ..., 1400.  It can easily be shown that the process 
Vt given by (7.5) has a frequency-domain representation of the form (7.5) with 

f (to) = f- i 2— , 1 coI < TT (7.9) 
V     ZTr (0.25 + 2cos to) 

The above form of A(t,to) is, for any frequency to, basically a fourth-order 
polynomial of the form at^ 4- bt^ + ct .  The coefficients as functions of the 
parameter w are deliberately so chosen that the function A(t,a)) smoothly changes 
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with respect to t, and its transform with respect to w, i.e., h   given by 

\,u  " h  <6§/ «6§0>2 ~~2   ^U+1 ^  + II 
0.04+u 

(T^T)   5"  [(-1) e + 1]  + 2TT  6       } 
600     0.01+u2 °>u 

(7.10) 

falls off rapidly to zero as u becomes large.  Therefore, these functional forms 
are of convenience in the simulation of a sample of xt>  This is done as follows: 
we first generate a sufficient number of independent normal variables with zero 
means and standard deviation 3 corresponding to Nt. A sample of V^ is obtained 
through (7.7) iteratively.  In so doing, a sufficient number of initial V"t

,s are 
neglected to account for the transient.  Finally, the sample xt is obtained 
through (7.10) and (7.2), using only a finite number of terms in the summation. 
The sample simulated in the described manner is shown in Figure 2 for values 
t - 0, 10, ..., 1400, to give a general idea on the temporal behavior of the 
process studied. 

The process parameters B0 (-210) and Bf (~0.70) are approximately estimated 
from the theoretical spectral density f (t,to).  For this example, a fixed frequency- 
time-domain resolution criterion with A = 1/2, y = 1/3 is adopted. Therefore, 
from (4.6), we have h (-9) and T"*(~240). The corresponding relative mean-square 
error is approximately 8%.  Some of the theoretical spectra, fx(t»

u)» an&  c^e 

estimates fx(t,oj) at various times based on the simulated sample with the above 
values of h and 1*  are illustrated in Figure 3 with solid and dashed lines 
(simulation 1), respectively.  The estimates compare favorably with the theoretical 
ones, and indicate to the validity of the concepts and the estimation method. 

Table 1 illustrates convergence of process and design parameters in the 
iterative procedure based on the same design criterion and two pairs of trial 
values h and T*.  The convergent parameters h (-12) , T" (-210 and 220), B0 (-180) 
and Bf (-.5) compare fairly with those (i.e., h - 9, T'  » 240, B0 = 210, Bf = 0.70) 
obtained on the basis of a prior knowledge about the underlying process xt.  The 
estimates based on the iterated parameters h = 12 and T-* = 220 are also presented 
in Figure 3 by dotted solid lines (simulation 2) for comparison with the first 
estimates as well as the theoretical ones.  In this case, again, the comparison 
is fairly satisfactory and indicates the validity of the iterative scheme. 

Atlantic City Record 

The example we consider here is a twenty-minute sample from the wave data 
collected at Atlantic City, New Jersey, on May 23, 1969 (14:00 ~ 14:20).  The data 
was available in the form of punched cards, and sampled at intervals At -  0.25 sec. 
Table 2 shows the convergence of design and process parameters in interation based 
on the trial values h (-10 sec.) and T' (-100 sec), and a fixed frequency-domain 
resolution criterion with X = 1/2.  Some of the non-stationary estimates corre- 
sponding to the convergent parameter h (-24 sec.) and T' (~270 sec.) are presented 
in Figure 4 at various times.  The relative mean-square of an estimate at any time 
and frequency is approximately 13%. 
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For comparison, a stationary analysis was also performed on the same 
wave record.  This is done using results of the non-stationary analysis for 
the special limit case of stationarity as described briefly in section 5. 
The stationary estimate, also shown in Figure 4, is similarly based on a 
frequency resolution of A - 1/2, and a relative mean-square error of 6% with 
60 equivalent degrees of freedom. 

A comparison of the non-stationary spectral estimates at various times 
with the stationary estimate indicates that they generally differ in both 
magnitude and shape.  The location of the major spectral peak and the magni- 
tudes of the non-stationary estimates differ from the conventional in an 
unconservative manner, indicating that the wave field is in a general time- 
dependent state.  We believe that the stationary analysis in this case, by 
smearing and smoothing out the temporal changes, may not provide all the 
critical spectral characteristics of waves. 

TRIAL VALUES 

ITERATIONS 

1 2 3 4 5 

ATLANTIC 
CITY 

h (sec)   10 

T' (sec)  100 

B  (sec) 
°    _i 

Bf (sec ) 

16 

172 

90 

.4 

21 

216 

100 

.3 

22 

260 

132 

.28 

24 

270 

134 

.26 

24 

270 

134 

.26 

HURRICANE 
DOM 

h (sec)    8 

T' (sec)   120 

B  (sec) 
°    -1 

Bf (sec ) 

11 

176 

90 

.6 

11 

220 

120 

.56 

13 

280 

160 

.52 

13 

284 

165 

.5 

Table 2. Convergence of Parameters in Iteration For 
Atlantic City and Hurricane Dora Records. 

Hurricane Dora 

This is an approximately twenty-five minute sample from the wave data 
collected offshore Panama City, Florida, during Hurricane Dora while it crossed 
the northern part of Florida on September 9-10, 1965.  The data was collected 
at a multi-legged tower (Stage I) in about 100 ft. of water at 11 nautical 
miles offshore.  The record time of the waves examined here is 17:00 - 17:25 on 
September 10, the same data analyzed by J. I. Collins [14] through the conven- 
tional autocorrelation method of Blackman and Tukey. 
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On the basis of the trial values h (~8 sec.) and T' (~120 sec), and 
a fixed-frequency-domain criterion with X ~  1/2, the iterative scheme is 
carried out. The convergence of the parameters in iteration is presented 
in Table 2.  Some of the non-stationary estimates corresponding to the 
convergent parameters h (-13 sec.) and T" (~284 sec.) are presented in Figure 5 
together with the stationary estimate obtained on the same record with respect 
to the same design criterion with X = 1/2.  The non-stationary estimates and 
the stationary one have 12% and 4% relative mean-square errors, respectively. 
The equivalent degrees of freedom corresponding to the stationary estimate 
is 150. 

The non-stationary estimates generally differ from the stationary results. 
However, these differences in magnitude and shape are not very significant, 
indicating the waves are in a more or less steady state.  In this case, we 
believe that the conventional analysis seems to provide the essential spectral 
characteristics of the wave field. This also confirms the fact that the results 
reduce to the conventional when stationarity dominates. 

8.  SUMMARY AND CONCLUSIONS 

Priestley's estimation method and an approximate iterative procedure 
applicable to the realistic spectral analysis of ocean wave records with intrin- 
sic non-stationarity have been examined.  The validities of the concepts and 
the suggested iterative procedure have been tested with a simulated non-stationary 
process, and consequently applied to estimate time-dependent spectra for two wave 
records.  Some characteristics results have been presented. 

We may summarize the results of this study as follows:  the results of the 
estimation method from a simulated non-stationary process compare favorably 
with the theoretical ones.  This is especially true when the underlying spectrum 
changes smoothly with time and frequency.  We believe that ocean wave records 
intrinsically satisfy these conditions.  The subsequent application of the con- 
cepts to two actual wave records indicates that the time-dependent estimates 
generally differ in magnitude and form from the conventional stationary results. 
Differences in terms of magnitudes, shape and location of a major spectral peak 
are significant in one instance, but not so in the other.  This may suggest that 
the stationary spectral analysis may not provide all the spectral characteristics 
of a wave process due to a smearing effect of the temporal changes. However, the 
method is generalized in the sense that the results reduce to the conventional 
if stationarity is dominant. 

Note that the estimation method does not depend on an explicit knowledge 
of the modulating function A(t,w).  However, accuracy of the estimates directly 
relates to how "slowly" time-variant A(t,w) is implicitly.  During the conference 
presentation of the paper, J. I. Collins and L. E. Borgman raised the question 
whether one can determine the squared modulating function, |A(t,a))| .  It seems 
that an approximate estimation of this function is possible via fitting a non- 
stationary time-series model with time-dependent parameters to the given sample 
record.  For the details of such an approach, the reader is referred to the work 
of T. S. Rao [15]. 
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It is hoped that this study, although limited in particular applications 
here, will provide some insight to the problem in general, as well as be a 
practical tool for application. 
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Figure 1.  Estimation of B  and B_. 6 of 
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Figure 2.  Simulated Non-Stationary Sample (t = 0, 10, 1400). 

TRIAL VALUES 

ITERATIONS 

1 2 3 

h 5 9 12 12 

T' 120 200 230 220 

B 
0 

200 190 180 

Bf 0.7 0.5 0.5 

h 20 16 12 12 

T' 350 230 210 210 

B 
o 200 180 180 

Bf 
0.4 0.5 0.5 

Table 1.  Convergence of Parameters in Iteration 
For the Simulated Example. 
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